
Flexible Model Induction through Heuristic Process Discovery

Pat Langley
Institute for the Study of Learning and Expertise

2164 Staunton Court, Palo Alto, CA 94306

Adam Arvay
Department of Computer Science

University of Auckland, Auckland 1142 NZ

Abstract

Inductive process modeling involves the construction of ex-
planatory accounts for multivariate time series. As typically
specified, background knowledge is available in the form of
generic processes that serve as the building blocks for can-
didate model structures. In this paper, we present a more
flexible approach that, when available processes are insuf-
ficient to construct an acceptable model, automatically pro-
duces new generic processes that let it complete the task. We
describe FPM, a system that implements this idea by com-
posing knowledge about algebraic rate expressions and about
conceptual processes like predation and remineralization in
ecology. We demonstrate empirically FPM’s ability to con-
struct new generic processes when necessary and to transfer
them later to new modeling tasks. We also compare its failure-
driven approach with a naive scheme that generates all possi-
ble processes at the outset. We conclude by discussing prior
work on equation discovery and model construction, along
with plans for additional research.

1 Background and Motivation
Research on computational scientific discovery (Shrager and
Langley 1990; Džeroski and Todorovski 2007) attempts to
reproduce the human ability to infer scientific laws and mod-
els, but there is considerable variety in this arena. Initial
work on the topic focused on induction of descriptive laws,
which typically occurs early in a scientific field’s history and
appears to involve knowledge-lean mechanisms. More re-
cent research has addressed the construction of explanatory
models, which usually occurs at more advanced stages and
draws on domain knowledge. Both efforts differ from main-
stream work in machine learning by using established scien-
tific formalisms, but their concerns can differ considerably.

An important class of problems in the knowledge-lean
tradition is equation discovery (e.g., Langley et al. 1987),
where the aim is to induce numerical relations among
observed variables. An equally important subarea in the
knowledge-rich paradigm is inductive process modeling
(Bridewell et al. 2008), which attempts to construct expla-
nations of multivariate time-series data in terms of interac-
tions among unobserved but plausible processes that pro-
duce quantitative changes in measured variables.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

At first glance, these two tasks appear closely related, as
they both generate equations, but the latter also produces a
deeper account that moves beyond empirical descriptions.
Nevertheless, process model induction relies heavily on
background knowledge that must currently be entered man-
ually. A more flexible approach would attempt to introduce
new processes when an initial set is inadequate to explain
observations, partially bridging the gap between knowledge-
lean and knowledge-rich scientific discovery.

In the following sections, we review prior work on induc-
tive process modeling, including its reliance on background
knowledge about domain processes. In response, we define
the more challenging task of model induction when process
knowledge is incomplete. We describe an approach to gen-
erating candidate processes, an exhaustive method for us-
ing them in model construction, and a heuristic alternative
that holds apparent advantages. We report experiments with
these techniques on ecological time series that demonstrate
basic functionality and examine their relative efficiency and
reliability. In closing, we examine relations to prior research
and outline priorities for future work.

Research on process model induction is atypical for the
cognitive systems community due to its focus on numeric
data and use of statistical analysis. However, work in this
area addresses a high-level task that humans find challeng-
ing, uses structured representations of background knowl-
edge and models, engages in multi-step reasoning over these
structures, and draws on heuristics to guide search. All of
these are features of cognitive systems research (Langley
2012), making it highly relevant to the paradigm.

2 Recent Work on Inductive Process Modeling
As noted, process model induction involves constructing an
explanation of multivariate time series in terms of back-
ground knowledge. The input is a set of typed variables, ob-
servations for each variable over time, and a set of generic
processes that might be responsible. The output is a set of
linked differential equations, each composed of one or more
processes, that reproduce and explain the data.

Table 1 presents a model for a four-variable predator-prey
system, with (a) displaying the five component processes
and (b) showing four differential equations. Note that some
processes appear in multiple equations; this sharing is a key
element of process accounts. Each process has a name, an al-

Table 1: A five-process model for a predator-prey system
in which four organisms (x1 through x4) interact through
a linear food chain. Each process has a rate determined by
an algebraic expression and one or more derivatives that are
proportional to this rate. The table also shows an analogous
set of differential equations.

