
Revising Engineering Models: CombiningComputational Dis
overy with KnowledgeStephen D. Bay, Daniel G. Shapiro, and Pat LangleyInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306sbay�apres.stanford.edu, dgs�stanford.edu, langley�isle.orgAbstra
t. Developing mathemati
al models that represent physi
al de-vi
es is a diÆ
ult and time 
onsuming task. In this paper, we present ahybrid approa
h to modeling that 
ombines ma
hine learning methodswith knowledge from a human domain expert. Spe
i�
ally, we propose asystem for automati
ally revising an initial model provided by an expertwith an equation dis
overy program that is tightly 
onstrained by do-main knowledge. We apply our system to learning an improved model ofa battery on the International Spa
e Station from telemetry data. Ourresults suggest that this hybrid approa
h 
an redu
e model developmenttime and improve model quality.1 Introdu
tionBuilding a

urate mathemati
al models of physi
al devi
es is an important en-gineering task. For example, engineers at NASA have developed detailed modelsthat des
ribe the ele
tri
al power system on the International Spa
e Station(ISS). The engineers use these models for many tasks in
luding mission planing,monitoring, and fault diagnosis [3, 4℄. Be
ause the 
omponents on the spa
e sta-tion are run 
lose to operating limits, the models must be very a

urate as thereis little room for error.However, a

urately modeling a physi
al devi
e is a diÆ
ult problem for sev-eral reasons. First and foremost, devi
e modeling is an inverse problem thatinvolves reasoning ba
kward from observations on a devi
e's behavior to pos-sible equations that may have generated the data. Se
ond, our knowledge ofmost devi
es is in
omplete. For instan
e, engineers 
ommonly assume 
onstantoperating 
onditions for variables whose a�e
t is not fully understood. Finally,devi
e modeling involves many pra
ti
al diÆ
ulties. For example, data for modeldevelopment is often available only for a limited range of 
onditions and may not
over the deployed situation. This is espe
ially true for ISS 
omponents whoseoperating 
onditions 
annot be easily dupli
ated. Additionally, testing a 
om-ponent on a lab ben
h will not a

ount for intera
tions with nearby devi
es, or
hanges as the devi
e ages.If the stru
ture of the model is known, i.e. the forms of the equations butwithout spe
i�
 values for parameters, many te
hniques 
an learn the missingparameter values from data. However, a more likely situation is that the stru
-ture of the equations, and perhaps even the set of relevant variables, are not




ompletely known. This leaves the engineer with the diÆ
ult task of building anappropriate model manually from domain prin
iples and their intuition.Building models manually is an iterative and time 
onsuming pro
ess wherebyan engineer may spe
ify an initial model, tune its parameters, and then test itagainst data. If the model's performan
e is inadequate, the engineer will revisethe model and repeat the pro
ess until she is sure that the model is a

urateenough for its intended task. This trial and error approa
h is 
umbersome, es-pe
ially with large numbers of parameters or possible model stru
tures.An alternative is to rely on 
omputational approa
hes to automati
ally dis-
over a model. For example, equation dis
overy programs, su
h as Ba
on [5℄ andLaGramge [8℄, take data in the form of observations and attempt to �nd equa-tions that govern the relationship between independent and dependent variables.This approa
h is appealing be
ause it automates mu
h of the modeling pro
ess.However, equation dis
overy methods 
an su�er from very large sear
h spa
esand require strong 
onstraints to limit the sear
h spa
e [8℄In this paper, we propose and formalize a hybrid modeling te
hnique that
ombines the engineer's knowledge about the devi
e with ma
hine learning meth-ods. In parti
ular, we use engineering knowledge to 
onstrain the sear
h for bettermodels and we use 
omputational dis
overy programs to manage sear
h, param-eter �tting, and model s
oring. We believe this approa
h has several advantages.From the engineer's perspe
tive a hybrid approa
h would allow them to fo
uson identifying possible re�nements and to explore a wider set than 
ould bedone manually. From a 
omputational perspe
tive, domain knowledge massively
onstrains the sear
h spa
e and makes equation dis
overy feasible.We demonstrate this hybrid approa
h by revising battery models to betterexplain real world behavior. In the next se
tion, we begin by des
ribing a simplebattery model and showing how an engineer might revise it to explain 
omplexnon-linear behavior. In Se
tion 3 we present our method for 
ombining equationdis
overy and ba
kground knowledge. In Se
tion 4 we evaluate our method onrevising the simple battery model and show that mu
h of the non-linearity 
anbe re
overed. In Se
tion 5, we test our approa
h on improving battery models forthe International Spa
e Station from telemetry data. We then dis
uss limitationsand related work, and 
on
lude with a dis
ussion of future resear
h.2 An Engineering Approa
h to Model RevisionIterative re�nement is a 
ommon engineering approa
h for modeling a devi
e.An engineer starts with an initial model that is not perfe
t, but explains mu
h ofthe existing behavior. Next, the engineer makes su

