
Revising Engineering Models: CombiningComputational Disovery with KnowledgeStephen D. Bay, Daniel G. Shapiro, and Pat LangleyInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306sbay�apres.stanford.edu, dgs�stanford.edu, langley�isle.orgAbstrat. Developing mathematial models that represent physial de-vies is a diÆult and time onsuming task. In this paper, we present ahybrid approah to modeling that ombines mahine learning methodswith knowledge from a human domain expert. Spei�ally, we propose asystem for automatially revising an initial model provided by an expertwith an equation disovery program that is tightly onstrained by do-main knowledge. We apply our system to learning an improved model ofa battery on the International Spae Station from telemetry data. Ourresults suggest that this hybrid approah an redue model developmenttime and improve model quality.1 IntrodutionBuilding aurate mathematial models of physial devies is an important en-gineering task. For example, engineers at NASA have developed detailed modelsthat desribe the eletrial power system on the International Spae Station(ISS). The engineers use these models for many tasks inluding mission planing,monitoring, and fault diagnosis [3, 4℄. Beause the omponents on the spae sta-tion are run lose to operating limits, the models must be very aurate as thereis little room for error.However, aurately modeling a physial devie is a diÆult problem for sev-eral reasons. First and foremost, devie modeling is an inverse problem thatinvolves reasoning bakward from observations on a devie's behavior to pos-sible equations that may have generated the data. Seond, our knowledge ofmost devies is inomplete. For instane, engineers ommonly assume onstantoperating onditions for variables whose a�et is not fully understood. Finally,devie modeling involves many pratial diÆulties. For example, data for modeldevelopment is often available only for a limited range of onditions and may notover the deployed situation. This is espeially true for ISS omponents whoseoperating onditions annot be easily dupliated. Additionally, testing a om-ponent on a lab benh will not aount for interations with nearby devies, orhanges as the devie ages.If the struture of the model is known, i.e. the forms of the equations butwithout spei� values for parameters, many tehniques an learn the missingparameter values from data. However, a more likely situation is that the stru-ture of the equations, and perhaps even the set of relevant variables, are not



ompletely known. This leaves the engineer with the diÆult task of building anappropriate model manually from domain priniples and their intuition.Building models manually is an iterative and time onsuming proess wherebyan engineer may speify an initial model, tune its parameters, and then test itagainst data. If the model's performane is inadequate, the engineer will revisethe model and repeat the proess until she is sure that the model is aurateenough for its intended task. This trial and error approah is umbersome, es-peially with large numbers of parameters or possible model strutures.An alternative is to rely on omputational approahes to automatially dis-over a model. For example, equation disovery programs, suh as Baon [5℄ andLaGramge [8℄, take data in the form of observations and attempt to �nd equa-tions that govern the relationship between independent and dependent variables.This approah is appealing beause it automates muh of the modeling proess.However, equation disovery methods an su�er from very large searh spaesand require strong onstraints to limit the searh spae [8℄In this paper, we propose and formalize a hybrid modeling tehnique thatombines the engineer's knowledge about the devie with mahine learning meth-ods. In partiular, we use engineering knowledge to onstrain the searh for bettermodels and we use omputational disovery programs to manage searh, param-eter �tting, and model soring. We believe this approah has several advantages.From the engineer's perspetive a hybrid approah would allow them to fouson identifying possible re�nements and to explore a wider set than ould bedone manually. From a omputational perspetive, domain knowledge massivelyonstrains the searh spae and makes equation disovery feasible.We demonstrate this hybrid approah by revising battery models to betterexplain real world behavior. In the next setion, we begin by desribing a simplebattery model and showing how an engineer might revise it to explain omplexnon-linear behavior. In Setion 3 we present our method for ombining equationdisovery and bakground knowledge. In Setion 4 we evaluate our method onrevising the simple battery model and show that muh of the non-linearity anbe reovered. In Setion 5, we test our approah on improving battery models forthe International Spae Station from telemetry data. We then disuss limitationsand related work, and onlude with a disussion of future researh.2 An Engineering Approah to Model RevisionIterative re�nement is a ommon engineering approah for modeling a devie.An engineer starts with an initial model that is not perfet, but explains muh ofthe existing behavior. Next, the engineer makes suessive hanges to the modelto improve its preditive power. In this setion, we give an example of thisproess from battery modeling. Although battery models have existed for manyyears, they are omplex eletro-hemial devies that are not well understood.Battery modeling is an ative researh area and new models are ontinuallybeing published.Figure 1 shows a simple battery model drawn as an equivalent eletri iruit.In the model, Vb represents the battery voltage of an ideal ell. The term Rs