(a) growth[x1]
rate r = x1
equations d[x1] = 0.08 · r

predation1[x2, x1]
rate r = x1 · x2
equations d[x1] = -0.03 · r

d[x2] = 0.04 · r

predation1[x3, x2]
rate r = x2 · x3
equations d[x2] = -0.01 · r

d[x3] = 0.01 · r

predation2[x4, x3]
rate r = x3 / x4
equations d[x3] = -0.02 · r

d[x4] = 0.03 · r

loss[x4]
rate r = x4
equations d[x4] = -0.03 · r

(b) d[x1] = 0.08 · x1 + -0.03 · x1 · x2
d[x2] = 0.04 · x1 · x2 + -0.01 · x2 · x3
d[x3] = 0.01 · x2 · x3 + -0.02 · x3 / x4
d[x4] = 0.03 · x3 / x4 + -0.03 · x4

gebraic rate expression, one or more derivatives that are pro-
portional to this rate, and coefficients that relate these terms.
Process rates, which vary over time, are similar to those in
chemical reactions. The effects of multiple processes on a
given derivative are additive, making translation into differ-
ential equations straightforward. Figure 1 displays trajecto-
ries for the four variables by these linked equations.

Research on process model induction has made substan-
tial progress since it appeared over a decade ago. The frame-
work has been applied to aquatic ecosystems (Asgharbeygi
et al. 2006), hydrology (Bridewell et al. 2008), and biochem-
istry (Langley et al. 2006). Recent work (Langley and Arvay
2015) has introduced a more constrained notation for pro-
cess models, similar to that shown in Table 1, that keeps
rate expressions distinct from the derivatives that are pro-
portional to them. Briefly, their RPM system calculates, for
each time step, the derivative for each variable and the rates
for candidate processes; it then uses multiple linear regres-
sion to estimate the coefficients for hypothesized sets of pro-
cesses that map onto model equations. This approach is both
more reliable and less costly than gradient descent, which
had been used previously. Their RPM system ran 83,000
times faster than its predecessor and it was far more likely
to find accurate and plausible models.

In more recent work, Arvay and Langley (2016) have re-
ported another approach that replaces greedy search through
the space of process models with a two-stage strategy. Their

0 20 40 60 80 100 120 140 160 180 200
Time

0.
0

1
2

3
4

5
6

7
C
on
ce
nt
ra
tio
n

Figure 1: Observed trajectories for a four-variable predator-
prey system that obeys the process model in Table 1.

SPM system first induces multiple differential equations for
each variable, with each term in the linear expression map-
ping onto a process. It then carries out depth-first search in
an effort to find sets of equations that incorporate consistent
processes. Experimental results suggest that this technique
is much more likely to identify consistent process models
in domains like chemistry, where each variable’s derivative
can be predicted well by many different equations but where
only a few of their combinations are coherent.

We have noted that process models move beyond equa-
tions to explain observations in terms of the familiar con-
cepts like predation, growth, and loss. This requires back-
ground knowledge about processes that might underlie the
data. The paradigm assumes this content is stated as generic
processes, which are similar to those in models but which
replace specific variables with typed elements, concrete rate
expressions with abstract ones, and numeric cofficients with
constraints on their values. Proponents of statistical learning
find this dependence on handcrafted structures unappealing,
although it is clear that humans draw on domain knowledge
when attempting to understand scientific data. Nevertheless,
increasing the flexibility of process modeling is a reason-
able goal and automating, at least partially, the discovery
of generic processes is a natural response. We focus on this
challenge in the sections that follow.

3 Constructing New Generic Processes
As just noted, we would like an approach to model induction
that is less dependent on handcrafted background knowl-
edge about candidate processes. In this section, we define
a revised task – flexible process modeling – that includes
creating new generic processes from more basic elements.
We present a computational technique for composing such
building blocks, along with two mechanisms that use these
constructs during model induction. One relies on a naive ex-
haustive scheme, whereas the other employs an incremental
heuristic method that seems likely to be more effective.