essive 
hanges to the modelto improve its predi
tive power. In this se
tion, we give an example of thispro
ess from battery modeling. Although battery models have existed for manyyears, they are 
omplex ele
tro-
hemi
al devi
es that are not well understood.Battery modeling is an a
tive resear
h area and new models are 
ontinuallybeing published.Figure 1 shows a simple battery model drawn as an equivalent ele
tri
 
ir
uit.In the model, V
b represents the battery voltage of an ideal 
ell. The term Rs



represents a resistor 
onne
ted in series to the battery 
ell and models the bat-tery's internal resistan
e to 
urrent 
ow when the 
ir
uit is 
ompleted. The termRp is a resistor 
onne
ted in parallel to the battery 
ell and represents resistan
eto self-dis
harge. In this model, V
b, Rp, and Rs are 
onstants and 
annot bedire
tly observed. The state of 
harge (so
) of the battery is a measure of thetotal ele
tri
 
harge stored.To 
omplete the ele
tri
 
ir
uit, the battery must be 
onne
ted to anotherdevi
e, whi
h we will 
all a 
ontroller. For this paper, we assume that the 
on-troller is an a
tive devi
e that regulates the 
harging and dis
harging of thebattery. It 
harges the battery at 
onstant 
urrent, and dis
harges at 
onstantresistive load. The battery intera
ts with the 
ontroller through i and Vt, whi
hare respe
tively the 
urrent into (or out of) the battery and the voltage at thebattery terminals. The variables i, Vt, and so
 are observable.1Fig. 1. A battery model.
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Rp Vt controllerAlthough this 
omponent model appears simple, it maps onto a 
omplexset of equations that govern the input/output relationships of the battery. Theterminal voltage, Vt is determined by Equation 1 during 
harge and Equation 2during dis
harge. The battery's state of 
harge is modeled by Equation 3, whi
his a di�erential equation that states the rate of 
hange is equal to the 
urrent
ow minus loss through the resistor Rp.Vt 
harge = V
b + i�Rs (1)Vt dis
harge = V
b �RloadRs +Rload (2)Æso
Æt = i� V
bRp (3)This model 
an explain mu
h of a battery's behavior, but it is not adequatefor many appli
ations. Chan and Sutanto [2℄ point out several de�
ien
ies andsuggest modi�
ations to improve its �delity.2 First, the model fails to explain1 State of 
harge may not be observable in some batteries. For our work modeling
omponents on the spa
e station, the batteries are Ni
kel-Hydrogen pressure 
ellsand so
 
an be indire
tly observed through the battery's temperature and pressure.2 In their paper, Chan and Sutanto examine �ve histori
al models and point out theirde�
ien
ies before suggesting an improved model. The model in Figure 1 is notidenti
al to any of the �ve models, but has many 
ommon elements.




