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Abstract

Quantitative modeling plays a key role in the natural
sciences, and systems that address the task of inductive
process modeling can assist researchers in explaining
their data. In the past, such systems have been limited
to data sets that recorded change over time, but many in-
teresting problems involve both spatial and temporal dy-
namics. To meet this challenge, we introduce SCISM,
an integrated intelligent system which solves the task
of inducing process models that account for spatial and
temporal variation. We also integrate SCISM with a
constraint learning method to reduce computation dur-
ing induction. Applications to ecological modeling
demonstrate that each system fares well on the task, but
that the enhanced system does so much faster than the
baseline version.

Introduction
Model building rests at the core of scientific inquiry, where
it bridges the gap between theory and observation. Theo-
retical statements are too general to explain any particular
system of interest, and observations only record that sys-
tem’s behavior. In contrast, a model consists of instantiated
laws and auxiliary assumptions that characterize the impor-
tant aspects of a complex system. When represented as a
program, a model gives a formal, executable explanation of
the studied phenomena. Moreover, one can use that program
to explore potential system behavior, to analyze the effects
of uncertainty, and to decide how to spend one’s resources.

Inductive process modeling (Langley et al. 2002) is a sci-
entific discovery task directed toward the automated model-
ing of complex, dynamic systems. Over the past decade, re-
searchers have developed several approaches to address this
problem (Asgharbeygi et al. 2006; Todorovski et al. 2005;
Bridewell et al. 2008). Each has taken the form of an in-
tegrated system that combines search for model structures
and a method for parameter estimation, along with a perfor-
mance element that simulates individual models. These sys-
tems have successfully addressed problems in ecology (As-
gharbeygi et al. 2006), biology (Langley et al. 2006), and
other disciplines.
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Although researchers have made substantial progress on
this task, their methods to date have been limited to mod-
eling change over time and have not simultaneously ac-
counted for spatial variation. As a result, their systems can-
not address many problems that interest scientists working in
climatology, systems biology, population ecology, and im-
munology. In response to this limitation, we introduce the
task of learning scientific process models of spatio-temporal
dynamics. We also report two integrated systems that handle
this task and demonstrate their effectiveness on an ecologi-
cal modeling problem.

These two systems build on the same general architecture
of earlier approaches. The first, SCISM,1 adapts previous
methods for structural and parametric search to handle spa-
tial model induction. The second, which we call SCISM′,
extends it by introducing a third level of search. This layer
dynamically alters the structural search space to rule out
large classes of models unlikely to explain a given data set.
Experiments show incorporating this technique leads to con-
siderable reduction in computational costs.

In the following section, we review inductive process
modeling in more detail, pose the new problem of learning
spatio-temporal process models, and introduce SCISM as an
initial approach to this task that handles one spatial dimen-
sion. Next we describe the new learning component and its
integration with SCISM to produce SCISM′. We then report
results for both systems, discuss related and future work, and
offer some closing thoughts.

An Integrated Process Modeler
Scientists and engineers often state their models in terms of
processes that govern system dynamics and entities that are
changed by those processes. Entities collect related proper-
ties, such as variables and constants, that describe the cur-
rent state, whereas processes relate entities and determine
how their properties change. A process model is a collection
of interlinked processes and entities that explain the behav-
ior of a dynamical system. For example, a process model of
population dynamics might include predators and prey, such
as foxes and rabbits. These species are the entities and their
properties include population density and growth rates. Pro-
cesses for growth, death, and predation connect the rabbits
to the foxes and explain how the species interact.
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Model builders rarely start from scratch. Instead, they rely
on generic structures that are useful across situations. We re-
fer to this background knowledge as a collection of generic
processes and generic entities. These vary across domains
and act as templates for the instantiated components of a
particular process model. The generic processes include en-
tity roles that are filled by specific entities from the modeling
problem and parameters that let them adapt to different sce-
narios. The generic entities indicate the properties that play
a part in system dynamics.

The task of inductive process modeling (Bridewell et al.
2008) uses this domain knowledge to explain the behavior
of a dynamical system. More specifically, we can state the
task as:

• Given: Generic entities that have properties relevant to the
observed dynamics;

• Given: Generic processes that specify causal relations
among entities using generalized functional forms;

• Given: A set of entities present in the modeled system;

• Given: Observations for the continuous properties of
those entities as they change over time;

• Find: A process model that explains the observed data and
predicts unseen data accurately.