Table 2: Four generic processes that are relevant to modeling
predator-prey ecosystems.

gain
:variables ((x organism))
:rate x
:constraints ((> par 0)

predation1
:variables ((x organism)(y organism))
:rate x · y
:constraints ((< par 0)(> par 0))

predation2
:variables ((x organism)(y organism))
:rate x / y
:constraints ((< par 0)(> par 0))

loss
:variables ((x organism))
:rate x
:constraints ((< par 0)

3.1 Task Specification
Like previous authors, we view process modeling as moving
beyond replication and prediction of time series to construct-
ing explanations of observed values in terms of background
knowledge. We can specify the modified task of flexible pro-
cess modeling in terms of its inputs and outputs:

• Given: A set of typed variables and observed trajectories
of their values over time;

• Given: A set of generic processes with type constraints
and rate terms that might appear in the explanations;

• Given: A set of rate expressions and conceptual relations
that can serve as process constituents;

• Find: A model that uses these processes to explain vari-
ables’ trajectories.

• Find: New generic processes that are useful for the cur-
rent and future data.

This statement assumes the induction system is provided
with only some generic processes that will prove useful for
the observations. Instead, it must discover other, novel pro-
cesses that aid its explanation on both the current modeling
task and ones it may encounter later.

However, one cannot conjure candidate processes from
thin air; they can only be constructed from more basic el-
ements. Our notation for processes suggests two types of
components: algebraic rate expressions and conceptual re-
lations among variables. For instance, consider the four
generic processes shown in Table 2, for gain, predation, and
loss, that can be used to induce the model we already exam-
ined in Table 1. Each generic process specifies a set of typed
variables that should appear as derivatives in equations, an
algebraic expression that determines the rate, and constraints
on coefficients that relate the rate to each derivative.

The predation1 and predation2 processes each involve
two organisms, while gain and loss refer to only one variable
of this type. The rate for predation1 is the product of two or-
ganisms’ populations, while that for predation2 is the ratio

Table 3: (a) Conceptual relations and (b) algebraic rate tem-
plates that serve as components of generic processes.

(a) prey
:variables ((a organism)(b organism))
:inputs (b)
:outputs (a)

inflow
:variables ((a organism))
:inputs ()
:outputs (a)

(b) identity
:expression p

product
:expression p · q

ratio
:expression p / q

of the predator’s population to that of the prey. In contrast,
the rates for gain and loss are determined by the population
of a single organism. The parameter constraints, which in-
dicate whether the process consumes or produces each vari-
able, also differ across the four structures. For instance, the
first parameter of predation1 must be negative and the sec-
ond must be positive. These relate to coefficients in the equa-
tions field for instances of this process, as in Table 1.

We will assume here that the flexible process modeler is
provided with conceptual relations that might occur in the
domain, like those in Table 3 (a), and algebraic templates
for possible rate expressions, like those in Table 3 (b). One
can unify such structures to produce the generic processes in
Table 2, as well as others. For instance, the prey relation and
product rate in the former can combine to form the preda-
tion1 entry in the latter, while combining prey with ratio can
produce predation2. Any generic process in our framework
can be broken down into these two elements, which suggests
a natural approach to generating the former from the latter.

3.2 Generating Candidate Processes
Given a set of conceptual relations among typed variables
and a set of algebraic rate templates like those in Table 3,
there is a simple method for combining them to construct
generic processes like those in Table 2. This involves ex-
amining all possible pairs of conceptual relations and rate
templates. For each relation C and template R, one must
find all ways in which the variables in R can unify with the
typed variables in C. For instance, there are two ways to
compose the prey relation and the ratio template in Table 3,
giving the rate expressions a/b and b/a. In the first, the rate
is the predator (output) population divided by the prey (in-
put) population; in the second it is the inverse, giving the
process predation2 after replacing variable names.