hanges su
h as the apparent series resistan
e, Rs, depending on whether thebattery is 
harging or dis
harging. They suggest an improvement where Rs isequivalent to a resistor R
 during 
harge and a resistor Rd during dis
harge. Se
-ond, the model ignores dependen
e of battery properties on the state of 
harge.For example, real batteries be
ome mu
h more diÆ
ult to 
harge when they arenearly full 
ompared to when they are empty. This 
ould be represented in themodel by having R
 be a monotoni
ally in
reasing fun
tion of so
. In general,all of the terms V
b, Rp, R
, and Rd will depend on battery properties and arenot 
onstants.Chan and Sutanto fo
used their paper by modeling a spe
i�
 battery from agiven manufa
turer. They made R
, Rd, and Rp fun
tions of V
b, whi
h in turndepended on so
. Although there is some expe
tation about the general shapeof these fun
tions, the exa
t forms were not known and they resorted to themanufa
turer's test data to provide the fun
tions empiri
ally. Figure 2 showsthe fun
tional forms with the dependent variable on the y axis.The 
urves in Figure 2 
an be obtained by performing in depth batterytesting, ideally for ea
h spe
i�
 physi
al devi
e. However, some tests 
an be de-stru
tive and shorten the lifespan of the battery, su
h as those involving deepdis
harge. Manufa
turers often provide these 
urves for a typi
al battery, butthey are not spe
i�
 to an individual physi
al devi
e and may not 
over therelevant operating 
onditions or external e�e
ts. This provides a perfe
t oppor-tunity for ma
hine learning te
hniques to improve existing models by allowingadaptation in response to observational data.Fig. 2. Dependen
e of battery parameters on other variables. (a) R
, Rd, and Rp versusV
b. Resistan
e is s
aled by the maximum observed value. (b) V
b versus so
.
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overy with KnowledgeOur goal is to help the engineer with the revision pro
ess and to support thetypes of re�nements des
ribed in the previous se
tion. We envision a systemwhere the user 
an input information about their modeling problem, data on



the spe
i�
 devi
e they are modeling, and the system would suggest severalrevisions to the model that better explain the observed data.The key insight of our work is that engineers will not suggest arbitrary
hanges to a model. Although they may not know the exa
t 
hanges that needto be made, they have a good idea of where their model is wrong be
ause theyknow the approximations and assumptions made in the model's development.We feel this knowledge 
an be leveraged by 
omputational tools.3.1 Problem De�nitionWe state our problem as follows:{ Given: an initial set of equations des
ribing the system's behavior;{ Given: data on the observable variables in the equations;{ Given: knowledge about the equations and how they might be modi�ed;{ Find: an improved model that better explains the data.Knowledge about the equations takes two forms in our 
urrent system. First,the user 
an spe
ify plausible values for parameters su
h as a valid range oran initial guess. For example, in the battery model in Figure 1 the user 
anstate that Rs is between 0 and 10 ohms with an initial guess of 0.1. Se
ond,the user 
an spe
ify that a term, whi
h is a parameter in the initial model, mayfun
tionally depend on other variables in the analysis. The user 
an also spe
ifya set of plausible independent variables as well as possible fun
tional forms. Forexample, we may believe that V
b is not a 
onstant and is possibly a quadrati
or sigmoidal fun
tion of other variables su
h as so
 or temperature.Our problem de�nition is stated as a \single shot" pro
ess that is solvedon
e, but 
learly re�nement 
an be iterative. Often the errors from one stage ofrevision will suggest new re�nements that 
an further improve the model. Thisleads to a set of relevant models, ea
h progressively explaining more of the data.3.2 Transformation into Equation Dis
overyWe transform our problem into an equation dis
overy task. We use Lagramge [8℄,whi
h is a program for equation dis
overy that 
an �nd both ordinary di�erentialequations and regular algebrai
 equations that des
ribe the data. Lagramge usesa 
ontext-free grammar to de�ne a spa
e of possible equations that may explainthe observed data. Lagramge sear
hes through the spa
e of equations de�ned bythe grammar, evaluates ea
h 
andidate model on the data, and returns the bestmodels a

