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Abstract. In this paper, we review the task of inductive process mod-
eling, which uses domain knowledge to compose explanatory models of
continuous dynamic systems. Next we discuss approaches to learning
with missing values in time series, noting that these efforts are typically
applied for descriptive modeling tasks that use little background knowl-
edge. We also point out that these methods assume that data are missing
at random—a condition that may not hold in scientific domains. Using
experiments with synthetic and natural data, we compare an expectation
maximization approach with one that simply ignores the missing data.
Results indicate that expectation maximization leads to more accurate
models in most cases, even though its basic assumptions are unmet. We
conclude by discussing the implications of our findings along with direc-
tions for future work.

1 Introduction

Consider the challenge of collecting ecological data from the Southern Ocean.
The location is remote, the climate can be brutal, and scientists have limited
resources, which forces them to carefully plan and prioritize their collection ef-
forts. To accomplish this task, scientists schedule observation cruises when and
where they anticipate that phenomena of primary interest will occur. However,
the spatial and temporal variability of ecological phenomena further hampers
data collection. The phenomena may not occur where anticipated, may happen
before or after a cruise, or may last longer than a single research cruise can
remain at sea. One strategy to address this issue is to make multiple cruises,
but even if this approach is successful, there will be omissions in the data. Yet
scientists still want to build models and determine parameter values to explain
the data and understand the system.

This scenario highlights a number of issues. First, the gathered data will
likely contain large gaps that were engineered from the start. Second, these gaps
depend partly on the expected values of the missing data—they are not missing
at random. Third, even though the gathering efforts are engineered to contain
the most important information, the timing may be off. In addition, instruments
may malfunction and some environmental values may fall outside measurable
ranges. Despite the scientists’ best efforts, important information about system
dynamics may be missing.

All these situations, which are not unique to large ecological expeditions,
leave the scientist with an interesting and complex problem: how can one build



a model of a nonlinear, dynamic system when key measurements are missing?
Inductive process modeling (Langley et al. 2002) provides a method for building
quantitative explanations from time series, but it assumes that the relevant data
are available. In comparison, ARIMA methods lead to purely descriptive models,
but researchers often augment them with a variant of expectation maximization
(EM; Dempster et al. 1977) to handle missing values (Isaksson 1991; Stoica
et al. 2005). In this paper, we determine whether EM can be adapted to assist
inductive process modeling and to function in realistic scientific settings.

In the pages that follow, we apply an EM variant called EMP to produce
an explanatory model of scientific data and compare its behavior to a baseline
method that ignores the missing values. The next section describes the inductive
process modeling paradigm and introduces the baseline and EM approaches to
handling missing observations. After this, we report experiments with synthetic
and natural data and present an analysis of the results. In closing, we discuss
related work and suggest directions for future research.

2 Handling Missing Data in Inductive Process Modeling

The approach we report here extends earlier work on inductive process modeling
(Langley et al. 2002; Todorovski et al. 2005). The discovery task can be stated:

Given: trajectories for a set of continuous variables over time;

Given: background knowledge cast in terms of generic entities and processes;
Given: observable and theoretical entities and variables to be modeled;
Find: a process model that explains the observed trajectories and generalizes
accurately to new data.

The task revolves around the notion of a quantitative process model, which pro-
vides a causal account of how variables change over time. Todorovski et al. (2005)
describe the process model representation, which consists of distinct processes
that organize numeric relations among variables that are associated with known
entities, and introduce HIPM, a program that induces process models.

Inductive process modeling should lead to a mathematical model of a system
that both improves our understanding of that system and enables us to predict
its behavior under altered conditions. Additionally, one could use the model
to reconstruct unobserved points in a set of trajectories—a use that suggests
a solution for handling missing data. For instance, given a model, we could
substitute its output for the missing values back into the original data set and
learn a new model from the result. This approach falls into the expectation
maximization (EM) class of techniques (Dempster et al. 1977).

The EM algorithm is an iterative approach to learning a model from data
with missing values that has four main steps:

1. select an initial set of parameters for a model

2. determine the expected values for the missing data

3. induce new model parameters from the union of the expected values and the
original data

4. unless the parameters have converged, return to Step 2 using the new model



To be applicable without further complication, EM assumes that the mechanism
responsible for the missing data is ignorable. Specifically, the data must be either
missing completely at random, which means that the mechanism is independent
of the observations, or missing at random, where the data may influence it (Little
and Rubin 2002). Unfortunately, scientific data sets rarely meet these criteria.

Missing values in scientific domains arise from a combination of resource
constraints, working hypotheses, and other reasons both practical and accidental.
Although variants of EM exist for such “non-ignorable” mechanisms, they require
a collection of data sets produced with the same missing-data mechanism—a
luxury not typical to scientific research. In response, we chose to violate the
assumption of an ignorable mechanism and experimentally evaluate the utility
of an EM variant under these conditions. Our specific algorithm, which we call
EMP, follows the general EM outline given earlier:

substitute linearly-interpolated values for the missing data

use HIPM to find the model that minimizes the sum of squared errors
simulate the new model

substitute the results of the simulation for the missing data

if the model has changed and the maximum number of iterations has not
been exceeded, go to Step 2

Gip Lo

This algorithm differs from the previous outline in that the missing data are
initially replaced with rough estimates and that HIPM selects the first model as
well as the subsequent ones. In addition, estimating parameters for a nonlinear
system remains an unsolved problem, and we can guarantee neither a maximiza-
tion nor an improved estimate in Step 2. Thus we introduce a maximum number
of iterations to force the program to halt. In the next section, we compare the
results from EMP to those from a baseline that ignores the missing data.