The number of processes generated in this manner can be
substantially greater than c ·r, where c is the number of con-
ceptual relations and r is the number of rate templates. De-
spite its combinatorial character, automating this mechanism
is both straightforward and tractable for reasonable numbers

of relations and rate templates, say 20 of each type. We will
refer to the algorithm as GCP, for ‘generation of candidate
processes’. The only subtlety, which we will not detail here,
concerns the notion of symmetry sets. If two inputs or out-
puts, a and b, for a conceptual relation have the same type,
and if both participate in a symmetrical rate expression like
p · q, one should not distinguish between a generic process
in which the rate expression is a · b and another in which it
is b · a, as they are equivalent mathematically.

We should note that it is also possible to generate a set of
conceptual relations like those in Table 2 from known vari-
able types, provided there is a limit on the number of vari-
ables in each structure. Similarly, one could automatically
construct rate templates from a set of arithmetic operators
like multiplication, division, addition, and subtraction, again
provided some limit on expression complexity. This scheme
would depend slightly less on user input, but it would not
differ materially from the approach we have described.

3.3 A Naive Approach to Process Discovery
Once a process modeler has generated a set of generic pro-
cesses in the manner just described, it can pass them to an
existing system, such as SPM (Arvay and Langley 2016),
that searches a space of candidate models. However, this
involves instantiating the generic structures with observed
variables to generate process instances. When the data set in-
volves many such variables, the number of process instances
produced in this manner can be daunting. For instance, ten
variables and five generic processes that each relate two vari-
ables of the same type will produce 180 · 5 = 900 process
instances for consideration during model induction.

A more reasonable approach would initially attempt to
find an explanation for the data using a set of user-provided
generic processes and, if these fail to produce a consistent
model, only then generate new structures by composing con-
ceptual relations with rate templates. We have implemented
a naive system of this sort that first invokes the SPM program
to find one or more process models with available processes.
If this does not succeed, it calls on the GCP module to gen-
erate an expanded set of generic processes from components
like those in Table 3. The approach is analogous to work on
model revision (Asgharbeygi et al. 2006), but it occurs at the
level of generic processes rather than process instances.

Given enough computational resources, this technique
should, in principle, induce reasonable models even when
its initial set of generic processes omits some relevant struc-
tures. However, when many process instances are being con-
sidered, the SPM module must sample sets of processes to
identify relevant terms for its differential equations. Consid-
ering all generic processes that are composable from con-
ceptual relations and rate templates will produce many ir-
relevant process instances that reduce the chances of finding
model equations or require large numbers of samples.

3.4 A Heuristic Approach to Process Discovery
In response, we have also developed a heuristic approach,
which we call FPM (for Flexible Process Modeling) that
uses information about where model induction fails to fo-
cus attention. Recall that the SPM module operates in two

stages. The first phase induces one set of alternative differ-
ential equations for each variable whose trajectory it aims to
explain. The second attempts to find sets of these equations,
each containing one equation per variable, that include con-
sistent sets of processes. For instance, the predation2 pro-
cess instance in Table 1 influences both d[x3] and d[x4].
This means that, for it to appear in a final model, it must
contribute to the equations for both derivatives.

The SPM routine carries out depth-first search through the
space of candidate models defined by all combinations of
component equations. A path downward through the search
tree can fail at level d either because induction has not found
any equation for variable xd or because none of the equa-
tions for xd are consistent in terms of processes with equa-
tions earlier along the path. By collecting the variables at
these failed nodes, FPM can identify where new processes
might break an impasse. For this, it adopts the heuristic of
selecting the variable associated with the deepest node as the
focus of attention, as it came closest to a consistent model.

FPM then uses this variable to constrain the process in-
stances considered during future processing. It must still
examine all new generic processes generated by the GCP
method specified earlier, but it passes to SPM only those pro-
cess instances that include the focus variable. For instance,
suppose that, on a ten-variable modeling task, FPM finds no
consistent sets of equations beyond variable x5 and suppose
GCP has produced candidate generic processes that influ-
ence two organism variables each. During the next attempt
at model induction, FPM would add to the pool only pro-
cess instances that mention x5, which are approximately one
ninth of the total number. Given SPM’s reliance on sampling
to induce individual equations, this should give much higher
chances of finding candidates that contribute to a consistent
model. If FPM finds complete models or cannot proceed be-
yond the problem variable, then it halts. Otherwise, it retains
generic versions of the process instances that helped extend
its partial models to include more variables.

