Discovering Constraints for Inductive Process Modeling

Ljupco Todorovski
Faculty of Administration
University of Ljubljana
SI-1000 Ljubljana, Slovenia

Abstract

Scientists use two forms of knowledge in the construc-
tion of explanatory models: generalized entities and
processes that relate them; and constraints that spec-
ify acceptable combinations of these components. Pre-
vious research on inductive process modeling, which
constructs models from knowledge and time-series data,
has relied on handcrafted constraints. In this paper, we
report an approach to discovering such constraints from
a set of models that have been ranked according to
their error on observations. Our approach adapts in-
ductive techniques for supervised learning to identify
process combinations that characterize accurate models.
We evaluate the method’s ability to reconstruct known
constraints and to generalize well to other modeling
tasks in the same domain. Experiments with synthetic
data indicate that the approach can successfully recon-
struct known modeling constraints. Another study us-
ing natural data suggests that transferring constraints
acquired from one modeling scenario to another within
the same domain considerably reduces the amount of
search for candidate model structures while retaining
the most accurate ones.

Introduction

Constructing explanatory process models of complex sys-
tems is a cognitively challenging task that occupies a sub-
stantive portion of scientific work. To carry out this task,
human experts combine general, theoretical principles from
scientific fields with specific assumptions about an observed
system. Over the past decade, cognitive systems researchers
have developed inductive process modeling, an automated
approach that combines knowledge with data to build ex-
planatory models (Langley et al. 2002). Two forms of
knowledge play important roles in both human and ma-
chine approaches to scientific process modeling. Generic
processes capture knowledge about which entities in a com-
plex system interact with each other and which mathemati-
cal equations account for the dynamics of their interactions.
Although generic processes represent plausible components
for models, many of the potential combinations are scien-
tifically implausible. Constraints on potential combinations

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Will Bridewell
Center for Biomedical Informatics
Research, Stanford University
Stanford, CA 94305 USA

Pat Langley
Institute for the Study of
Learning and Expertise
Palo Alto, CA 94306 USA

of processes, such as knowing that two processes are mutu-
ally exclusive, limit the space of acceptable model structures
(Bridewell & Langley 2010).

Early research on the problem of inductive process mod-
eling (e.g., Todorovski et al. 2005) assumed the availabil-
ity of manually encoded constraints. However, the task of
handcrafting such constraints is tedious and challenging, as
it involves eliciting and representing tacit knowledge. Al-
though scientists routinely and easily identify implausible
model structures, they are usually unable to state formally
the properties of plausible structures. We address this issue
with a computational system that discovers constraints from
example models that are ranked according to their ability
to account for data. Initial research on constraint discovery
(Bridewell & Todorovski 2007; 2010) treated the problem
as a supervised learning task. Using an arbitrary threshold
value on the model error, the most accurate model structures
were labeled as positive examples, while the others were
labeled negative. A supervised learning algorithm then in-
duced classification rules expressed as conjunctions of fea-
tures that denoted the required presence or absence of pro-
cesses in a model.

In this paper, we address two limitations of previous ap-
proaches to constraint learning. The first is the arbitrary se-
lection of a threshold value for distinguishing between accu-
rate and inaccurate models. The second is the limitation in
the expressiveness of the learned constraints, which captured
only a restricted kind of knowledge found useful for induc-
tive process modeling. To address these limitations, we have
developed a new approach to constraint discovery that in-
corporates a novel method for evaluating constraints against
a ranked set of models, alleviating the need for an arbitrary
threshold, and aligns the hypothesis space of the learning
method with the types of modeling constraints that reflect
scientific knowledge. We hypothesize that this approach can
reconstruct known constraints and discover new ones that
successfully transfer across modeling tasks, thereby improv-
ing the behavior of an inductive process modeling system.

After reviewing previous research on inductive process
modeling and the SC-IPM system, which addresses that
task, we present our new approach to constraint discovery.
We then report an evaluation that uses synthetic data to show
the system can reconstruct known constraints from a ranked
set of model structures. We also examine the system’s be-

havior on natural scientific data to support our claim that
learned constraints transfer to similar modeling tasks and
thus reduce subsequent search costs. In closing, we discuss
related work and directions for further research.

