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Abstract

We address the task of inducing explanatory models from observations

and knowledge about candidate biological processes, using the illustrative

problem of modeling photosynthesis regulation. We cast both models and

background knowledge in terms of processes that interact to account for

behavior. We also describe IPM, an algorithm for inducing quantitative

process models from such input, and we demonstrate its use both on

photosynthesis and on a second domain, biochemical kinetics. In closing,

we consider the generality of our approach, discuss related research on

biological modeling, and suggest directions for future work.
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1 Introduction and Background

Biology aims to understand the mechanisms by which organisms survive, grow,

and reproduce. Like other scientific fields, it collects observations, identifies

recurring phenomena, and attempts to explain these phenomena using existing

knowledge. However, this endeavor is a complex one, and biologists would

benefit from computational tools to assist them in constructing and evaluating

their models.

The success of machine learning and data mining in commercial domains

has led to increased interest in using similar methods to discover knowledge

in biology and other scientific disciplines (Fayyad et al., 1996). However, the

best-developed techniques are designed to operate on large data sets and in

the absence of background knowledge. Despite rhetoric the contrary,1 biology

remains a data-sparse field, but it has considerable knowledge available to con-

strain the search for models.

Another drawback of standard induction methods is that they construct

descriptive models. These can make accurate predictions on new test cases,

which may be sufficient for commercial applications, but biologists typically

desire explanatory models of behavior. An explanation of some phenomenon

is cast in terms of other knowledge, such as structures or processes that are

familiar to domain experts.

Finally, traditional induction techniques produce models that are expressed

in notations developed by computer scientists, few of which biologists find com-

prehensible. Even work on inducing causal models, which often have an ex-

planatory flavor, focuses on abstract formalisms that make little contact with

concepts from biomedical science. Notations that support the incorporation of

domain concepts more directly would presumably be easier to understand and

provide additional constraints on model construction.

1For example, microarray technology produces many numbers but very few samples,

whereas most induction methods assume many of the latter.
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In this paper, we describe an approach to inducing biological models that

responds to each of these issues. Our models are cast as sets of interacting

processes that explain rather than describe the data, and we report a method

that constructs such models from background knowledge stated as generic pro-

cesses, which serve both to constrain search through the model space and make

contact with familiar concepts. We illustrate this approach on a problem of

central interest to biologists – the regulation of photosynthesis – for which there

are limited data but some knowledge. After this, we report results in a second

domain – biochemical kinetic reactions. Our approach is a general one that

should apply to other biomedical problems, which we discuss in closing along

with related research and our plans for future work.

2 The Regulation of Photosynthesis

Photosynthesis is a complex combination of reactions that are catalyzed by

a system of protein complexes, most of which are bound into the thylakoid

membrane of the chloroplasts of higher plants. These include ‘light’ reactions,

which operate only in the light and use absorbed energy to produce a variety of

biochemical species, which are in turn used by the remainder of the cell as energy.

In contrast, ‘dark’ reactions do not require light but use energy produced by

the light reactions to combine CO2 molecules into sugars, which are then used

to produce cellular energy and other products or stored for later utilization.

One side effect of the normal photosynthetic reaction is the creation of ‘reac-

tive oxygen species’ (ROS), which can be very damaging to cellular components,

especially those in the photosynthetic apparatus. Cells appear to have systems

that aim to minimize creation of ROS, that ‘clean up’ or neutralize ROS, and

that repair damage. For these and other reasons, the complex network of mech-

anisms for energy production, storage, and utilization in cells includes many

regulatory controls.
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Although the biochemical reactions involved in photosynthesis, and the gen-

eral shape of its regulation, are fairly well understood, the details of regulatory

signals and mechanisms remain obscure. Biologists know about a variety of ab-

stract regulatory mechanisms that could affect photosynthetic activity, such as

signal transduction and transcription, but they are uncertain about which ones

are responsible for the observed behavior, as well as the detailed forms in which

they occur. For instance, proteins produced during translation are known to

degrade, but it remains unclear whether this takes place at a constant rate or

whether it is regulated.

To further elucidate the details of photosynthesis regulation, Labiosa et al.

(2003) carried out an experiment with Cyanobacteria, a unicellular organism,

under simulated naturalistic conditions. They constructed a cyclodyn which

replicated the light variations that occur with the 24-hour day-night cycle.2

Samples of the organism were collected at nine distinct times throughout the

day-night cycle, then analyzed using cDNA microarray technology to measure

mRNA levels for 3000 genes in each sample.