This last step is important because the original set of
generic processes may omit structures essential for more
than one variable. If so, then FPM will make multiple calls
on SPM before it augments its library enough to find com-
plete models. For example, it might start with one generic
predation process whose rate expression is a · b, but find this
insufficient to find an equation for d[x5]. Expanding the set
to include newly generated processes may produce an equa-
tion for this variable with an alternate predation process with
the rate a/b that it useful for d[x7], but SPM may still en-
counter dead ends when it considers variable x8. Further
search may reveal a third process that lets it find an equa-
tion for this variable and a complete model. Both generic
processes would be added to the default set for use in future
modeling tasks, with those not used kept in the background.

3.5 Implementation Details and Assumptions
We have implemented both of these approaches in Steel
Bank Common Lisp, using Arvay and Langley’s (2016)
SPM program as a subroutine for inducing consistent pro-
cess models and their associated differential equations. They
also both call on the GCP algorithm described earlier. We

have already labeled the heuristic version as FPM (Flexi-
ble Process Modeling); we will refer to the naive variant as
FPM/N. In comparison runs, we provide them with the same
generic processes, conceptual relations, and rate templates.

Both systems assume, like other recent work in the area,
that all variables are observed. This lets them compute the
rates of candidate process instances on each time step, which
make possible their use of multiple linear regression to find
differential equations. For the same reason, they also assume
that expressions for process rates are algebraic combina-
tions of observed variables, like (a · b)/c, that may include
constants but not unknown parameters. These are important
assumptions that we aim to overcome in future work, but
we cannot address all issues at once. Finally, many of our
runs use synthetic noise-free data from known target mod-
els. This issue is less problematic, as Langley and Arvay
(2015) have shown that simple smoothing of trajectories let
systems like SPM handle up to ten percent noise.

4 Empirical Studies
Our approach to flexible process modeling appears promis-
ing, but its effectiveness is an empirical question. In this sec-
tion, we report results from a number of studies with the two
systems. Because the task we have addressed is novel, we
cannot carry out experimental comparisons with other pro-
grams, even ones that focus on inductive process modeling.
Neither would comparisons to equation discovery methods
be appropriate, as they are not concerned with inferring un-
derlying explanations. However, we can demonstrate that
FPM exhibits the basic functions for which we intend it,
compare its behavior with the naive approach, and examine
its support for transfer across modeling tasks.

4.1 Basic Functionality and Generality
Our first aim was to demonstrate that the FPM system, which
implements the heuristic approach described in the previous
section, operates as intended. To reiterate, the system inputs
a set of typed variables, time series for their values, a set of
generic processes for use in modeling them, and – unlike its
predecessors – conceptual relations and rate templates for
introducing new generic processes if needed.

The initial run examined FPM’s behavior on a natural
data set, reported by Veilleux (1979), that displays a clas-
sic predator-prey cycle in which the protist Nasutum feeds
on Aurelia, another protist. The two differential equations

d[aur] = 1.48 · aur + − 0.0230 · aur · nas
d[nas] = − 1.12 · na + 0.0047 · aur · nas

describe the trajectories reasonably well, giving r2 scores of
0.81 and 0.73, respectively. The SPM system finds a model
that translates into these equations without difficulty when
given relevant generic processes, but it fails otherwise. In
contrast, when we presented FPM with growth and loss pro-
cesses but omitted any generic processes for predation, it ex-
amined the candidate structures generated by the GCP mod-
ule and immediately found the same model as SPM when
given more background knowledge. This modeling task is
quite simple compared to others, but it shows that our ideas
work on actual scientific data.