Inductive Process Modeling

As we noted earlier, scientists commonly model complex
systems with the express goals of explaining observations
and predicting future behavior. Such models often refer to
processes that govern system dynamics and to the entities
involved in those processes. Equations offer one way to for-
malize processes as predictive models, but they fail to make
contact with the process knowledge shared among scientists.
In response, Langley et al. (2002) proposed a language for
quantitative process models that draws on Forbus’s (1984)
qualitative process theory and that ties processes and enti-
ties to their mathematical formulations. This process model-
ing formalism supports both model simulation through stan-
dard techniques for solving systems of differential equations
(Cohen & Hindmarsh 1996) and model induction from time
series and background knowledge through machine learning
(Bridewell et al. 2008).

We can describe the task of inductive process modeling in
terms of its inputs and outputs:

Given:
e observations for a set of continuous variables as they
change over time;
e a set of entities that the model may include;
e generic processes that specify relations among entities;
e constraints that indicate plausible relations among pro-
cesses and entities;

Find: a specific process model that explains the observed
data and that predicts unseen data accurately.

Table 1 shows a high-level representation of a library of
generic entities, generic processes, and constraints for pop-
ulation dynamics. The library has two types of entities, pro-
ducers that can grow on their own and grazers that feed on
producers. Grazing is modeled with a combination of the
grazing process and a rate process that specifies the details
of the interaction (e.g., lotka_volterra or ivlev).

Combining generic processes with the specific entities
involved in a complex system produces a set of instanti-
ated components for possible inclusion in model structures.
Without constraints, the number of these components tends
to grow exponentially with the number of entities. For exam-
ple, in a simple system with two producers and two grazers,
each growth process leads to two process instances (one for
each producer), and the loss process leads to two instances,
while each of the grazing and the seven grazing-rate pro-
cesses lead to four instances (one for each producer—grazer
combination). Ignoring model structures that involve dupli-
cates for any of these processes, there are 2% or over 270
billion combinations.

Obviously this is an intractable number of model struc-
tures for one to consider explicitly. To cope with this prob-
lem, scientists use domain-specific knowledge to prune a
vast number of implausible process combinations. This

Table 1: A generic library for modeling population dynam-
ics. For simplicity, we omit details about some generic pro-
cesses. The expression d[X,t,1] denotes the first derivative
of the variable X with respect to time .

library population_dynamics

generic entity grazer

variables c, gr

parameters ef[0.001, 0.8], max_gr[0.0001, 1]
generic entity producer

variables ¢

generic process exponential_growth
relates P{producer}
parameters gr{0,3]
equations d[Pc, t, I] =gr - Pc
generic process logistic_growth
generic process exponential_loss
relates G{grazer}
generic process grazing
relates G{grazer}, P{producer}
equations
dlG.c,t, I1=G.ef - G.gr - G.c
dlPc, t, 11=-1-G.gr-G.c
generic process lotka_volterra
relates G{grazer}, P{producer}
equations G.gr = G.max_gr - P.c
generic process generalized_gause
generic process holling _type_I
generic process holling _type_3
generic process ivlev
generic process monod
generic process ratio_dependent_2

constraint loss_requirement
type necessary
processes exponential _loss(P)
constraint grazing_requirement
type necessary
processes grazing(G,-)
constraint grazing_alternatives
type exactly-one
processes lotka_volterra(G,P), generalized_gause(G,P),
holling _type_1(G,P), holling _type _3(G,P), ivlev(G,P),
monod(G,P), ratio_dependent 2(G,P)

knowledge lets them concentrate on a few plausible struc-
tures and fit their parameters to observations. We can pro-
vide systems for inductive process modeling with this ability
by providing formal constraints on the model structures. For
instance, the HIPM system (Todorovski et al. 2005) used
a taxonomy of generic processes to encode a context-free
grammar that defines a space of plausible model structures.
These taxonomies offered an elegant view of the domain the-
ory behind model construction, but they proved unwieldy
to encode and difficult to map to instantiated models. In re-

Table 2: Specialization operator for SC-IPM constraints. The first column refers to the initial constraint, the second column
enlists its specialization, and the third column describes the specialization in terms of models that are ruled out. Throughout the
table, g denotes a qualifier, gp a generic process, and gps a set of at least two generic processes.