Inspection revealed that the 17 genes whose expression levels were most

highly correlated with light intensity had each been implicated in photosynthesis

previously, which makes biological sense. However, the shape of their curves was

somewhat unexpected. Expression levels were low at night, increased rapidly

when the sun rose, and decreased again after sunset, but they also exhibited a

substantial drop around noon. An adequate model of these genes’ regulation

should account for all of these regularities in at least qualitative terms, and

preferably in quantitative ones as well. In addition, it should be consistent with

existing knowledge about photosynthesis and other biological mechanisms.

2This device was built, and the study run, in the Carnegie Institute of Washington’s

Department of Plant Biology.
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3 Process Models of Biological Systems

Before we can assist biologists in constructing models of gene regulation, we

must select some formalism in which to represent candidate models. Because

biology does not have a tradition, like physics and chemistry, of formal notations,

most work along these lines has borrowed frameworks from other fields, yet

only some of these formalisms characterize the behavior of dynamical systems

that change over time. These include Boolean networks (e.g., Shmulevich et al.,

2002), dynamic Bayesian networks (e.g., Ong et al., 2002), differential equations

(e.g., Tomita et al., 1999), and Petri networks (e.g., Peleg et al., 2002; Matsuno

et al., 2002). Despite their representational power, these frameworks make

limited contact with established biological concepts.

A fundamental problem is that biologists’ papers and talks repeatedly make

informal reference to processes that operate within living organisms. Research in

artificial intelligence has produced formalisms that cast models as sets of inter-

acting processes to explain dynamical behavior, with Forbus’ (1984) qualitative

process theory being a notable example. This offers a notation for biological

mechanisms, but it focuses on qualitative simulations that predict only the di-

rections in which continuous variables change over time.

Instead, we have explored a hybrid representation that embeds numeric equa-

tions within the qualitative structures provided by Forbus’ approach. A model

consists of a set of biological processes, each of which describes the quantitative

relations among two or more variables that are cast as one or more algebraic

or differential equations. Each process may also include arithmetic conditions

on quantitative variables that specify when it is active. Such a quantitative

process model must refer to some measurable variables, but it may also include

unobservable, theoretical terms.

For example, Table 1 shows one possible model of the expression phenomena

described earlier. This specifies six quantitative variables – light intensity, the

concentrations of mRNA, photosynthetic protein, and reactive oxygen species
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(ROS), energy in the system (redox), and the rate of mRNA transcription.

Only two of these variables – light and mRNA – are directly observable, with

the remainder being theoretical terms that are biologically plausible.

The model incorporates seven distinct processes. Photosynthesis combines

light with proteins to produce energy or redox, but it also increases ROS as

a side effect. The photo translation process increases the concentration of

photosynthetic proteins, with the increase depending on the concentration of

mRNA. However, another process, protein degradation ros, leads to a reduction

in both protein and ROS concentration. A fourth process, mRNA transcription,

increases the mRNA concentration by an amount controlled by the variable

transcr rate, which is in turn influenced by two other processes. The first, reg-

ulate light, states that the rate is directly proportional to light, whereas the

other process, regulate redox, states that it is inversely proportional to redox,

which is itself reduced. A final process, mRNA degradation, claims the mRNA

concentration decreases by a fixed proportion every time step.

Like any model, this example makes important simplifying assumptions. For

instance, it refers to a single, aggregate measure of mRNA rather than to the

amounts for individual genes, and does the same for protein and transcr rate.

Photosynthesis is treated as a single process, rather than as the complex set of

activities that we know it involves, and the processes of transcription, degra-

dation, and transcription regulation are abstracted in a similar way. Also, the

component processes are all plausible biologically, but some are more so than

others. For instance, we know that transcription is regulated and that both

protein and mRNA can degrade, but not the details of these activities.

Nevertheless, given such a quantitative process model, we can simulate it

to make predictions about how variables will change over time. This involves

compiling the process notation into a set of linked algebraic and differential

equations, giving them initial values for some variables, and invoking numerical

approximation techniques to calculate values for trajectories. One complication
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is that the conditions on processes may lead different sets of equations to apply

during different intervals. Also, if multiple processes influence the same vari-

able, we assume their effects are additive. Otherwise, the simulation process

is straightforward. However, finding a model that can generate the observed

trajectory is another story, and the model in Table 1 provides a poor fit to

the Labiosa et al. data. We would like a computational method that combines

knowledge and data to search the space of models, to which we now turn.

4 Encoding Background Knowledge

A key characteristic of the model just described is that it moves beyond a sim-

ple description of observations to explain them in terms of other, more basic,

structures or processes. The explanatory referents are typically unobservable

in the current situation, but they make contact with known, familiar mecha-

nisms. The automated construction of such explanatory models requires that

we represent the background knowledge to which they refer.