Another run involved synthetic data from a four-variable
predator-prey ecosystem in which the rate for most predation
processes was the function a ·b, but in which one was the ra-
tio a/b. Figure 1 displays the time series we provided to the
system. When we gave it both forms in generic processes,
FPM found the target model without special effort, since the
SPM subroutine returned a consistent set of equations. How-
ever, when we omitted the generic process with the ratio-
based rate expression, it failed to find an equation with suffi-
ciently high r2 for either x3 or x4. At this point, the system
focused on x3 and introduced additional process instances,
generated from the GCP-produced generic structures, that
mentioned this term. Using this expanded set, SPM found a
complete set of equations with the same structure, and nearly
the same coefficients, as the target model.

We also ran FPM on synthetic time series for an aquatic
ecosystem from Arvay and Langley (2016) that included
phytoplankton, zooplankton, nitrogen, iron, and detritus.
They provided their SPM system with five generic processes
– for grazing, organism loss, nutrient absorption, remineral-
ization, and nutrient influx – that let it reconstruct the equa-
tions used to generate the data. We ran our system on the
same data but withheld two of these generic processes, while
also giving it conceptual relations analogous to the five pro-
cesses and a set of four algebraic rate templates. On its first
pass, FPM failed to find any equations for zooplankton, so
it imported candidate processes the GCP routine had gen-
erated. This let SPM find equations for zooplankton on the
next pass, but it still found none for nitrogen, so it incor-
porated more processes. These were sufficient not only to
induce equations for nitrogen but also to find a model with
the same structure as the one used to synthesize the data.

4.2 Scaling Experiments
In the previous section, we described two alternative meth-
ods for responding to incomplete sets of generic processes.
Both relied on the GCP routine to generate candidate struc-
tures from conceptual relations and algebraic rate templates.
However, the heuristic approach – implemented in the FPM
system – uses points of failure to focus attention on one vari-
able at a time, reducing the number of process instances it
considers. In contrast, the naive method – implemented in
FPM/N – instead attempts to use all generated processes
whenever it cannot find a consistent model.

We have reported that FPM induces a number of eco-
logical models even when we omit key generic processes
from its background knowledge, and FPM/N succeeds on
the same tasks. Because they rely on sampling, their behav-
ior is nondeterministic and they occasionally fail, but they
are typically successful. However, we should also examine
how each system scales to increasing difficulty. Dealing with
more missing processes is not a serious issue. The time FPM
requires to induce a model should grow at most linearly with
this factor, as it constructs new processes as needed, and in-
formal studies are consistent with this prediction. But two
other factors – the number of variables being modeled and
the number of rate templates – pose more serious challenges.

Figure 2 plots the CPU times for FPM and FPM/N as one
increases the number of variables. Here we provided syn-

0 2 4 6 8 10
Number of variables

0
10

20
30

40
50

60
C

PU
 s

ec
on

ds

SPM
FPM/N
FPM

Figure 2: Computation times for FPM and FPM/N as func-
tions of the number of variables they modeled. Background
knowledge omitted one relevant generic process, but three
conceptual relations and four rate templates were available.
All relevant generic processes were given for the SPM curve.

thetic time series for linear food chains with two to ten or-
ganisms. We held constant the numbers of missing processes
(one), conceptual relations (three), and rate templates (four).
The SPM module took 5,000 samples of ten processes each,
found up to ten equations for each variable, and used 0.98 as
its r2 acceptance threshold. Computation for both systems
grows with the number of variables, but the slopes differ lit-
tle from that when all relevant generic processes are avail-
able, which is encouraging. The main surprise is that FPM
is slower than the naive FPM/N because it makes multiple
passes through the variables when positing new processes.

Increasing the number of rate templates, as seen in Fig-
ure 3, produces rather different results. Here we held con-
stant the number of variables (six), missing processes (one),
and conceptual relations (three), with SPM using the same
settings as in the first experiment. The slopes for both sys-
tems are quite low, suggesting they scale well on this di-
mension. However, FPM/N could not find complete models
when given eight or ten rate templates, even though it ran
faster when fewer were present. Analysis suggests it gener-
ates so many process instances at higher levels that SPM’s
sampling method cannot find good equations. In contrast,
FPM’s heuristics focus its attention to make search tractable.