represents a resistor onneted in series to the battery ell and models the bat-tery's internal resistane to urrent ow when the iruit is ompleted. The termRp is a resistor onneted in parallel to the battery ell and represents resistaneto self-disharge. In this model, Vb, Rp, and Rs are onstants and annot bediretly observed. The state of harge (so) of the battery is a measure of thetotal eletri harge stored.To omplete the eletri iruit, the battery must be onneted to anotherdevie, whih we will all a ontroller. For this paper, we assume that the on-troller is an ative devie that regulates the harging and disharging of thebattery. It harges the battery at onstant urrent, and disharges at onstantresistive load. The battery interats with the ontroller through i and Vt, whihare respetively the urrent into (or out of) the battery and the voltage at thebattery terminals. The variables i, Vt, and so are observable.1Fig. 1. A battery model.
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Rp Vt controllerAlthough this omponent model appears simple, it maps onto a omplexset of equations that govern the input/output relationships of the battery. Theterminal voltage, Vt is determined by Equation 1 during harge and Equation 2during disharge. The battery's state of harge is modeled by Equation 3, whihis a di�erential equation that states the rate of hange is equal to the urrentow minus loss through the resistor Rp.Vt harge = Vb + i�Rs (1)Vt disharge = Vb �RloadRs +Rload (2)ÆsoÆt = i� VbRp (3)This model an explain muh of a battery's behavior, but it is not adequatefor many appliations. Chan and Sutanto [2℄ point out several de�ienies andsuggest modi�ations to improve its �delity.2 First, the model fails to explain1 State of harge may not be observable in some batteries. For our work modelingomponents on the spae station, the batteries are Nikel-Hydrogen pressure ellsand so an be indiretly observed through the battery's temperature and pressure.2 In their paper, Chan and Sutanto examine �ve historial models and point out theirde�ienies before suggesting an improved model. The model in Figure 1 is notidential to any of the �ve models, but has many ommon elements.



hanges suh as the apparent series resistane, Rs, depending on whether thebattery is harging or disharging. They suggest an improvement where Rs isequivalent to a resistor R during harge and a resistor Rd during disharge. Se-ond, the model ignores dependene of battery properties on the state of harge.For example, real batteries beome muh more diÆult to harge when they arenearly full ompared to when they are empty. This ould be represented in themodel by having R be a monotonially inreasing funtion of so. In general,all of the terms Vb, Rp, R, and Rd will depend on battery properties and arenot onstants.Chan and Sutanto foused their paper by modeling a spei� battery from agiven manufaturer. They made R, Rd, and Rp funtions of Vb, whih in turndepended on so. Although there is some expetation about the general shapeof these funtions, the exat forms were not known and they resorted to themanufaturer's test data to provide the funtions empirially. Figure 2 showsthe funtional forms with the dependent variable on the y axis.The urves in Figure 2 an be obtained by performing in depth batterytesting, ideally for eah spei� physial devie. However, some tests an be de-strutive and shorten the lifespan of the battery, suh as those involving deepdisharge. Manufaturers often provide these urves for a typial battery, butthey are not spei� to an individual physial devie and may not over therelevant operating onditions or external e�ets. This provides a perfet oppor-tunity for mahine learning tehniques to improve existing models by allowingadaptation in response to observational data.Fig. 2. Dependene of battery parameters on other variables. (a) R, Rd, and Rp versusVb. Resistane is saled by the maximum observed value. (b) Vb versus so.
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soc(b)3 Combining Equation Disovery with KnowledgeOur goal is to help the engineer with the revision proess and to support thetypes of re�nements desribed in the previous setion. We envision a systemwhere the user an input information about their modeling problem, data on