To this end, we utilize the notion of generic processes . These are similar

in spirit to the specific processes that appear in a model, in that they incorpo-

rate equations and activation conditions, but they do not commit to particular

variables or parameter values. Table 2 presents seven generic processes for the

domain of plant biochemistry, most of which have direct analogs in Table 1.

Note that each generic process includes a set of generic variables, along with

type information that constrains the specific variables against which they can

match. Each structure also includes the names of parameters that appear in

conditions or equations, along with upper and lower bounds on their values.

For instance, the generic process consuming regulation involves one variable,

R, that must be a rate, and another, C, that must be a concentration (such

as redox or ROS), and it refers to two parameters, one of which (pi) must fall

between zero and one.
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Generic processes can co-exist at varying degrees of specificity. For exam-

ple, those for photosynthesis, transcription, and translation effectively refer to

specific variables, and are generic only in not committing to parameter values.

Others, like those for degradation and regulation, refer to classes of variables

and can be instantiated in different ways. This lets us encode uncertainty about

which variables are actually involved in these processes, but still supports the

constrained search for specific models.

5 Inducing Dynamic Biological Models

Taken together, time-series data about gene expressions and generic biological

processes provide us with the raw material to construct regulatory models. This

task is an instance of what we have called inductive process modeling (Langley

et al., 2003). The goal is to generate a specific process model, like the one

in Table 1, that makes reference to known generic processes and that fits the

trajectories of observed variables. The resulting model is explanatory, rather

than purely descriptive, because it refers to unobserved variables and processes.

Moreover, it should be understandable to domain scientists because it is cast in

terms of familiar concepts, much as in Falkenhainer and Forbus’ (1991) work on

compositional modeling.

In the photosynthesis domain, the data concern the expression levels of pho-

tosynthetic genes over time, along with the associated light intensities. The

background knowledge includes plausible forms for processes like photosynthe-

sis, transcription, translation, and degradation, like those in Table 2, including

type constraints on their variables and bounds on their parameters. The target

is a model like that in Table 1, which contains variants of these generic processes

that commit to specific variables and their parameter values. Ideally, this spe-

cific model should generate trajectories that match the training data and make

accurate predictions about future values.
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We have implemented an algorithm, IPM, which stands for Inductive Process

Modeler , that addresses this task. Its inputs include a set of observable and

optional unobservable variables to be included in the model, the types for these

variables, a set of generic processes from which to construct candidate models,

and a time series of observed values to which models should be fit. As output,

the system produces a set of parameterized models ranked their by mean squared

error on the training data.

IPM decomposes the task of inductive process modeling into two subprob-

lems, with the first involving a constrained exhaustive search through the space

of model structures. To this end, the system finds all ways to instantiate the

generic processes with known specific variables that are consistent with the type

constraints. Some 14 instantiated processes are generated in this manner from

the background knowledge about photosynthesis and gene regulation presented

earlier. IPM then composes these instantiated components in all possible ways

that involve at most U processes, that include all observed variables, and that

form a single connected graph. For the run reported below, we used U = 9,

which produced 2, 381 different model structures.

Each such candidate specifies the model’s variables and their causal relation-

ships, but it does not include the values for parameters. Thus, IPM’s second

stage carries out a search through the parameter space defined by each model

structure. This involves a parameter estimation algorithm that uses the en-

tire simulated trajectory. For parameter fitting, IPM invokes a nonlinear least-

squares method (Bunch et al., 1993) that utilizes second-order gradient descent.

As in other parameter estimation techniques, the system attempts to avoid local

minima using multiple restarts. Based on the sum of squared errors, IPM selects

the best set of parameters obtained for each model structure. We have found

this parameter-estimation method to produce reasonable matches to time series

for a variety of domains (e.g., Langley et al., 2003; Todorovski et al., 2005).
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Recall that the example model in Table 1 includes a number of unobserved

variables, some of which occur in the left-hand sides of differential equations.

This means that, in addition to finding values for the parameters in each process,

IPM must also infer the initial values for each such variable. To this end,

the system simply treats these as additional terms that must be fit by the

parameter estimation module, with the user specifying an acceptable range for

each value. Elsewhere (Langley et al., 2003) we have evaluated this capability

on synthetic data, and also shown that one can use a similar approach to induce

the thresholds that appear in conditions on processes.