3 Experimental Evaluation

In the last section, we established that EM is not an ideal fit for the missing data
problem that we encounter, but we also saw that a variant of EM may be a rea-
sonable solution in practice. To test this conjecture, we performed experiments
with synthetic and natural data for a two population predator—prey system and
with natural data from a more complex ecosystem. The synthetic case allows us
to control the nature of the noise in the trajectory and to determine how accu-
rately HIPM can recreate the structural and parametric form of the generating
model. The natural data gives a more realistic view of EM’s capabilities in the
presence of complicated and unknown noise models.

To generate synthetic data, we built a predator—prey model that produces a
stable oscillation as would be expected in an ideal system. This model includes a
process for logistic growth of the prey, exponential death of the predator, and a
Holling type 2 function (Holling 1959) for predation. We simulated the model to
mimic experimental conditions where four measurements are taken each day for
35 days, which gave a total of 141 observations including the initial conditions.
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Fig. 1. This figure shows the synthetic predator—prey data used in the experiments.

The horizontal line denotes the cut point for the peaks in the prey concentration.
Unfilled shapes indicate missing values.

To generate the final trajectories, we added five percent multiplicative, Gaussian
noise to each observation.

After generating the data, we altered the trajectories to produce a plausi-
ble worst-case scenario for model induction. For this experiment, we assumed
that peaks in the prey population were of primary importance, so we removed
them by deleting all observations where the concentration of prey exceeded 100
parts/volume. This operation left roughly half of the data for training purposes,
as shown in Figure 1. For the baseline condition, HIPM searched exhaustively
through a space of 22 model structures to fit the corrupted training data and
tested the resulting model on the original, noise-free trajectories. We used the
same search conditions to test EMP, which performed 20 iterations and reported
the model with the lowest sum of squared error over all the iterations.

To evaluate EMP on observations from a real system, we used two data
sets initially collected by Veilleux (1976) and made available by Jost and Ell-
ner (2000). In his experiments, Veilleux observed the interaction of two protist
species in an artificial environment over several days. Since it typically took a
few days for these ecosystems to establish a stable frequency, we use a subset
of the provided values. Specifically, we use the observations shown in Jost and
Ellner’s Figure la starting at day 8.5 and those in their figure lc starting at
day 11. The resulting data sets contain 54 samples with five full peaks and 30
samples with three full peaks, respectively.

As with the synthetic data, we removed the portions of the Veilleux trajec-
tories that contain the prey’s peak values. Here we tested under two conditions.
In the first case, we cut out the peak value and one or two neighboring points,
slightly shaving off the peak. For the second case, we removed the peak value and
three to four surrounding points, imposing a deeper cut. Note that a full cycle,
from trough to trough, contains ten samples on average, so the second scenario
uses roughly half of the total data. HIPM fit each data set independently by
searching the same 22 structures used with the synthetic data. We carried out



Table 1. Results on synthetic and natural predator—prey data. The mean squared
error (best scores in bold) and coefficient of determination (r?) are reported for the
best models produced by the baseline approach and EMP.

Data Mean Squared Error Predator r2 Prey 2
Base EMP Base EMP Base EMP
synthetic 44.04 13.34 0.88 0.97 0.89 0.95
la minor 2073.93 1925.28 0.65 0.64 0.63 0.62
la major 2580.81 2636.63 0.55 0.58 0.54 0.55
lc minor 245.42 231.98 0.87 0.87 0.91 0.90
1lc major 408.67 249.11 0.88 0.87 0.90 0.90

the experiments with EMP in the manner previously described and measured
each model’s accuracy by testing it against the original, uncut data.

Table 1 shows the results for the predator—prey experiments. In all but one
case, EMP produced models with substantially better fits to the original trajec-
tories than did the baseline approach. Interestingly, neither method reproduced
the correct model structure for the synthetic data, although HIPM can recover
it from perfect data. Notice also that the coefficients of determination for both
variables (r?) are roughly the same across methods. This result suggests that
EMP helps HIPM fit the amplitude of the trajectories, but does not affect its
ability to fit their shapes. Plots of the trajectories, such as the one in Figure 2,
show that, in all cases, the corresponding models provided close visual fits to
the frequency in both the la and lc data sets. In addition, the models fit the
amplitude of the 1c data quite well, but produced peaks roughly half the height
of those observed in the la data.

The final experiments evaluate our approach with data from the Ross Sea
in the Southern Ocean. This domain differs from the previous two in that the
space of model structures is much larger and the data contain a single peak in
the primary variable. For the experiments we used two data sets (RS1 and RS2)
provided by Kevin Arrigo, the oceanographer in our group. Each set contains 188
preprocessed, daily observations of phytoplankton and nitrate concentrations,
along with values for the amount of available light. In both cases the recordings
were made over the summer when a single phytoplankton bloom occurred.