ording to a s
ore fun
tion.As an example, 
onsider the grammar in Table 1 (taken from [8℄) whi
hrepresents all equations that 
an be formed with the symbols +, �, �, and�. The start state is E whi
h 
an be expanded into three expressions E + F ,E �F , or F . The non-terminal symbols in ea
h of these expressions 
an furtherbe expanded until only the symbols, 
onst and v, remain. The symbol 
onstrepresents a 
onstant parameter and v is expanded into a variable in the data.



Table 1. Grammar for arithmeti
 expressions.E ! E + F j E � F j FF ! F � T j F � T j TT ! 
onst j v j (E)The number of equations that 
an be produ
ed by most grammars is hugeand, without strong 
onstraints on what 
an be generated, the sear
h spa
equi
kly explodes. For example, four expansions of the grammar in Table 1 resultsin 36 di�erent expressions. However, �ve expansions results in 7,300 expressions,and six expansions results in 14,674,005 expressions [8℄.Our system takes the knowledge spe
i�ed by the engineer and 
ompiles ahighly 
onstrained grammar to sear
h for revisions of the initial model. Theknowledge is transformed a

ording to the following rules:{ the initial equation be
omes the starting state of the grammar;{ variable dependen
ies are en
oded as symbol expansions in the grammar;{ knowledge about the values of 
onstant parameters are passed to Lagramgeto be used in parameter �tting.For example, if we believe that V
b may depend on the variables time, so
, andtemperature, with possible forms that are sigmoidal or linear (in one or twovariables), we obtain the following produ
tions for the grammar:V
b ! 
onst1 + 
onst2=(1 + e(X�
onst3)
onst4) j
onst1 + 
onst2X + 
onst3X j
onst1 + 
onst2XX ! vtemperature j vso
 j vtimeTo sele
t the best revision produ
ed with the grammar, we use Lagramge's min-imum des
ription length (MDL) s
ore fun
tion, whi
h evaluates a 
andidatemodel by taking into 
onsideration both the sum of squared error on the train-ing set and the 
omplexity of the model (the size of its parse tree).4 Revising a Battery Model with Syntheti
 DataTo demonstrate the feasibility of our revision approa
h, we used syntheti
 data totest our system's ability to re�ne initial models. Syntheti
 data lets us 
omparethe dis
overed 
hanges with the true stru
ture and 
ontrol for data quality issuesthat o

ur with real sensor data, su
h as missing values and noise.We used the �nal model des
ribed in Se
tion 2 to generate syntheti
 data bysimulating it in Matlab with an ordinary di�erential equation solver (ode113).We assumed that the 
ontroller 
y
les and 
harges the battery at 
onstant 
ur-rent followed by dis
harge at 
onstant resistive load (Rload = 2
). We examinedtwo 
ases: (1) Charging o

urs with 
urrent i = 3A. This results in steady 
y
ling



of so
 from about 98% to 73%. (2) Charging o

urs with 
urrent i = 2A. Thisresults in a gradual loss of so
 whi
h drops from 92% to 30%. For ea
h of the
ases we generated data for 1000 time points (8 
y
les). We added an irrelevantvariable, temperature, whi
h varied sinusoidally with a period mat
hed to the
harge-dis
harge 
y
les.As the initial model we used Equations 1 to 3 with all parameters 
onsidered
onstants. We tried a simple s
enario in whi
h an engineer might believe thatRs and Rp are well modeled as 
onstants, but that V
b 
ould depend on othervariables su
h as temperature, so
, or time, with a fun
tional form that is apolynomial (up to third degree) or a sigmoid. Table 2 shows the statements thatformally spe
ify these notions.Table 2. Knowledge about the initial equations.statement meaningRp ! 
onst[0:200:100℄; Rp should be in the range [0,200℄ and theinitial guess is 100.Rs ! 
onst[0:100:1℄; Rs should be in the range [0,100℄ and theinitial guess is 1.V
b.variables ! temp, so
, time; V
b might depend on variables temper-ature, so
, time.V
b.forms! 
onstant, linear, quadrati
,
ubi
, sigmoid; Possible forms for V
b are 
onstant, lin-ear, quadrati
, 
ubi
, and sigmoid.The statements in Table 2 were 
ompiled into a grammar and then used asan input to Lagramge. During exe
ution, Lagramge expands the grammar andexamines 13 di�erent revisions. The best revision a