To demonstrate that IPM can produce reasonable models of the processes

that govern photosynthesis regulation, we provided it with the background

knowledge from Table 1 and time-series data from the cyclodyn study. However,

because we had only nine samples, we did not attempt to construct a model that

predicted separate expression levels for each of the 17 genes. Instead, we aver-

aged the results for these genes at each time step and used the resulting means

as the training set for model induction. We also told the system that candidate

models should include the observable variables light and mRNA, along with the

optional unobservable variables protein, ROS, redox, and transcr rate.

The top-ranked process model that IPM generated from these data, shown

in Table 3, has similarities to and differences from the one presented earlier in

Table 1. The new model includes processes for photosynthesis, translation, and

transcription, but this is hardly surprising, since their variable types were so con-

strained as to demand their incorporation. More interesting was the inclusion

of controlled degradation of photosynthetic proteins by ROS, automatic degra-

dation of mRNA, and controlled regulation of transcription rate. The model

claims that light affects mRNA transcription, but only indirectly through its

influence on redox, rather than through a direct causal link.
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Figure 1 shows the expression levels that this model predicts at the times

for which samples were taken. Comparison of the average expression levels from

the cyclodyn experiment, also given in the figure, with the model’s predictions

reveals a good quantitative fit that has a correlation coefficient of 0.82. The qual-

itative match is also good, in that the model reproduces the general M shape

that was observed in the study.3 Equally important, our biologist collaborator

believes the model makes sense, as it includes plausible processes for photosyn-

thesis, translation, transcription, regulation, and degradation. However, this is

only one opinion and we should also get feedback from other domain experts.

Of course, with only nine samples, we should not be too confident that the

model is correct, especially since microarray measurements are often quite noisy.

Nor does cross validation seem an appropriate option for evaluating the model,

because it is inappropriate for time series that involve different regimes, which we

believe holds in this case. Nevertheless, biological experiments typically produce

small data sets, and this situation seems unlikely to change in the near future.

Our main goal has been to demonstrate that inductive process modeling can

construct a model for observed phenomena of scientific interest that is consistent

with biological knowledge. We should note that IPM cannot generate models

that fit arbitrary curves even in cases where they contain more parameters than

the number of observations. The constraints imposed by generic processes,

including ranges on parameters and functional forms, should produce relatively

low variance even on the small data sets that predominate in biological studies.

We believe that, by combining data with knowledge, IPM can produce better

results than either in isolation.

3One drawback, which did not become apparent until later analysis, is that the model

predicts negative values at some intermediate times, which is not biologically possible. This

results partly from IPM’s assumption that exogenous variables like light are constant unless

observed to change. Another model, produced by an earlier version of the system and reported

elsewhere (Langley et al., 2004), handled exogenous variables differently and avoided this

problem, but clearly future versions of IPM should check candidates against such constraints.

10



6 Biochemical Kinetics

Although we have shown that IPM can successfully induce explanatory mod-

els of photosynthesis regulation, we would also like evidence that its methods

have more general applicability. For this purpose, we turned to another key

biomedical domain – biochemical kinetics – which studies physiological changes

in metabolites over time. In particular, we have examined the glycolysis path-

way, which involves the conversion of glucose into pyruvate and which plays an

essential role in most life forms. Glycolysis is well understood, with scientists

generally agreeing that ten metabolic reactions are responsible. This makes it

useful for evaluating our approach to model induction.

To this end, we utilized time-series data collected by Torralba et al. (2003)

through an impulse response method that, after a biochemical system has

reached steady state, briefly increases the inflow of one substance and mea-

sures its effects on others over time. We had access to 14 data points on six

metabolites: glucose 6-phosphate (G6P ), fructose 1,6-biphosphate (F16BP ),

glycerol 3-phosphate (G3P ), 3-phosphoglycerate (3PG), fructose 6-phosphate

(F6P ), and dihydroxyacetone phosphate (DHAP ). Torralba et al. proposed the

model shown in Figure 2, which they produced using a manual analysis method

we do not have space to describe here. Their structure differs somewhat from

the established glycolysis pathway, primarily because results for F16BP pulses

were ambiguous about whether G3P or 3PG precedes G6P .

Naturally, it seems desirable to automate the construction of biochemical

kinetics models that Torralba et al. carried out by hand, and inductive process

modeling seems ideally suited for this purpose. Our approach requires back-

ground knowledge to define a space of model structures, but readers familiar

with the field know biochemists refer to four types of metabolic reaction that

appear in their pathway models, which differ in how they affect positive and neg-

ative fluxes of the substances involved (Voit et al., 2000). Briefly, the positive

flux of a metabolite describes its rate of flow into a reaction pathway, whereas

its negative flux instead characterizes its rate of flow out.
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Figure 3 depicts the four reaction types, each of which corresponds to a set

of ordinary differential equations. An irreversible reaction (a) changes only the

positive flux of the reactant C2 and the negative flux of C1. In contrast, a

reversible reaction (b) alters the positive and negative fluxes of both reactants.