the spei� devie they are modeling, and the system would suggest severalrevisions to the model that better explain the observed data.The key insight of our work is that engineers will not suggest arbitraryhanges to a model. Although they may not know the exat hanges that needto be made, they have a good idea of where their model is wrong beause theyknow the approximations and assumptions made in the model's development.We feel this knowledge an be leveraged by omputational tools.3.1 Problem De�nitionWe state our problem as follows:{ Given: an initial set of equations desribing the system's behavior;{ Given: data on the observable variables in the equations;{ Given: knowledge about the equations and how they might be modi�ed;{ Find: an improved model that better explains the data.Knowledge about the equations takes two forms in our urrent system. First,the user an speify plausible values for parameters suh as a valid range oran initial guess. For example, in the battery model in Figure 1 the user anstate that Rs is between 0 and 10 ohms with an initial guess of 0.1. Seond,the user an speify that a term, whih is a parameter in the initial model, mayfuntionally depend on other variables in the analysis. The user an also speifya set of plausible independent variables as well as possible funtional forms. Forexample, we may believe that Vb is not a onstant and is possibly a quadratior sigmoidal funtion of other variables suh as so or temperature.Our problem de�nition is stated as a \single shot" proess that is solvedone, but learly re�nement an be iterative. Often the errors from one stage ofrevision will suggest new re�nements that an further improve the model. Thisleads to a set of relevant models, eah progressively explaining more of the data.3.2 Transformation into Equation DisoveryWe transform our problem into an equation disovery task. We use Lagramge [8℄,whih is a program for equation disovery that an �nd both ordinary di�erentialequations and regular algebrai equations that desribe the data. Lagramge usesa ontext-free grammar to de�ne a spae of possible equations that may explainthe observed data. Lagramge searhes through the spae of equations de�ned bythe grammar, evaluates eah andidate model on the data, and returns the bestmodels aording to a sore funtion.As an example, onsider the grammar in Table 1 (taken from [8℄) whihrepresents all equations that an be formed with the symbols +, �, �, and�. The start state is E whih an be expanded into three expressions E + F ,E �F , or F . The non-terminal symbols in eah of these expressions an furtherbe expanded until only the symbols, onst and v, remain. The symbol onstrepresents a onstant parameter and v is expanded into a variable in the data.



Table 1. Grammar for arithmeti expressions.E ! E + F j E � F j FF ! F � T j F � T j TT ! onst j v j (E)The number of equations that an be produed by most grammars is hugeand, without strong onstraints on what an be generated, the searh spaequikly explodes. For example, four expansions of the grammar in Table 1 resultsin 36 di�erent expressions. However, �ve expansions results in 7,300 expressions,and six expansions results in 14,674,005 expressions [8℄.Our system takes the knowledge spei�ed by the engineer and ompiles ahighly onstrained grammar to searh for revisions of the initial model. Theknowledge is transformed aording to the following rules:{ the initial equation beomes the starting state of the grammar;{ variable dependenies are enoded as symbol expansions in the grammar;{ knowledge about the values of onstant parameters are passed to Lagramgeto be used in parameter �tting.For example, if we believe that Vb may depend on the variables time, so, andtemperature, with possible forms that are sigmoidal or linear (in one or twovariables), we obtain the following produtions for the grammar:Vb ! onst1 + onst2=(1 + e(X�onst3)onst4) jonst1 + onst2X + onst3X jonst1 + onst2XX ! vtemperature j vso j vtimeTo selet the best revision produed with the grammar, we use Lagramge's min-imum desription length (MDL) sore funtion, whih evaluates a andidatemodel by taking into onsideration both the sum of squared error on the train-ing set and the omplexity of the model (the size of its parse tree).4 Revising a Battery Model with Syntheti DataTo demonstrate the feasibility of our revision approah, we used syntheti data totest our system's ability to re�ne initial models. Syntheti data lets us omparethe disovered hanges with the true struture and ontrol for data quality issuesthat our with real sensor data, suh as missing values and noise.We used the �nal model desribed in Setion 2 to generate syntheti data bysimulating it in Matlab with an ordinary di�erential equation solver (ode113).We assumed that the ontroller yles and harges the battery at onstant ur-rent followed by disharge at onstant resistive load (Rload = 2
). We examinedtwo ases: (1) Charging ours with urrent i = 3A. This results in steady yling