Constraint Specialization

Specialization description

necessary gp add ¢

do not include an instance of gp involving an entity instance of ¢

always-together gps add g

include instances of a proper subset of gps involving an entity instance of ¢

add gp, gp ¢ gps

include instances of gps and do not include an instance of gp

do not include instances of gps and include an instance of gp

at-most-one gps remove ¢q

include two or more instances of gps involving an entity instance of ¢

add gp, gp ¢ gps

include an instance of gps and an instance of gp

change to exactly-one do not include any instance of gps

sponse, SC-IPM (Bridewell & Langley 2010) explicitly rep-
resents modular constraints that capture most of the seman-
tics of HIPM’s grammar.

SC-IPM supports four types of constraints: necessary,
always-together, at-most-one, and exactly-one. Necessary
constraints assert that at least one instance of each listed
generic process must appear in a model. The population-
dynamics library in Table 1 includes two necessary con-
straints. The first, loss_requirement, specifies that a model
must include an instance of the exponential_loss generic pro-
cess. Moreover, the qualifier G used in the specification of
the generic process, ensures that a model includes an in-
stance of the loss process for each grazer entity. In addi-
tion, the second constraint, grazing_requirement, asserts that
a model must include a grazing process for each grazer.
Always-together constraints are similar, but declare that a
model must instantiate all or none of the specified pro-
cesses. This relationship is useful in population-dynamics
models that include nutrient-limited growth, which must ap-
pear with a corresponding nutrient absorption process.

Two other types of constraints let users assert that generic
processes are mutually exclusive. The at-most-one con-
straint specifies two or more generic processes, at most one
of which can appear in a model at a time. The other variant
of mutual exclusion, exactly-one, combines the declarative
features of ar-most-one and necessary to define a mutually
exclusive group of generic processes, exactly one instance
of which must appear in the model. The final constraint in
the population dynamics library, grazing_alternatives, states
that, for each pair of grazer and producer entities, exactly
one of the seven enlisted grazing-rate processes must appear
in a valid model.

The three constraints in the population dynamics library
rule out over 99% of component combinations that arise in
the case of two producers and two grazers. Together they
reduce the initial space of more than 270 billion candidate
combinations to roughly 345 thousand. Although this is still
far more than a scientist would consider, additional con-
straints (e.g., an exactly-one constraint for the growth pro-
cesses) reduce the space even further.

Discovering Constraints

Approaches to inductive process modeling adopt the general
paradigm of heuristic search through the space of candidate
solutions. In this framework, nodes in the search space cor-
respond to candidate solutions, in particular, process mod-
els. A heuristic function maps the nodes to the quality of the
corresponding solutions in terms of model error on the ob-
served data. Although the search algorithm usually reports
only the few best solutions, its trace can reveal the entire
set of candidates considered during the search, along with
their corresponding scores. These traces can act as training
sets for learning constraints. More formally, we can state the
task of discovering constraints as:

Given: a set of models and their errors on observational data;

Find: aset of constraints that rule out inaccurate models and
that generalize well to other modeling tasks.

When solving this task, we define a search space in which
the nodes are candidate constraints. The corresponding
heuristic function should capture the notion of accurate con-
straints that rule out inaccurate models. In the remainder of
this section, we describe the organization of the search space
and the heuristic function for evaluating constraints.

Organizing the Search

We structure the search space of candidate constraints ac-
cording to generality. The generality (or specificity) of a
constraint is related to the size of the set of models that it
matches (or rules out). The most general constraint is an
empty one that matches all models. At the other extreme,
the most specific constraint is the one that rules out all mod-
els. The partial, general-to-specific ordering of constraints
corresponds to the inclusion ordering of the corresponding
sets of matched models. In Table 2, we define a specializa-
tion operator that can be used to generate constraints in the
general-to-specific order. At each step, the operator gener-
ates the least-general specializations of a given constraint
(De Raedt 2011).

We illustrate the use of the operator on a modeling
task in population dynamics (Table 1) with two producer

0.5 4

area under the ROC curve

T T T
ag-7 ag-6 ag-2

constraints

0.8 -

classification accuracy

0.5

T T T
ag-7 ag-6 ag-2

constraints

Figure 1: Comparison of two metrics for evaluating constraint accuracy: area under the ROC curve (left) and classification accu-
racy (right) using three thresholds (th) for distinguishing between accurate and inaccurate models. ag-7 denotes the alternative
grazing constraint with seven mutually exclusive processes used to generate evaluation data, while ag-6 and ag-2 are two more
general constraints with six and two mutually exclusive grazing processes, respectively.