An inhibition reaction (c) adds an exogenous negative influence on C2’s positive

flux and C1’s negative flux. Finally, an activation reaction (d) includes an

exogenous positive influence on C2’s positive flux and on C1’s negative flux.

However, we must transform these four reaction types into generic processes

before we can use them for inductive process modeling. Table 4 shows a generic

process library we have developed that incorporates this biochemical knowledge.

The generic processes irreversible, reversible, inhibition, and activation corre-

spond directly to the reaction types from Figure 3. In addition, the process

flux combination states that a metabolite’s concentration changes as a weighted

sum of its positive and negative fluxes, with each flux term being multiplied by

its respective rate.

While formulating the background knowledge for this domain, we encoun-

tered a limitation of the process modeling framework as described in previous

sections. Recall that, when multiple processes influence the same variable, IPM

assumes their effects are additive. However, inspection reveals that, when a

metabolite participates in more than one reaction, their effects are multiplica-

tive. To address this issue, we extended the system to accept information for

each variable about how it should combine influences on it, specifying for this

domain that fluxes have a multiplicative type. This requires slightly more input

from the user but increases the system’s generality considerably.

When provided with the Torralba et al. data and the generic processes in

Table 4, IPM generates 172 distinct model structures. As in the photosynthesis

domain, the system attempts to find parameters for each alternative that mini-

mize the squared error between predicted and observed trajectories, then returns

a ranked list of parameterized models. Table 5 presents the best-scoring model

from this run, whereas Figure 4 depicts it graphically as a reaction pathway.
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Figure 5 shows the predictions that this model produces, along with the

observations that Torralba et al. reported. The qualitative fit is very good

in that it captures the shape of the observed trajectories. For example, the

simulated trajectory for G3P peaks and troughs at the same time as does the

observed trajectory for this substance. The figure also shows that the flat curves

for F6P and DHAP are consistent with the observations. The quantitative fit

is also good, with the predictions being highly correlated on average (0.79) with

the observations. In fact, this score is lowered substantially by the two nearly

flat curves, which have small correlations because they have nearly zero slope.

However, the model structure differs in important ways from both the ac-

cepted glycolysis pathway and from the Torralba et al. model. In particular,

IPM included no inhibition or activation processes because we did not provide

it with unobserved variables that could plausibly serve as inhibitors and acti-

vators. Another possible problem is that reversible reactions dominate, which

could produce overfitting because they subsume irreversible reactions as a spe-

cial case in which some exponents are zero.

Nevertheless, some processes in the induced model have clear correspon-

dences to reactions in the accepted pathway, and the others are biochemically

plausible in that there are instances of generic processes relevant to this domain.

Thus, although our results are somewhat mixed, we still view the outcome as

further evidence that inductive process modeling holds promise for automating

the construction of biological models from knowledge and data.

7 Generality, Limitations, and Related Work

Although we have focused here on inducing models in two biomedical domains,

the paradigm of inductive process modeling is quite general. Elsewhere (Langley

et al., 2003) we have demonstrated that the approach can infer process models

of ecosystem behavior, and the basic approach is applicable to any biological

domain in which one can identify generic processes with plausible functional
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forms and for which quantitative data are available. Here we have emphasized

dynamical models and time series, but our methods can handle algebraic models

and static data equally well.

One biomedical area that seems a likely candidate is physiology, where there

have already been efforts to manually develop quantitative models of behavior

using the formalism of differential equations. Another promising topic involves

the spread of infectious diseases, for which there already exist numerical models

that incorporate ideas from population dynamics. Both fields have consider-

able knowledge about component processes and functional forms, but data are

expensive to collect and the model space is large.

Although our initial results in modeling gene regulation and biochemical

kinetics have been encouraging, it is clear that more work still lies ahead. One

obvious direction for future research would develop analogous process models

for other facets of photosynthesis, such as energy storage and utilization. This

would require the creation of generic processes for these mechanisms and their

use in modeling the expression levels of these genes. We should also carry

out studies with synthetic data, averaged over different training sets, to better

understand how our methods scale to settings with different noise levels, more

generic processes, and more complex target models.