ording to Lagramge's MDLs
ore fun
tion is expanding V
b to be a linear fun
tion of so
. Figure 3a shows thetarget signal, and Figure 3b and 
 shows the re
onstru
tion error for the initialand revised models. The results indi
ate that the revised model was better ableto re
onstru
t the signal.Although the revised model redu
ed the error for 
ase 1, the error was stillsizeable. We performed another re�nement iteration and we let Rs depend thevariables time, temperature, or so
 with a polynomial form. We re
ompiled thegrammar �le and reran Lagramge, whi
h explored 240 possible revisions andsuggested expanding R
 as a quadrati
 fun
tion of so
. Figure 3d shows theredu
ed error of this new revision 
ompared with the �rst re�nement.Equations 4 and 5 show the �nal results and the revisions have 
learly movedthe initial model 
loser to the 
urves in Figure 2. The linear expansion of V
b onso
 partially re
onstru
ts the 
urve in Figure 2b, and the quadrati
 expansionof R
 attempts to model the sharp in
rease in R
 with in
reases in so
.Vt 
harge = (5:84 + 0:00451so
) + i� (0:145� 0:00527so
+ 4:90E�5so
2) (4)Vt dis
harge = (5:41 + 0:00876so
)� 2=(2 + 0:00495) (5)



Fig. 3. Original signal and re
onstru
tion error. (a) Target Vt. (b) Re
onstru
tionerror on 
ase 1 for the �rst re�nement. (
) Re
onstru
tion error on 
ase 2 for the �rstre�nement. (d) Re
onstru
tion error on 
ase 1 for the se
ond re�nement.
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(d)Finally, we note that the parameters in the linear equations that represent V
bdi�er slightly in the 
ase of 
harge and dis
harge. This is 
aused by a limitationof Lagramge, whi
h its authors are addressing.5 Modeling Batteries on the Spa
e StationOur experiments revising battery models on syntheti
 data showed that we 
ouldre�ne initial models to explain 
omplex, non-linear behavior. In this se
tion, weapply our approa
h to battery models for the International Spa
e Station withreal telemetry data to show that it 
an develop a

urate models and is robustto data quality problems.We modeled the batteries for a single power 
hannel on the spa
e station.Within a power 
hannel there are three battery units that ea
h 
ontain two setsof 36 ni
kel-hydrogen 
ells. We treated the entire 
olle
tion of 216 
ells as a singlebattery, and here we fo
us on modeling the battery's terminal voltage Vt.We have telemetry data for 24 hours with samples approximately every tense
onds. Only a fra
tion of the 
ells are instrumented with sensors, so we aver-aged readings from six 
ells to obtain the battery's temperature and pressure.We estimated the state of 
harge by the ratio of pressure to temperature. The