Previous efforts have produced several systems for induc-
tive process modeling that search for quantitative models
to explain temporal dynamics (Asgharbeygi et al. 2006;
Bridewell et al. 2008; Langley et al. 2002). Recent ap-
proaches have added structural constraints to the task de-
scription as a way to reduce the number of models consid-
ered (Todorovski et al. 2005). In this paper, we extend this
task so that it requires explanation of observations for con-
tinuous variables as they vary over both time and space. As
we describe later, this requires changes to the model repre-
sentation, performance element, and learning mechanism.

As the starting point for this research, we use SC-IPM
(Bridewell and Langley 2010), an integrated system that
uses modular constraints to guide process model induction.
In the remainder of this section, we describe SCISM, which
extends SC-IPM to handle the extended task of inducing
process models that account for both temporal variation and
spatial variation in one dimension.

Quantitative Process Models
As in previous work, SCISM learns quantitative process
models, which encode qualitative structure as a set of pro-
cesses that contain quantitative forms of algebraic and or-
dinary differential equations (ODEs). However, modeling
problems often involve a spatial component that affects their
dynamics (e.g., Arrigo et al. 2008; Zador et al. 1994) and
that rely on partial differential equations (PDEs) to capture
this aspect. Unlike ODEs, which are functions of a single
independent variable (e.g., time), PDEs can be functions of
multiple variables and can include partial derivatives taken
with respect to them. This feature lets PDE-based models
explain system dynamics in terms both of time and of spa-
tial variables, such as depth or position on an x–y coordinate

plane. To handle this richer collection of modeling prob-
lems, we extended quantitative process models to support
partial differential equations.

Table 1 depicts an example quantitative process model
for an aquatic ecosystem and shows how we extended the
formalism to include PDEs. The model refers to four enti-
ties: phytoplankton (phy), zooplankton (zoo), nitrate (nit),
and detritus (det). These entities appear in the first four
processes that define loss due to death of phytoplankton
and zooplankton, the grazing interaction between those two
species, and the uptake of nitrates by phytoplankton. The
last two processes, which include partial derivatives, char-
acterize vertical movement of plankton in the water column.

The processes phy_spatial_dynamics and zoo_spatial_d-
ynamics in Table 1 illustrate our extension to the process
modeling language. To represent spatial dynamics, we let
a process include partial derivatives in its equations as in
d[phy.conc, t, 1] = −0.65 ∗ d[phy.conc, z, 1], which specifies
the concentration of phytoplankton. The independent vari-
ables are time, t, and depth, z, with their partial deriva-
tives represented as d[phy.conc, t, 1] for ∂(phy.conc)/∂t and
d[phy.conc, z, 1] for ∂(phy.conc)/∂z. The number ‘1’ inside
brackets indicates a first-order derivative.

The performance task involves simulating a model to pro-
duce a trajectory that one can compare to observations. One
component of SCISM carries out this simulation, first trans-
forming the process model into a system of algebraic and
differential equations, and then using numerical methods to
solve the equations. Generating equations involves combin-
ing the effects from each process. By default, SCISM adds
these effects, but it can also take their product, maximum, or
minimum according to variable-specific information stored
in the generic entities. Eq. (1) lists the system of equations
built by summing the effects of each process.

∂P

∂t
= −0.65 ∗ ∂P

∂z
+ (0.5− 0.05) ∗ P − 0.15 ∗ Z ,

∂Z

∂t
= −0.75 ∗ ∂Z

∂z
+ (0.3 ∗ 0.15− 0.1) ∗ Z ,

∂N

∂t
= −0.01 ∗ 0.5 ∗ P ,

∂D

∂t
= 0.05 ∗ P + (0.1 + (1− 0.3) ∗ 0.15) ∗ Z ,

(1)

where P, Z, N, and D signify phy.conc, zoo.conc, nit.conc,
and det.conc, respectively.

To solve systems of PDEs, SCISM relies on the semi-
discrete method (Heath 2001), which discretizes the spatial
dimensions but leaves time continuous. Using this method,
the simulator breaks up each PDE into a set of ODEs whose
solutions approximate those of the original equation. Start-
ing with initial conditions from a data set, SCISM’s simula-
tor solves the ODEs for the second time point. Output from
this step serves as input to solve equations for the third time
point. This procedure iterates until it produces a complete
trajectory that one can analyze or compare to observations.