More important, we must extend our framework to support larger-scale mod-

els of biological systems. Our largest run has involved a space of 3, 433 process

model structures, each evaluated on more than 900 observations of one predicted

variable and six exogenous variables, which took over 11 hours (averaged across

nine runs) on a 2.6 GHz Pentium 4 with one gigabyte of RAM. Both experience

and a cursory analysis suggest that the number of candidate models grows ex-

ponentially with the number of generic processes. Clearly, we need some way

to reduce the size of the space or to constrain search through it substantially.

One promising response would utilize hierarchical models that describe the

organism in terms of subsystems and that draw upon background knowledge
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about generic subsystems in addition to generic processes. Also, we should

adapt our approach to reflect the qualitative nature of many biological models

and the fact that biomedical scientists often care only about qualitative fits.

In response, we plan to explore methods that induce semi-quantitative process

models (e.g., Kay et al., 2000), which can specify ranges on parameters rather

than precise values. Such a revised system might direct search based on models’

abilities to account for qualitative relations (e.g., one measurement being higher

than another) rather than mean squared error.

Any method for inductive learning has the potential for overfitting the train-

ing data. We believe that IPM’s use of background knowledge reduces this

danger over that of knowledge-lean approaches, but experiments with synthetic

data indicate that some overfitting can still occur. Bridewell et al. (2005) have

described an extension to IPM that mitigates this problem by inducing a number

of distinct models from bootstrapped samples and then combining them into a

single, more conservative model that includes the most frequent processes. Their

approach combines background knowledge with ideas from ensemble methods

to reduce overfitting while retaining comprehensibility.

Our approach to biological discovery has close connections with other re-

cent efforts. For example, Bay et al. (2003) present an approach to inducing

linear causal models of gene regulation from expression data and background

knowledge stated as an initial model. Both Zupan et al. (2001) and Bryant

et al. (2001) report systems that infer qualitative genetic networks from bi-

ological knowledge and the results of auxotrophic growth experiments, while

Mahidadia and Compton (2001) report a similar system that revises qualitative

causal models based on experimental results in neuroendocrinology. Ong et al.

(2002) describe yet another technique that uses knowledge about promoters to

constrain induction of dynamical models for Tryptophan metabolic regulation.

However, all have assumed abstract representations that make limited contact

with biological concepts like translation, transcription, and degradation.
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Another line of research that is closer in its technical details has addressed

the induction of quantitative models of dynamical systems. For example, Koza

et al. (2001) used evolutionary computation methods to infer the structure and

parameters of a metabolic model from time-series data about concentrations.

Bradley et al. (1999) describe a different approach to finding differential equation

models that draws on knowledge about the behaviors produced by alternative

classes of equations. The most similar research comes from Todorovski (2003),

whose LaGramge system utilizes domain-specific knowledge, some cast as pro-

cesses, to guide search for differential equation models. However, his work has

focused on environmental domains rather than biomedical ones, such as those

we have addressed here.

8 Concluding Remarks

In this paper, we have described an approach to representing, utilizing, and

inducing causal biological models. This paradigm – inductive process modeling

– supports the construction of explanatory rather than descriptive models, casts

these models in terms of familiar biological processes, and takes advantage of

background knowledge to constrain search and produce plausible accounts even

when there are few samples. We reported a specific system, IPM, that carries

out a two-stage search through a space of model structures and their parameters,

and we illustrated its operation on background knowledge and time-series data

related to the regulation of photosynthesis and biochemical reactions.

The system produced a model for photosynthesis regulation that reproduced

both the qualitative shape and the quantitative details of the expression data,

while incorporating processes that made biological sense. The small number of

samples mean that this result is not entirely reliable, but, we maintain, it is

more plausible than ones found without the benefit of background knowledge.

In addition, the system produced a reasonable but oversimplified model of bio-

chemical kinetic reactions that matched the trajectories of six metabolites while

again remaining consistent with knowledge about the domain.
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We argued that inductive process modeling is a general approach that has

applications to other biomedical domains like physiology and epidemiology, as

well as to other scientific disciplines. However, we also identified some issues that

should be addressed in future research, including scaling to larger models, deal-

ing with qualitative phenomena, and mitigating the potential for overfitting.