We removed 32 samples from the first year of data and 25 samples from the
second, based on the location of the phytoplankton peaks. Since light serves as
a driving variable, we provided its value in all cases. After preparing the data,
we had the program fit each set independently and compare the results against
the original measurements. Due to the size of the search space defined by the
associated generic process library, we ran HIPM in beam-search mode with a
beam width of eight. For each training cycle, the program considered an average
of 126.7 model structures. As before, EMP ran a total of 20 cycles using the
same settings for HIPM in all cases and returned the model with the lowest sum
of squared errors.

Table 2 shows the results on the Ross Sea data. In both cases, EMP substan-
tially outperforms the baseline in terms of both mean squared error and r2. We
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Fig. 2. This figure presents the trajectories produced by EMP’s best model for the
Veillieux 1c data along with the observed values.

see more than a 50% reduction in error and, although the 72 for phytoplankton
decreases a bit, the increase for nitrate is phenomenal. Without the use of EMP,
HIPM predicted a flat line for the nitrate concentration. In summary, EMP not
only reduced error but also improved the conceptual model by accounting for all
the observed variables.

The results presented above paint a highly positive picture of the EM ap-
proach to handling missing data in inductive process modeling. On both the
synthetic and Ross Sea data, the extra computational time led to much better
fits, whereas the fits on the Veilleux data were mostly improvements. In the next
section, we review the experimental results, suggest further work in this area,
and discuss related research.

4 Discussion

Even though EMP is hampered by an unspecified missing data mechanism and
asked to operate in a worst-case scenario, it behaved quite well. Looking more
closely at the results on the Veilleux data set, we can conjecture why EM was
less helpful in some cases and plan studies that could clarify the reasons. First,
we note that the behavior of both EMP and the baseline on the 1c data matches
what we see when HIPM induces a model from the complete data. Thus, EMP
was likely hitting a performance ceiling, and enough information remained in the
data for HIPM to build an accurate model even in the baseline condition. This
result is somewhat surprising, since over one-third of the data were removed.
Second, we could make a similar argument for the la data, but performance
of both approaches degrades when we remove more of the data. This finding
matches intuition and indicates that we corrupted the data enough to affect
HIPM’s performance.

We should also explain why experiments with the synthetic predator—prey
data highlighted the difference between EMP and the baseline more clearly than
those using the Veilleux sets. The most obvious difference in these two cases is the



Table 2. Results on data from the Ross Sea. The mean squared error (best scores in
bold) and coefficient of determination (r?) are reported for the best models produced
by the baseline approach and EMP.

Data Mean Squared Error Phytoplankton r2 Nitrate -2
Base EMP Base EMP Base EMP

RS1 30.13 13.56 0.98 0.96 0.00 0.87

RS2 25.27 9.93 0.93 0.80 0.00 0.93

nature of the noise in the observations. The synthetic data used a multiplicative,
Gaussian model whereas the noise mechanism of the natural data is unknown.
Further experiments with alternative noise models may help clarify the effect of
noise on both methods and determine whether it accounts for the discrepancies
seen in the results.

Although our approach to the missing data problem is related to previous
techniques, we have adapted it to the inductive process modeling task and exam-
ined its ability to work on scientific data. Process modeling, which we described
earlier in the paper, descends from research on equation discovery (e.g., Langley
1981; Zytkow et al. 1990; Dzeroski and Todorovski 1995; Washio et al. 2000), but
it differs in that it takes background knowledge as input and outputs explanatory
models, as opposed to descriptive ones. Our emphasis on differential equations
bears some resemblance to work by Bradley and colleagues (2001) and Todor-
ovski (2003), but these approaches lack a a strong attachment to scientifically
meaningful processes.

We could also characterize inductive process modeling as a combination of
qualitative physics and system identification. In particular, our approach groups
equations into a more qualitative, process-based structure like that developed
by Forbus (1984), and our use of generic processes to encode background knowl-
edge resembles work in compositional modeling (e.g., Falkenhainer and Forbus
1991), where abstract components are instantiated and assembled to form mod-
els. The relationship to system identification (Astrém and Eykhoff 1971) lies in
our concern with learning parametric models from time series. Inductive pro-
cess modeling differs from this paradigm in its incorporation of search through
a space of model structures.

Although this paper indicates that EM is an appropriate technique for han-
dling missing data when learning process models, more work in this area remains.
Here, we concentrated on the case where large portions of data are unavailable,
but other situations often arise. In some cases, the variables may be measured
at different intervals, which in extreme cases results in a collection of exam-
ples that are missing all but one value. In other cases, certain variables may
be recorded only at specific times, as occurs when data sets are merged from
multiple sources, each reflecting different interests and resource constraints. This
situation can cause large gaps in individual variables without affecting the rest
of the data. We conjecture that EM-style techniques will be useful in these sit-
uations, but we need experiments to test this prediction.
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