and two grazer entities. The constraint necessary expo-
nential_loss requires models that include a loss process
for one or both grazer entities. By adding a qualifier,
we obtain its specialization necessary exponential_loss(G),
which rules out the models with a single loss process
for only one of the grazer entities. Furthermore, consider
the constraint always-together exponential_growth, expo-
nential_loss, which matches models with either (A) one or
more exponential_growth and one or more exponential_loss
processes or (B) none of them. By adding logistic_growth
to its list of generic processes, we obtain a specialization
that rules out the models of class (A) that do not include
a logistic_growth process and the models of class (B) that
do include a logistic_growth process. Finally, consider the
constraint at-most-one exponential_growth, logistic_growth,
which matches models with one exponential growth and no
logistic growth processes, one logistic growth and no expo-
nential growth process, or none of them. When changing its
type to exactly-one exponential_growth, logistic_growth, we
rule out all models from the third class.

Our system for discovering constraints carries out beam
search through the structured space of candidates. In the first
iteration, the search procedure considers the most general
constraints; at each consecutive iteration, least-general spe-
cialization of the current constraints are considered. Con-
straints that are too specific, matching less than a user spec-
ified number of models, are removed from the search space.
The search stops when the beam stagnates: when the accura-
cies of the constraints considered in the most recent iteration
are too low to displace those in the current beam.

Evaluating Constraints

The heuristic function’s measure of constraint quality relates
to the accuracy of the models that a constraint matches. One
way to evaluate constraint quality would rely on standard
classification accuracy used in supervised learning, defined
as the ratio of the number of correctly classified examples
to the number of all examples. When learning constraints,
a correctly classified example takes two forms: (1) models

that fit observed data well and are matched by the constraint
and (2) models that fit the data poorly and are ruled out by
the constraint. This approach implies that someone has set
a threshold that distinguishes models with a good fit to the
data from those with a poor fit.

However, the selection of an appropriate threshold is
problematic. Consider the constraint grazing-alternatives
from Table 1 that specifies the set of seven mutually ex-
clusive grazing processes. Let us compare the classification
accuracy of this constraint with the accuracies of two more
general constraints: one that includes a set of six mutually
exclusive grazing-rate processes and one that includes only
two of them. We evaluate these constraints on a synthetic
data set of 1000 models used and described in the section
that follows: the models and their scores are generated in a
way that guarantees that the most accurate models are those
that match the constraints from Table 1. Thus, one would ex-
pect that the original constraint will rank as better than the
other two candidates.

The graph on the right-hand side of Figure 1 shows that
the classification accuracy measure fails to meet our expec-
tations. The threshold value of 1.0 leads to classification ac-
curacy estimates that rank the constraint including two mu-
tually exclusive processes as best. The threshold value of 1.5
does not provide a clear ranking. Only the threshold value
of 2.0 leads to the expected ranking of the three constraints.
Importantly, this example illustrates that classification accu-
racy is sensitive to the threshold value used to distinguish
between inaccurate and accurate models.

To address this problem, we propose an alternative mea-
sure of constraint accuracy, based on receiver operator char-
acteristic (ROC) analysis (Fawcett 2006). In supervised
learning, ROC analysis is often used to evaluate learned clas-
sifiers that rank examples according to their likelihood of be-
longing to a given class. In such a setting, one must choose
a likelihood threshold in order to classify examples. ROC
analysis is then used as a tool for selecting an appropriate
decision threshold. When evaluating constraints, rather than
ranking the predictions we instead rank the training models

100 -

s 75
S
>
o
(]
5 50
Q
Q
©
=] —e—
25 4 b

100 200 500 1000

number of examples

100 -|
75 A
50 A /
T
1 b=l —e—
b=10 ——
2511 b=20 —e—

100 200 500 1000

number of examples

Figure 2: Results on reconstructing constraints in two synthetic domains with different numbers of examples and beam widths
(b). The first domain (left) includes seven alternative grazing-rate processes, whereas the second (right) includes 13 processes.

based on their fits to the data. Thus, we can obtain an ROC
curve by altering the threshold value that distinguishes be-
tween models which fit the data well and those which do not.
In turn, we can empirically estimate the area under the ROC
curve (AUC) and use this quantity as an estimate of a given
constraint’s accuracy.

The graph on the left-hand side of Figure 1 reports the
AUC estimates for the three constraints described above.
Note that these estimates produce the correct constraint
ranking, where the constraint used to generate the valida-
tion examples is ranked best with an AUC value above 0.8.
Based on these results, we hypothesize that the area under
the ROC curve can be used as a reliable measure to evalu-
ate constraint accuracy without needing an explicit threshold
value that separates accurate and inaccurate models. In the
next section, we report results from two empirical tests of
this conjecture.