Finally, we noted that our approach incorporates ideas from earlier work on

computational discovery that uses domain knowledge to produce interpretable

causal models. We believe that such methods, including process model induc-

tion, have considerable potential to aid discovery in the biomedical sciences.
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Table 1: A process model for photosynthetic regulation.

model photo regulation;

variables light,mRNA, protein, ROS, redox, transcr rate;

observables light, mRNA;

process photosynthesis;

equations d[redox, t, 1] = 1.50 ∗ light ∗ protein;

d[ros, t, 1] = 1.00 ∗ light ∗ protein;

process photo translation;

equations d[protein, t, 1] = 0.20 ∗ mRNA;

process protein degradation redox;

conditions protein > 0, redox > 0;

equations d[protein, t, 1] = −0.05 ∗ redox;

d[redox, t, 1] = −0.05 ∗ redox;

process mRNA transcription;

equations d[mRNA, t, 1] = transcr rate;

process regulate light;

equations transcr rate = 0.80 ∗ light;

process regulate redox;

conditions redox > 0;

equations transcr rate = −2.00 ∗ redox;

d[redox, t, 1] = −1.00 ∗ redox;

process regulate mRNA;

conditions mRNA > 0;

equations transcr rate = −2.00 ∗ mRNA;

d[mRNA, t, 1] = −1.00 ∗ mRNA;
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Table 2: Seven generic processes for plant biochemistry.

process photosynthesis;

variables L{light}, P{protein}, R{redox}, S{ROS};

parameters alpha [0, 1], beta [0, 1];

equations d[R, t, 1] = alpha ∗ L ∗ P ;

d[S, t, 1] = beta ∗ L ∗ P ;

process controlled degradation;

variables D{degradable}, E{degrader};

parameters delta [0, 1];

conditions D > 0, E > 0;

equations d[D, t, 1] = −1 ∗ delta ∗ E;

d[E, t, 1] = −1 ∗ delta ∗ E;

process automatic degradation;

variables C{concentration};

parameters gamma [0, 1];

conditions C > 0;

equations d[C, t, 1] = −1 ∗ gamma ∗ C;

process translation;

variables P{protein}, M{mRNA};

parameters rho [0, 10];

equations d[P, t, 1] = rho ∗ M ;

process transcription;

variables M{mRNA}, R{rate};

equations d[M, t, 1] = R;

process unconsuming regulation;

variables R{rate}, S{signal};

parameters mu [−1, 1];

equations R = mu ∗ S;

process consuming regulation;

variables R{rate}, C{concentration};

parameters nu [−1, 1], pi [0, 1];

equations R = nu ∗ C;

d[C, t, 1] = −1 ∗ pi ∗ C;
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Table 3: Model for photosynthetic regulation induced by IPM.

model photo regulation;

variables light,mRNA, protein, ROS, redox, transcr rate;

observables light, mRNA;

process photosynthesis;

equations d[redox, t, 1] = 8.40 ∗ light ∗ protein;

d[ros, t, 1] = 3.95 ∗ light ∗ protein;

process photo translation;

equations d[protein, t, 1] = 0.75 ∗ mRNA;

process protein degradation redox;

conditions protein > 0, redox > 0;

equations d[protein, t, 1] = −0.89 ∗ redox;

d[redox, t, 1] = −0.89 ∗ redox;

process mRNA transcription;

equations d[mRNA, t, 1] = transcr rate;

process regulate light;

equations transcr rate = 11.94 ∗ light;

process regulate redox;

conditions redox > 0;

equations transcr rate = −8.90 ∗ redox;

d[redox, t, 1] = −7.67 ∗ redox;

process regulate mRNA;

conditions mRNA > 0;

equations transcr rate = −6.58 ∗ mRNA;

d[mRNA, t, 1] = −1.95 ∗ mRNA;
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Table 4: Generic processes for biochemical kinetic reactions.

process flux combination;

variables C{conc}, C+flux{flux}, C−flux{flux}, C+rate{rate}, C−rate{rate};

equations d[C, t, 1] = C+rate ∗ C+flux + C−rate ∗ C−flux;

process irreversible;

variables C1{conc}, C1−flux{flux}, C2+flux{flux};

parameters kinetic order1 [0, 1], kinetic order2 [0, 1];

equations C1−flux = C1∧kinetic order1;

C2+flux = C1∧kinetic order2;

process inhibition;

variables C3−flux{flux}, C4+flux{flux}, E{conc};

parameters kinetic order1 [0, 1], kinetic order2 [0, 1];

equations C3−flux = E∧(−kinetic order1);

C4+flux = E∧(−kinetic order2);

process activation;

variables C5−flux{flux}, C6+flux{flux}, E{conc};

parameters kinetic order1 [0, 1], kinetic order2 [0, 1];

equations C5−flux = E∧kinetic order1;