Inducing Quantitative Process Models
Building explanatory models requires background knowl-
edge about the world and phenomena to be explained. In



Table 1: A process model for an aquatic ecosystem.

model Aquatic_Ecosystem
entities : phy, zoo, nit, det
process phy_loss

equations : d[phy.conc, t, 1] = −1 ∗ 0.05 ∗ phy.conc
d[det.conc, t, 1] = 0.05 ∗ phy.conc

process zoo_loss
equations : d[zoo.conc, t, 1] = −1 ∗ 0.1 ∗ zoo.conc

d[det.conc, t, 1] = 0.1 ∗ zoo.conc
process zoo_phy_grazing

equations : d[zoo.conc, t, 1] = 0.3 ∗ 0.15 ∗ zoo.conc
d[det.conc, t, 1] = (1− 0.3) ∗ 0.15 ∗ zoo.conc
d[phy.conc, t, 1] = −1 ∗ 0.15 ∗ zoo.conc

process nit_uptake
equations : d[phy.conc, t, 1] = 0.5 ∗ phy.conc

d[nit.conc, t, 1] = −1 ∗ 0.01 ∗ 0.5 ∗ phy.conc
process phy_spatial_dynamics

equations : d[phy.conc, t, 1] = −0.65 ∗ d[phy.conc, z, 1]
process zoo_spatial_dynamics

equations : d[zoo.conc, t, 1] = −0.75 ∗ d[zoo.conc, z, 1]

inductive process modeling, the phenomena are character-
ized by spatio-temporal data and the knowledge is encoded
in a library of generic processes and entities. As we men-
tioned earlier, a generic process differs from a specific pro-
cess in that it does not commit to specific entities or param-
eter values. Table 2 lists a partial process library for aquatic
ecosystems. Notice that the process exponential_loss has
two entity roles, S and D, and one parameter, α, whose value
lies in the [0,1] interval. The specific processes phy_loss and
zoo_loss in Table 1 instantiates exponential_loss with the en-
tities for phytoplankton and zooplankton.

Once provided with background knowledge, which can
also include structural constraints (Bridewell and Langley
2010) and a data set, SCISM calls its learning component to
search through the space of possible models. This part of
the system integrates an algorithm for exploring the space
of model structures with one for estimating the parameters
of a particular structure. The combined procedure for model
generation is broken into three parts that:

1. generate all possible instantiations of generic processes
with specific entities but without parameter values;

2. combine instantiated processes to form a generic model
that satisfies all the structural constraints; and

3. estimate the parameter values and scores each model’s fit
to the data.

After carrying out this search, the system returns the quanti-
tative process model that best accounts for the data.

Initial results with SCISM suggest that it can learn accu-
rate models that include spatial components, but execution
is much slower than systems like SC-IPM that are limited
to ODEs. The primary cause is that the PDE solver, which
is called by the parameter estimation component, must cal-
culate multiple spatial values for each time point. There are
four ways to reduce the total execution time for SCISM. The
first two involve efficiency improvements to the numerical

Table 2: Some generic processes for an aquatic ecosystem.

generic process exponential_loss
entities : S{species}, D{detritus}
parameters : α[0, 1]
equations : d[S.conc, t, 1] = −1 ∗ α ∗ S.conc

d[D.conc, t, 1] = α ∗ S.conc
generic process grazing

entities : S1{species}, S2{species}, D{detritus}
parameters : ρ[0, 1], γ[0, 1]
equations : d[S1.conc, t, 1] = γ ∗ ρ ∗ S1.conc

d[D.conc, t, 1] = (1− γ) ∗ ρ ∗ S1.conc
d[S2.conc, t, 1] = −1 ∗ ρ ∗ S1.conc

generic process nutrient_uptake
entities : S{species}, N{nutrient}
parameters : β[0, 1], µ[0, 1]
equations : d[S.conc, t, 1] = µ ∗ S.conc

d[N.conc, t, 1] = −1 ∗ β ∗ µ ∗ S.conc
generic process spatial_dynamics

entities : S{species}
parameters : κ[0, 5]
equations : d[S.conc, t, 1] = −κ ∗ d[S.conc, z, 1]

methods for parameter estimation and simulation. The third
is to learn constraints that reduce the size of the search space,
and the fourth is to transform the modeling problem into one
suitable for ODEs, using the results to limit search for PDEs.