urrent and voltage were available for ea
h group of 36 
ells (six total) and wesummed and averaged them to get total 
urrent and terminal battery voltage.The data are very poor quality and su�ers from several problems. First, thesignals for the observed variables have many dropouts for long time periods andthis a�e
ts approximately 1=4 of all time points. Se
ond, be
ause of bandwidthlimitations, the signals are en
oded at low resolution. For example, the sensors
an only report 
urrent 
ow to the nearest Ampere. Finally, the data showseviden
e of non-Gaussian noise that manifests itself as large spikes in the signal.We linearly interpolated the data to register time points at ten se
ond in-tervals and to impute missing values. Figure 4a shows the target variable Vtafter this pro
essing. We divided the data into a training set, of approximatelythree quarters of the data (data before the dashed line in Figure 4a), and atest set 
onsisting of the remaining data. We used Equations 1, 2, and 3 for ourinitial model. As possible re�nements, we let V
b be a fun
tion of the variablestemperature, pressure, or so
 with possible fun
tional forms that are polyno-mial (up to third degree), sigmoidal, or linear in two variables. We let Rs dependon the same variables with a polynomial form.Lagramge explores 6859 revisions and takes approximately nine hours of
omputation time on an 1.5 Ghz Pentium 4. The top ranked revision, shownin Equations 6 and 7, modi�es the initial model by representing V
b as a linearfun
tion of so
. Figure 4b shows the predi
tion error on the test data whi
h ismu
h smaller than the error of the initial model.Vt 
harge = (36:2 + 76:2� so
)� i� 0:214 (6)Vt dis
harge = (20:3 + 36:2� so
)� 5:77=(2:60+ 0:408) (7)Table 3 shows summary statisti
s for the initial model and the top three revisionsreturned by Lagramge. These results indi
ate that the revised models greatlyimproved the test error 
ompared with the initial model. The mean squarederror (MSE) for the revised models are approximately one third that of the initialmodel. However, MSE is sensitive to outliers, so we also report mean absoluteerror, whi
h is more robust. On this measure the revised models all obtained anaverage error of about one volt. This is surprisingly good, 
onsidering that theindividual sensors only resolve to one volt. Finally, the di�eren
e in predi
tiveperforman
e between the revised models is not substantial. Be
ause the se
ondand third models add extra 
omplexity but do not signi�
antly improve themodels, they are rated worse with Lagramge's MDL s
ore fun
tion.6 LimitationsWe demonstrated with experiments that our system 
ould su

essfully re�neinitial models to better explain data. However, our revision approa
h has fourimportant limitations that we dis
uss here.First, our system fo
uses the sear
h for better models by exploring revisionsthat are near an initial model. This provides tremendous power if the true model



Table 3. Error statisti
s on the training and test data: Lagramge's MDL s
ore, meansquared error (MSE), and mean absolute error. Training TestMDL MSE MSE Mean Abs.Initial ModelV
b, R
, and Rd are 
onstants n.a. 12.3 20.5 2.75Best Revised Models1. V
b is a linear fun
tion of so
. 2.65 2.14 6.99 1.012. V
b and Rd are linear fun
tions of so
. 2.67 2.12 6.95 1.003. V
b is a linear fun
tion of so
; Rd is 2.68 2.13 6.99 1.00a linear fun
tion of temperature.Fig. 4. Battery terminal voltage Vt and predi
tion error. (a) Training and test datafor Vt. (b) Error predi
ting Vt.
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lose to the initial model. However, if the true model is stru
turally very dif-ferent, then sear
hing near the initial model will not �nd the ne
essary revisions.Se
ond, our system depends on an expert to suggest plausible fun
tionalforms that may explain the values of dependent variables in the initial model.Again, this provides tremendous power if the expert provides spe
i�
 forms that
losely mat
h behavior in the real physi
al devi
e. However, our experimentssuggest that our system may be robust to mis-spe
i�
ation. On syntheti
 data,our system was still able to signi�
antly improve the initial model even thoughnone of the fun
tional forms exa
tly mat
hed the relationships in Figure 2. Onreal data, even though we have a limited knowledge of battery dynami
s, theforms we suggested were 
apable of greatly lowering the predi
tion error.Third, the suggested revisions are 
onditional on the data seen and may notgeneralize well to new operating 
onditions. For example, the models in Se
tion 4were revised on data that represented a battery whose state of 
harge varied from98% to 30%. The revised model may not perform well outside this region, su
has at very low 
harge levels. This limitation is not unique to our system, butapplies to all indu
tion algorithms.Finally, Lagramge took over nine hours to revise the battery model for thespa
e station. This is 
learly too slow to support iterative and intera
tive re�ne-