C6+flux = E∧kinetic order2;

process reversible;

variables C7+flux{flux}, C7−flux{flux}, C8+flux{flux}, C8−flux{flux},

C7{conc}, C8{conc};

parameters k o1 1p [0, 1], k o1 2p [0, 1], k o1 1n [0, 1],

k o1 2n [0, 1], k o2 1p [0, 1], k o2 2p [0, 1],

k o2 1n [0, 1], k o2 2n [0, 1],;

equations C7+flux = C7∧k o1 1p ∗ C8∧k o1 2p;

C7−flux = C7∧k o1 1n ∗ C8∧k o1 2n;

C8+flux = C7∧k o2 1p ∗ C8∧k o2 2p;

C8−flux = C7∧k o2 1n ∗ C8∧k o2 2n;
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Table 5: Model for biochemical kinetics of glycolysis induced by IPM.

model glycolysis kinetics;

process flux combination G3P;
equations d[G3P, t, 1] = 2.0828 ∗ G3P+flux + 0.0002 ∗ G3P−flux;

process flux combination 3PG;
equations d[3PG, t, 1] = 1.2251 ∗ 3PG+flux + 4.3892 ∗ 3PG−flux;

process flux combination F16BP;
equations d[F16BP, t, 1] = 3.2353 ∗ F16BP+flux + 1.2893 ∗ F16BP−flux;

process flux combination F6P;
equations d[F6P, t, 1] = 9.8457 ∗ F6P+flux + 7.9592 ∗ F6P−flux;

process flux combination DHAP;
equations d[DHAP, t, 1] = 1.5514 ∗ DHAP+flux + 0.2402 ∗ DHAP−flux;

process flux combination G6P;
equations d[G6P, t, 1] = 0.1119 ∗ G6P+flux + 0.1557 ∗ G6P−flux;

process reversible G3P F16BP;
equations G3P+flux = G3P∧0.0824 ∗ F16BP∧0.1451;

G3P−flux = G3P∧0.7173 ∗ F16BP∧1;
F16BP+flux = G3P∧0.1678 ∗ F16BP∧0.4607;
F16BP−flux = G3P∧0 ∗ F16BP∧0.0010;

process reversible 3PG G3P;
equations 3PG+flux = 3PG∧0.2755 ∗ G3P∧0.2959;

3PG−flux = 3PG∧0.3810 ∗ G3P∧0.6193;
G3P+flux = 3PG∧0.2166 ∗ G3P∧0.2742;
G3P−flux = 3PG∧0.5907 ∗ G3P∧0.3825;

process reversible F16BP G6P;
equations F16BP+flux = F16BP∧0.3207 ∗ G6P∧0.0301;

F16BP−flux = F16BP∧0.2109 ∗ G6P∧0.0907;
G6P+flux = F16BP∧0.6492 ∗ G6P∧0.0855;
G6P−flux = F16BP∧0.1937 ∗ G6P∧0.4560;

process irreversible DHAP 3PG;
equations DHAP−flux = 3PG∧0;

3PG+flux = 3PG∧0.9455;

process reversible G6P F16BP;
equations G6P+flux = G6P∧0 ∗ F16BP∧0.1911;

G6P−flux = G6P∧0.6751 ∗ F16BP∧0;
F16BP+flux = G6P∧0 ∗ F16BP∧0.4132;
F16BP−flux = G6P∧0.0072 ∗ F16BP∧0.6080;

process irreversible DHAP G6P;
equations DHAP−flux = G6P∧0;

G6P+flux = G6P∧0.6812;

process reversible F16BP F6P;
equations F16BP+flux = F16BP∧0.0047 ∗ F6P∧0.0584;

F16BP−flux = F16BP∧0.5435 ∗ F6P∧0.2384;
F6P+flux = F16BP∧0.6910 ∗ F6P∧0.0453;
F6P−flux = F16BP∧0.0210 ∗ F6P∧0.6336;

process irreversible F6P G6P;
equations F6P−flux = G6P∧0.1442;

G6P+flux = G6P∧0.6690;
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Figure 1: Average expression for 17 genes related to photosynthesis over a 24-
hour period and the simulated trajectory produced by the best-scoring induced
model. The dependent variable is the ratio of mRNA in each sample to the
mRNA in a mixture of all the samples.
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Figure 2: Model from Torralba et al. (2003) that specifies biochemical kinetic
reactions among metabolites.
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Figure 3: Different connection types for biochemical interactions, including (a)
an irreversible reaction, (b) a reversible reaction, (c) an inhibition influence,
and (d) an activation influence.
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Figure 4: Graphical representation of the best-scoring model induced by IPM
for biochemical kinetic reactions among metabolites.
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Figure 5: Concentrations for metabolites predicted by the induced model in
Table 5 and corresponding concentrations measured by Torralba et al. (2003).
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