4.3 Transfer to New Modeling Tasks
The heuristic approach to process discovery should also lend
itself to transfer across modeling tasks. Once the FPM sys-
tem has found a generic process that lets it induce a consis-
tent model, it adds this structure to its background knowl-
edge, where it is available for use by the SPM subroutine
on new tasks. At the very least, this should reduce the ef-
fort required to find process models in the new setting, but
in some cases including content gleaned from earlier runs
could mean the difference between inducing a complete pro-
cess model and failing completely.

0 2 4 6 8 10
Number of rate templates

0
5

10
15

20
C

PU
 s

ec
on

ds

SPM
FPM/N
FPM

Figure 3: Computation times for FPM and FPM/N as func-
tions of the number of rate templates on a six-variable mod-
eling task. FPM/N could not find models for higher numbers
of templates. Background knowledge omitted one generic
process, but three conceptual relations were available.

To demonstrate this ability, we ran FPM on a synthetic
time series for a four-organism predator-prey system in
which predation rates were determined by a · b, but omit-
ted the relevant generic process. The system introduced a
new predation process with this rate term and, because it
helped explain the observations, stored it for future use. Next
we ran FPM on trajectories for another predator-prey system
that involved both this process and a new predation relation
with a/b as its rate expression. As before, FPM introduced
the necessary generic process and induced the target model.
However, when we presented it with the second modeling
task without exposing it to the first one, it required multiple
passes, with different variables as its focus, before it finally
arrived at the same model through additional effort.

5 Related Research
Our research on flexible process modeling builds on a num-
ber of earlier traditions. The most obvious is the paradigm
of inductive process modeling (Bridewell et al. 2008), from
which we have adapted both our problem and many elements
of our solution. This framework in turn owes a strong intel-
lectual debt to Forbus’ (1984) early work on qualitative pro-
cess theory, which also specifies scientific models in terms
of interacting processes. Falkenhainer and Forbus’ (1991)
progress on compositional modeling, although focusing on
qualitative explanations, is especially relevant.

We argued earlier that our problem is distinct from equa-
tion discovery (e.g., Bradley et al. 2001; Džeroski and
Todorovski 1995; Schmidt and Lipson 2009; Srividhya et al.
2007), in that we focus on constructing explanations in
terms of unobserved processes, not merely finding empir-
ical relations. Nevertheless, our system must address re-
lated issues along the way, as our framework relies on equa-
tion induction. We have also borrowed freely from estab-
lished techniques for statistical analysis, differential equa-

tion solvers, and heuristic search that have been used by
many others in the field, although our combination of these
methods to support scientific model construction is novel.
Recent work by Mai et al. (2016) focuses on inducing dif-
ferential equations, but their method also finds a small set of
basis functions to predict derivatives. This is similar in spirit
to discovering processes, although the inferred bases do not
appear to map onto an interpretable scientific formalism.

However, none of these connections are especially rele-
vant to the two ideas emphasized in this paper. The first is
that one can devise more flexible knowledge-rich systems
by adding mechanisms for incrementally extending cogni-
tive structures. Another is that one can make this elabora-
tion more effective by identifying failure points and focus-
ing on repairing them. Both ideas are reminiscent of two
earlier efforts within the cognitive systems tradition. Slee-
man (1984) adopted a similar approach to discovering ‘mal-
rules’ for use in diagnosing students’ algebra errors, guiding
the mechanism by detecting incomplete parts of an explana-
tion. Similarly, VanLehn, Jones, and Chi (1992) reported a
model of physics problem solving that acquires new rules at
points where it fails to explain worked-out solutions. Despite
the different contexts, these systems have much in common
with the framework we have presented.

6 Closing Remarks
In this paper, we reviewed earlier work on process model
induction, which involves constructing differential equation
accounts of time series from generic processes, and speci-
fied a new task – flexible process modeling – in which some
background knowledge may be absent and one must in-
fer the missing structures to construct an acceptable model.
We described a simple combinatorial method for creating
generic processes from more basic conceptual relations and
rate templates, and we presented two mechanisms for us-
ing the resulting structures for filling knowledge gaps dur-
ing model induction. We reported successful results with the
more sophisticated approach, which uses failures in combin-
ing equations into consistent models, to focus attention and
make tractable the identificaton of promising candidates. We
also showed that the heuristic approach fared better than the
naive alternative and that it benefits from transfer of inferred
processes across successive modeling tasks.