ment with an engineer. We are examining methods to speed up Lagramge withte
hniques su
h as error bounds to qui
kly eliminate poor 
andidates.7 Related WorkOur approa
h builds on re
ent work by Todorovski and Dzeroski [9℄ who pro-posed revising a mathemati
al model by providing Lagramge with a grammarthat en
odes a spe
i�
 set of 
hanges. They allowed Lagramge to re�t the valueof a known 
onstant based on the data, and they supported repla
ing a polyno-mial in the original equation with a polynomial of arbitrary degree (on the samevariables). In their appli
ation, a major goal was minimal 
hange with the initialmodel and so they examine ea
h revision separately and then 
onsider only afew 
ombinations.Our appli
ation area of modeling engineering devi
es, spe
i�
ally the devi
eson the spa
e station, has driven our work in a slightly di�erent dire
tion. We startwith the assumption that the model is wrong, be
ause of approximations andthe di�erent operating 
onditions in orbit, and that the engineers 
an (mostly)identify the parts of the model that need to be revised. Be
ause of these as-sumptions we allow a far greater number of revisions to the model. Spe
i�
ally,we allow revisions involving a variety of fun
tional forms, we allow the formsto depend on di�erent sets of variables, and we 
onsider all 
hanges at on
e to
at
h intera
tions.Bradley, Easley, and Stolle [1℄ developed PRET a program that automati
allytries to �nd an ordinary di�erential equation model of a physi
al system. Itin
orporates domain knowledge in its sear
h pro
ess but does not attempt torevise an initial equation.Finally, we have fo
used on developing interpretable and transparent modelsthat 
an be examined by the engineer. An alternative approa
h is bla
k box te
h-niques, su
h as neural networks (e.g., [6℄), whi
h model a devi
e's input/outputbehavior without attempting to �nd a 
on
ise mathemati
al des
ription. Neuralnetworks are not always appli
able be
ause they are not transparent and arediÆ
ult to verify. However, re
ently Saito et al. [7℄ have started to address thisdrawba
k in the 
ontext of revision by examining methods using neural networksto learn interpretable stru
tures.8 Con
lusions and Future WorkWe presented an approa
h for 
ombining ma
hine learning methods with anengineers knowledge to revise models of physi
al devi
es. The engineer spe
i�esan initial model and possible revisions to that model and we 
ombine this withan equation dis
overy program to manage the sear
h pro
ess. Our experimentsshowed that we 
ould su

essful revise models of physi
al devi
es from noisysensor data and substantially improve their a

ura
y.Our work represents a �rst step toward a 
omputer assisted environment forrevising physi
al devi
e models. We believe this approa
h is promising and may



speed model development by relieving the engineer of tedious 
omputationaltasks. We also believe this approa
h may lead to better models by allowingexploration of a wide set of re�nements and adaptation to observed data.There are many dire
tions for future work and we highlight three areas: First,we intend to apply our approa
h to improving models of other 
omponents on thespa
e station. Se
ond, we intend to expand the types of qualitative knowledgethat an engineer 
an spe
ify to 
onstrain the sear
h spa
e. For example, inaddition to spe
ifying a set of relevant variables, the engineer 
an also spe
ifythe general e�e
t of those variables. For instan
e, in our battery model Rs shouldin
rease with so
 as it be
omes progressively more diÆ
ult to 
harge a batteryas it nears maximum 
apa
ity. We 
an eliminate models without this behavior.Finally, we intend to explore how the engineer 
an intera
t with the sear
hpro
ess, possibly by spe
ifying a sear
h order or viewing intermediate resultsand sele
ting parti
ular paths to follow.A
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