Empirical Evaluation

To evaluate our approach to constraint discovery, we car-
ried out two empirical studies. The first of these tested the
method’s ability to reconstruct known constraints from syn-
thetic data. The second study examined how well the ap-
proach discovers new constraints that improve the behavior
of inductive process modeling when transferred to new but
related modeling tasks.

Reconstructing Constraints

In the first study, we carried out controlled experiments
with synthetic data produced from the population dynam-
ics domain using the initial set of constraints presented in
Table 1. We first generated a random sample of 20,000
models that involved two producers and two grazers. The
sample was stratified with respect to the constraints being
matched: one eighth of the models matched all three con-
straints, three eighths violated only one of the first, second,
and third constraints, three eighths violated two constraints,
and one eighth violated all three constraints. We initially set

the score for each model to the number of violated con-
straints. We randomized ranking of models with the same
value by adding to each score a number sampled from the
[0,1) interval.

From the 20,000 models, we selected a single stratified
sample of 5,000 models for testing. From the remaining
15,000 models, we took training samples of sizes 100, 200,
500, and 1,000, generating 10 training sets for each size.
To address the complexity of the domain, we generated an-
other set of training and testing sets for a variant of popu-
lation dynamics with 13 alternative grazing-rate processes.
In each condition, we examined whether the original con-
straints were successfully reconstructed, first by checking
their validity on the test data and then by syntactically com-
paring them to the initial constraints.

Figure 2 summarizes the experimental results for the va-
lidity of discovered constraints on test cases. For the more
complex domain (on the right), the system needs more ex-
amples (500) to successfully reconstruct the initial con-
straints than it does for the simpler domain (on the left),
where it needs only 200 cases. Note that more search can
compensate for the lack of examples. Increasing the beam
width in both domains decreases the number of examples
necessary for complete reconstruction. In the more complex
domain, the system requires 1,000 examples for successful
reconstruction with a beam width of 10, whereas it needs
only 500 with a beam width of 20. A comparison of the re-
constructed constraints that had 100% accuracy on the test
cases revealed a perfect syntactic match with the constraints
utilized for generation.

In terms of computation, the size of the beam directly
affects the amount of search as measured by the number
of evaluated constraints. With a beam width of one and
with 100 examples, the system evaluated an average, over
10 runs, of 324 constraints. Widening the beam to 10 and
to 20 led, respectively, to an average of 1,415 constraints
(o = 523) and 2,983 constraints (o = 844). Increasing the
number of examples while increasing the time to evaluate
each constraint had little effect on the amount of search.

Table 3: Benefits of transferring discovered constraints be-
tween the three modeling tasks that involve population dy-
namics. The rf column shows the reduction factor for the
space of candidate models, whereas the bmr-10 and bmr-50
columns indicate recall of the best 10 and 50 models in the
reduced space.

Improvement
Transfer target rf bmr-10 brm-50
PP1 13.55 40% 24%
PP2 13.55 20% 16%
PP3 13.55 50% 44%

Transfer of Constraints

To determine whether the learned constraints transfer ef-
fectively across modeling tasks, we carried out experiments
on three additional problems. Each task involved modeling
population dynamics from measured concentration trajecto-
ries of two species: nasutum, a grazer, and aurelia, a pro-
ducer (Jost & Ellner 2000). To generate an exhaustive set of
model structures for these problems, we ran HIPM (Todor-
ovski et al. 2005) on each task using a variant of the li-
brary of generic processes from Table 1 that lacked con-
straints. Unlike SC-IPM, which samples the model space us-
ing a constraint solver, HIPM carries out exhaustive search
through the space of candidate model structures. This pro-
cedure generated 9,402 candidate models that included from
one to five processes, along with their error scores on each
task. Thus, we obtained three training sets for constraint dis-
covery, which we will refer to as PP1, PP2, and PP3.

After discovering constraints from each of the three train-
ing sets, we assessed how well they transferred to the other
two tasks using two metrics. The first measure was the factor
by which the constraints reduced the search space. We cal-
culated this factor as the ratio of the number of models in the
unconstrained space to the number in the constrained space.
The second measure was the percentage of the most accurate
models in the unconstrained space that were retained in the
constrained space.