Despite this encouraging progress, there remain open
questions that demand additional research. Our framework
assumes that all variables are observed and that rate expres-
sions include no parameters, both of which limit its appli-
cability in scientific fields like biochemistry. Moreover, the
task of process discovery requires search through a space
of candidate structures. We have developed one method for
guiding this search, but we should test it more fully, iden-
tify situations in which it does not suffice, and devise im-
proved mechanisms that respond appropriately in these con-
texts. We should also explore interactive solutions to these
challenges. Few scientists desire to be replaced, and they can
often offer useful guidance even in cases where they cannot
specify their reasons. Computational scientific discovery re-
mains an intriguing research topic with many open problems
that we will solve only with concerted effort.

Acknowledgements
The research reported in this paper was supported in part by
Grant No. N00014-11-1-0107 from the US Office of Naval
Research, which is not responsible for its contents.

References
Arvay, A.; and Langley, P. 2016. Selective induction of rate-

based process models. Proceedings of the Fourth Annual
Conference on Cognitive Systems. Evanston, IL.

Asgharbeygi, N.; Langley, P.; Bay, S.; and Arrigo, K. 2006.
Inductive revision of quantitative process models. Ecolog-
ical Modelling 194: 70–79.

Bradley, E.; Easley, M.; and Stolle, R. 2001. Reasoning
about nonlinear system identification. Artificial Intelli-
gence 133: 139–188.

Bridewell, W.; Langley, P.; Todorovski, L.; and Džeroski, S.
2008. Inductive process modeling. Machine Learning 71:
1–32.

Džeroski, S.; and Todorovski, L. (Eds.) 2007. Computa-
tional discovery of communicable scientific knowledge.
Berlin: Springer.

Džeroski, S.; and Todorovski, L. 1995. Discovering dynam-
ics: From inductive logic programming to machine dis-
covery. Journal of Intelligent Information Systems 4: 89-
108.

Falkenhainer, B.; and Forbus, K. 1991. Compositional mod-
eling: Finding the right model for the job. Artificial Intel-
ligence 51: 95-143.

Forbus, K. D. (1984). Qualitative process theory. Artificial
Intelligence 24: 85–168.

Langley, P. 2012. The cognitive systems paradigm. Ad-
vances in Cognitive Systems 1: 3–13.

Langley, P.; and Arvay, A. 2015. Heuristic induction of
rate-based process models. Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 537–
543 Austin, TX: AAAI Press.

Langley, P.; Simon, H. A.; Bradshaw, G. L.; and Żytkow,
J. M. 1987. Scientific discovery: Computational explo-
rations of the creative processes. Cambridge: MIT Press.

Mai, M.; Shattuck, M. D.; and O’Hern, C. S. 2016. Recon-
struction of ordinary differential equations from time se-
ries data. arXiv:1605.05420v1 [physics.data-an].

Schmidt, M.; and Lipson, H. 2009. Distilling free-form nat-
ural laws from experimental data. Science 324: 81–85.

Shrager, J.; and Langley, P. (Eds.) 1990. Computational
models of scientific discovery and theory formation. San
Mateo, CA: Morgan Kaufmann.

Sleeman, D. 1984. An attempt to understand students’ un-
derstanding of basic algebra. Cognitive Science 6: 387–
412.

Srividhya, J.; Crampin, E. J.; McSharry, P. E.; and Schnell,
S. 2007. Reconstructing biochemical pathways from time
course data. Proteomics 7: 828–838.

VanLehn, K.; Jones, R. M.; and Chi, M. T. H. 1992. A model
of the self-explanation effect. Journal of the Learning Sci-
ences 2: 1–60.

Veilleux, B. G. 1979. An analysis of predatory interaction
between paramecium and didinium. Journal of Animal
Ecology 48: 787-803.