of so from about 98% to 73%. (2) Charging ours with urrent i = 2A. Thisresults in a gradual loss of so whih drops from 92% to 30%. For eah of theases we generated data for 1000 time points (8 yles). We added an irrelevantvariable, temperature, whih varied sinusoidally with a period mathed to theharge-disharge yles.As the initial model we used Equations 1 to 3 with all parameters onsideredonstants. We tried a simple senario in whih an engineer might believe thatRs and Rp are well modeled as onstants, but that Vb ould depend on othervariables suh as temperature, so, or time, with a funtional form that is apolynomial (up to third degree) or a sigmoid. Table 2 shows the statements thatformally speify these notions.Table 2. Knowledge about the initial equations.statement meaningRp ! onst[0:200:100℄; Rp should be in the range [0,200℄ and theinitial guess is 100.Rs ! onst[0:100:1℄; Rs should be in the range [0,100℄ and theinitial guess is 1.Vb.variables ! temp, so, time; Vb might depend on variables temper-ature, so, time.Vb.forms! onstant, linear, quadrati,ubi, sigmoid; Possible forms for Vb are onstant, lin-ear, quadrati, ubi, and sigmoid.The statements in Table 2 were ompiled into a grammar and then used asan input to Lagramge. During exeution, Lagramge expands the grammar andexamines 13 di�erent revisions. The best revision aording to Lagramge's MDLsore funtion is expanding Vb to be a linear funtion of so. Figure 3a shows thetarget signal, and Figure 3b and  shows the reonstrution error for the initialand revised models. The results indiate that the revised model was better ableto reonstrut the signal.Although the revised model redued the error for ase 1, the error was stillsizeable. We performed another re�nement iteration and we let Rs depend thevariables time, temperature, or so with a polynomial form. We reompiled thegrammar �le and reran Lagramge, whih explored 240 possible revisions andsuggested expanding R as a quadrati funtion of so. Figure 3d shows theredued error of this new revision ompared with the �rst re�nement.Equations 4 and 5 show the �nal results and the revisions have learly movedthe initial model loser to the urves in Figure 2. The linear expansion of Vb onso partially reonstruts the urve in Figure 2b, and the quadrati expansionof R attempts to model the sharp inrease in R with inreases in so.Vt harge = (5:84 + 0:00451so) + i� (0:145� 0:00527so+ 4:90E�5so2) (4)Vt disharge = (5:41 + 0:00876so)� 2=(2 + 0:00495) (5)



Fig. 3. Original signal and reonstrution error. (a) Target Vt. (b) Reonstrutionerror on ase 1 for the �rst re�nement. () Reonstrution error on ase 2 for the �rstre�nement. (d) Reonstrution error on ase 1 for the seond re�nement.
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(d)Finally, we note that the parameters in the linear equations that represent Vbdi�er slightly in the ase of harge and disharge. This is aused by a limitationof Lagramge, whih its authors are addressing.5 Modeling Batteries on the Spae StationOur experiments revising battery models on syntheti data showed that we ouldre�ne initial models to explain omplex, non-linear behavior. In this setion, weapply our approah to battery models for the International Spae Station withreal telemetry data to show that it an develop aurate models and is robustto data quality problems.We modeled the batteries for a single power hannel on the spae station.Within a power hannel there are three battery units that eah ontain two setsof 36 nikel-hydrogen ells. We treated the entire olletion of 216 ells as a singlebattery, and here we fous on modeling the battery's terminal voltage Vt.We have telemetry data for 24 hours with samples approximately every tenseonds. Only a fration of the ells are instrumented with sensors, so we aver-aged readings from six ells to obtain the battery's temperature and pressure.We estimated the state of harge by the ratio of pressure to temperature. The



urrent and voltage were available for eah group of 36 ells (six total) and wesummed and averaged them to get total urrent and terminal battery voltage.The data are very poor quality and su�ers from several problems. First, thesignals for the observed variables have many dropouts for long time periods andthis a�ets approximately 1=4 of all time points. Seond, beause of bandwidthlimitations, the signals are enoded at low resolution. For example, the sensorsan only report urrent ow to the nearest Ampere. Finally, the data showsevidene of non-Gaussian noise that manifests itself as large spikes in the signal.We linearly interpolated the data to register time points at ten seond in-tervals and to impute missing values. Figure 4a shows the target variable Vtafter this proessing. We divided the data into a training set, of approximatelythree quarters of the data (data before the dashed line in Figure 4a), and atest set onsisting of the remaining data. We used Equations 1, 2, and 3 for ourinitial model. As possible re�nements, we let Vb be a funtion of the variablestemperature, pressure, or so with possible funtional forms that are polyno-mial (up to third degree), sigmoidal, or linear in two variables. We let Rs dependon the same variables with a polynomial form.Lagramge explores 6859 revisions and takes approximately nine hours ofomputation time on an 1.5 Ghz Pentium 4. The top ranked revision, shownin Equations 6 and 7, modi�es the initial model by representing Vb as a linearfuntion of so. Figure 4b shows the predition error on the test data whih ismuh smaller than the error of the initial model.Vt harge = (36:2 + 76:2� so)� i� 0:214 (6)Vt disharge = (20:3 + 36:2� so)� 5:77=(2:60+ 0:408) (7)Table 3 shows summary statistis for the initial model and the top three revisionsreturned by Lagramge. These results indiate that the revised models greatlyimproved the test error ompared with the initial model. The mean squarederror (MSE) for the revised models are approximately one third that of the initialmodel. However, MSE is sensitive to outliers, so we also report mean absoluteerror, whih is more robust. On this measure the revised models all obtained anaverage error of about one volt. This is surprisingly good, onsidering that theindividual sensors only resolve to one volt. Finally, the di�erene in preditiveperformane between the revised models is not substantial. Beause the seondand third models add extra omplexity but do not signi�antly improve themodels, they are rated worse with Lagramge's MDL sore funtion.6 LimitationsWe demonstrated with experiments that our system ould suessfully re�neinitial models to better explain data. However, our revision approah has fourimportant limitations that we disuss here.First, our system fouses the searh for better models by exploring revisionsthat are near an initial model. This provides tremendous power if the true model