Interestingly, the system discovered the same set of three
constraints from all three training sets. Two of the con-
straints assert the necessary presence of exponential loss
and logistic growth processes in the models. The other is
an at-most-one constraint that specifies the set of nine mu-
tually exclusive grazing-rate processes. Two of these resem-
ble the constraints handcrafted by the domain scientists. The
remaining one asserts the presence of a logistic growth pro-
cess, which is known to offer a plausible account of growth
in population dynamics systems with limited resources.

Table 3 summarizes the transfer results. The discovered
constraints reduce the search space by a factor of 13.55 from
the initial 9,402 to only 694 candidate model structures. The
recall rate of the best models varies from 50% of the ten
best models for PP3 to 16% of the 50 best models for PP2.
The results support our conjecture that the approach can
discover constraints which substantially reduce the search
space while retaining many of the most accurate models.

We can compare these results to ones obtained with an
earlier approach to learning constraints (Bridewell & Todor-
ovski 2007), which we will refer to as LDB. That system
produced higher recall rates that varied between 36% and
100%, while it had lower average reduction factors that var-
ied between 9 and 16. However, the constraints discovered
by LDB showed great sensitivity to the training set: for each
task, LDB discovered a different set of constraints. While
some of these were well known in population dynamics,
many others were specific to the particular modeling task.
The discovery system presented in this paper appears to be
far less sensitive to the training cases it processes.

Related Work

The approach that we have reported builds on two separate
lines of research. Our work falls squarely in the paradigm
of computational scientific discovery (Shrager & Langley
1990; Dzeroski & Todorovski 2007), which aims to acquire
knowledge in some established scientific formalism. More
specifically, we have built upon earlier work on inductive
process modeling (Langley et al., 2002; Bridewell & Lan-
gley, 2010), which combines background knowledge with
time-series data to construct explanatory models.

We have noted that one drawback of research in this area
concerns its reliance on hand-crafted constraints to limit
search and eliminate implausible models. An earlier attempt
to induce such constraints (Bridewell & Todorovski 2007)
suffered in two important ways. First, it relied on an arbi-
trary threshold to separate accurate models from inaccurate
ones. Our new approach instead utilizes ROC curves to learn
constraints directly from a ranked list of models without se-
lecting a threshold, leading to more robust behavior. Sec-
ond, the earlier work was limited to one class of constraints
that could be acquired with standard methods from inductive
logic programming. In contrast, our approach can induce the
entire range of constraints on which inductive process mod-
eling draws, letting them be integrated into generic libraries
and transferred across different modeling tasks.

Our approach is also closely related to efforts on learning
in the context of constraint programming (O’Sullivan 2010).
For instance, Bessiere et al. (2006) report a version-space
technique for learning constraints from solutions and nonso-
Iutions of constraint satisfaction problems. Similarly, Charn-
ley et al. (2006) describe an approach to constraint revision
for improving performance on constraint satisfaction tasks.
These approaches are not directly applicable in the context
of inductive process modeling because they assume a crisp
distinction between solutions and nonsolutions, but they also
carry out search through a space of constraints guided by the
results of problem solving in a lower-level space.

Concluding Remarks

In the preceding pages, we have presented an innovative ap-
proach to discovering constraints for use during the induc-
tion of scientific process models. This constitutes an advance
over previous methods in that it introduces a novel tech-
nique for evaluating candidate constraints based on ROC
analysis that does not depend on an arbitrary threshold be-

tween accurate and inaccurate models. Moreover, the new
approach discovers a broader range of constraints used by
inductive process modelers while expressing them in a for-
malism that human scientists should find understandable.
In addition, experiments suggest that the approach can re-
construct hand-crafted constraints in a reliable manner and
that these constraints transfer well to other modeling tasks,
reducing search without hampering the accuracy of the in-
duced models.

This paper has focused on constraints for inductive pro-
cess modeling that limit the space of possible process com-
binations. However, generic processes also incorporate con-
straints on the types of entities they include and on how
equation fragments combine into processes. Adapting con-
straint learning to the latter suggests one way to construct
entirely new processes, which must currently be generated
manually. In future work, we plan to extend our the approach
to acquire these additional kinds of knowledge, which in turn
should let us automate even more fully the task of inductive
process modeling.

We also anticipate that our approach to constraint learn-
ing will prove useful in settings other than inductive process
modeling. In principle, it should apply in any context that re-
lies on heuristic search to explore a problem space. Adapting
our framework to other tasks will require formalisms that de-
scribe the structure of candidate solutions and constraints on
plausible structures. With these in hand, the basic approach
presented here should easily transfer to other constraint dis-
covery tasks, supporting the improvement of heuristic search
in other domains.

Acknowledgements
This research was supported by Grant No. N00014-11-1-
0107 from the Office of Naval Research, which is not re-
sponsible for its contents. We thank Richard Billington and
Matt Bravo for their contributions to the SC-IPM system.

References

Bessiere, C.; Coletta, R.; Koriche, F.; and O’Sullivan, B.
2006. Acquiring Constraint Networks Using a SAT-Based
Version Space Algorithm. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence, 23-24.
Boston, MA: AAAI Press.

Bridewell, W., and Langley, P. 2010. Two Kinds of Knowl-
edge in Scientific Discovery. Topics in Cognitive Science, 2:
36-52.

Bridewell, W.; Langley, P.; Todorovski, L.; and DZeroski,
S. 2008. Inductive Process Modeling. Machine Learning
71:1-32.

Bridewell, W., and Todorovski, L. 2007. Learning Declara-
tive Bias. In Proceedings of the Seventeenth Annual Interna-
tional Conference on Inductive Logic Programming, 63-77.
Corvallis, OR: Springer.

Bridewell, W., and Todorovski, L.. 2010. The Induction and
Transfer of Declarative Bias for Modeling Scientific Pro-
cesses. In Proceedings of the Twenty-Fourth National Con-
ference on Artificial Intelligence, 401-406. Atlanta, GA:
AAAI Press.

Charnley, J., Colton, S.; and Miguel, I. 2006. Automatic
Generation of Implied Constraints. In Proceedings of the
Seventeenth European Conference on Artificial Intelligence,

73-77. Riva del Garda, Italy: IOS Press.

Cohen, S., and Hindmarsh, A. 1996. CVODE, A
Stiff/Nonstiff ODE Solver in C. Computers in Physics,
10:138-143.

De Raedt, L. 2011. Logic of Generality. In Sammut, C., and
Webb. G. L. eds. Encyclopedia of Machine Learning, 624—
631. New York, NY: Springer.

DzZeroski, S., and Todorovski, L. eds. 2007. Compu-
tational Discovery of Scientific Knowledge: Introduction,
Techniques, and Applications in Environmental and Life Sci-
ences. Berlin, Heidelberg, Germany: Springer-Verlag.

Fawcett, T. 2006. An Introduction to ROC Analysis. Pattern
Recognition Letters 27:861-874.

Friedman, S. E., and Forbus, K. D. 2010. An Integrated Sys-
tems Approach to Explanation-Based Conceptual Change.
In Proceedings of the Twenty-Fourth National Conference
on Artificial Intelligence, 1523—-1529. Atlanta, GA: AAAI
Press.

Forbus, K. D. 1984. Qualitative Process Theory. Artificial
Intelligence 24:85-168.

Jost, C., and Ellner, S. P. 2000. Testing for Predator Depen-
dence in Predator—Prey Dynamics: A Non-parametric Ap-
proach. Proceedings of the Royal Society of London Series
B-Biological Sciences 267:1611-1620.

Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
Learning Constraint Problems. In Twenty-Second IEEE In-
ternational Conference on Tools with Artificial Intelligence,
45-52, Arras, France: IEEE Computer Society.

Langley, P.; Sanchez, J.; Todorovski, L.; and DZeroski, S.
2002. Inducing Process Models from Continuous Data. In
Proceedings of the Nineteenth International Conference on
Machine Learning, 347-354, Sydney, Australia: Morgan
Kaufmann.

O’Sullivan, B. 2010. Automated Modelling and Solving
in Constraint Programming. In Proceedings of the Twenty-
Fourth National Conference on Artificial Intelligence, 1493—
1497. Atlanta, GA: AAAI Press.

Shrager, J., and Langley, P. eds. 1990. Computational Mod-
els of Scientific Discovery and Theory Formation. San Ma-
teo, CA: Morgan Kaufman.

Todorovski, L.; Bridewell, W.; Shiran, O.; and Langley, P.
2005. Inducing Hierarchical Process Models in Dynamic
Domains. In Proceedings of the Twentieth National Con-
ference on Artificial Intelligence, 892—-897. Pittsburgh, PA:
AAALI Press.