Table 3. Error statistis on the training and test data: Lagramge's MDL sore, meansquared error (MSE), and mean absolute error. Training TestMDL MSE MSE Mean Abs.Initial ModelVb, R, and Rd are onstants n.a. 12.3 20.5 2.75Best Revised Models1. Vb is a linear funtion of so. 2.65 2.14 6.99 1.012. Vb and Rd are linear funtions of so. 2.67 2.12 6.95 1.003. Vb is a linear funtion of so; Rd is 2.68 2.13 6.99 1.00a linear funtion of temperature.Fig. 4. Battery terminal voltage Vt and predition error. (a) Training and test datafor Vt. (b) Error prediting Vt.
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(b)is lose to the initial model. However, if the true model is struturally very dif-ferent, then searhing near the initial model will not �nd the neessary revisions.Seond, our system depends on an expert to suggest plausible funtionalforms that may explain the values of dependent variables in the initial model.Again, this provides tremendous power if the expert provides spei� forms thatlosely math behavior in the real physial devie. However, our experimentssuggest that our system may be robust to mis-spei�ation. On syntheti data,our system was still able to signi�antly improve the initial model even thoughnone of the funtional forms exatly mathed the relationships in Figure 2. Onreal data, even though we have a limited knowledge of battery dynamis, theforms we suggested were apable of greatly lowering the predition error.Third, the suggested revisions are onditional on the data seen and may notgeneralize well to new operating onditions. For example, the models in Setion 4were revised on data that represented a battery whose state of harge varied from98% to 30%. The revised model may not perform well outside this region, suhas at very low harge levels. This limitation is not unique to our system, butapplies to all indution algorithms.Finally, Lagramge took over nine hours to revise the battery model for thespae station. This is learly too slow to support iterative and interative re�ne-



ment with an engineer. We are examining methods to speed up Lagramge withtehniques suh as error bounds to quikly eliminate poor andidates.7 Related WorkOur approah builds on reent work by Todorovski and Dzeroski [9℄ who pro-posed revising a mathematial model by providing Lagramge with a grammarthat enodes a spei� set of hanges. They allowed Lagramge to re�t the valueof a known onstant based on the data, and they supported replaing a polyno-mial in the original equation with a polynomial of arbitrary degree (on the samevariables). In their appliation, a major goal was minimal hange with the initialmodel and so they examine eah revision separately and then onsider only afew ombinations.Our appliation area of modeling engineering devies, spei�ally the devieson the spae station, has driven our work in a slightly di�erent diretion. We startwith the assumption that the model is wrong, beause of approximations andthe di�erent operating onditions in orbit, and that the engineers an (mostly)identify the parts of the model that need to be revised. Beause of these as-sumptions we allow a far greater number of revisions to the model. Spei�ally,we allow revisions involving a variety of funtional forms, we allow the formsto depend on di�erent sets of variables, and we onsider all hanges at one toath interations.Bradley, Easley, and Stolle [1℄ developed PRET a program that automatiallytries to �nd an ordinary di�erential equation model of a physial system. Itinorporates domain knowledge in its searh proess but does not attempt torevise an initial equation.Finally, we have foused on developing interpretable and transparent modelsthat an be examined by the engineer. An alternative approah is blak box teh-niques, suh as neural networks (e.g., [6℄), whih model a devie's input/outputbehavior without attempting to �nd a onise mathematial desription. Neuralnetworks are not always appliable beause they are not transparent and arediÆult to verify. However, reently Saito et al. [7℄ have started to address thisdrawbak in the ontext of revision by examining methods using neural networksto learn interpretable strutures.8 Conlusions and Future WorkWe presented an approah for ombining mahine learning methods with anengineers knowledge to revise models of physial devies. The engineer spei�esan initial model and possible revisions to that model and we ombine this withan equation disovery program to manage the searh proess. Our experimentsshowed that we ould suessful revise models of physial devies from noisysensor data and substantially improve their auray.Our work represents a �rst step toward a omputer assisted environment forrevising physial devie models. We believe this approah is promising and may
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