Let us consider each of these approaches in turn. Al-
though improvements to the first solution would have far-
reaching effects, SCISM already incorporates a state-of-the-
art conjugate-gradient method (Bunch, Gay, and Welsch
1993) and progress on parameter estimation for nonlinear
dynamical systems has been slow. We could improve the
efficiency of the simulation routine, but the most effective
techniques rely on problem-specific features of the equations
and we would like to keep SCISM as general as possible.
This leaves the third and fourth approaches. We incorporate
both into SCISM, supporting them with a new component
that learns structural constraints from previous modeling ex-
perience (Bridewell and Todorovski 2007).

Extending the SCISM System
By extending SCISM to dynamically reduce its search space
during execution, we expect to substantially reduce overall
computation. The strategy that we will use involves fitting
ODE models to slices of the spatial data and learning con-
straints that rule out inaccurate model structures. In this
section we describe the constraint induction system and de-
scribe how we integrate that component with SCISM.

The MISC Module
In previous work, Bridewell and Todorovski (2007) have de-
scribed MISC,2 a system that induces constraints on pro-
cess models. To this end, it inputs logical descriptions of
models in the search space, the scores of those models on a
particular data set, and a logical description of the generic
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Table 3: A partial list of the relational features that may ap-
pear in a constraint. Each predicate also has an explicitly
defined negation.

includes_process(model_id, generic_process)
includes_process_group(model_id, process_group)
includes_entity_instance(model_id, entity_instance)
includes_entity(model_id, generic_entity)

process library. To generate the first two inputs, one runs
an inductive process modeler and stores all model structures
produced during model search, along with measures of ac-
curacy in terms of coefficients of determination (r2). MISC
then converts the stored information into basic logical de-
scriptions that identify which processes occur in each model,
which entities appear in those processes, and each model’s
associated r2 value.

MISC interprets the model descriptions using the domain-
specific generic process library and a domain-independent
set of relational features. The domain-specific information
consists of the names of the generic processes, the types
of entities that they relate, and groups of processes cre-
ated from the constraints. For example, MISC would trans-
form a mutual-exclusion constraint on growth processes
into a group that contained exponential, logistic, and lim-
ited growth. Complementarily, relational features like those
shown in Table 3 connect the specific processes and enti-
ties with their generic counterparts to describe the high-level
structure of a model.

To learn constraints, MISC sets a threshold for labeling
models as accurate or inaccurate, then uses Aleph (Srini-
vasan 2004), an inductive logic programming system, to
carry out supervised learning. One can select the thresh-
old using several different methods, but we describe a spe-
cific technique in the next section. Aleph generates rules that
classify models as either inaccurate or accurate. Two such
learned constraints are:

accurate_model(M) :-
does_not_include_process_group(M, limited_growth),
includes_process(M, holling_type_3).

inaccurate_model(M) :-
includes_process(M, nut_lim_exp),
includes_process(M, ratio_dependent_2).

The first rule, stated in Prolog notation, says that accurate
models lack a process from the limited_growth group and
include the holling_type_3 predation process. The second
rule says that models which include instances of the generic
processes nut_lim_exp and ratio_dependent_2 are inac-
curate. One can automatically convert these rules into con-
straints for use by inductive process modeler.

Prior work shows that constraints learned from a sys-
tem like MISC can reduce the number of structures consid-
ered during search by an order of magnitude (Bridewell and
Todorovski 2007). However, the same work also suggests
that the rules for accurate models can be overly restrictive,
so here we use only those constraints based on the rules for

inaccurate models. We designed this approach as a stand-
alone method for transfer learning, but we realized that inte-
grating it with SCISM could make spatio-temporal modeling
more tractable.

Integrating MISC with SCISM
To reduce search through the space of spatio-temporal mod-
els, we integrated MISC with SCISM. For convenience, we
refer to this new system as SCISM′. The intuition behind
this extension is that, when the spatial dynamics of a PDE
are numerically stable (i.e., not stiff), the ODE formed by re-
moving partial derivatives provides a reasonable estimate of
the solution. Therefore, we should be able to solve several
regular inductive process modeling problems, apply MISC
to learn constraints, and then search the reduced space of
PDE models.

To illustrate this idea, consider the PDE from Eq. 1,

∂P

∂t
= −0.65∂P

∂z
+ (0.5− 0.05)P − 0.15Z . (2)

One can discretize the single spatial dimension, z, by taking
spatial slices of the training data, while still treating time, t,
as continuous. In the first slice of the data set where z = z0,
we create the ODE dPdt |z=z0 ≈ (0.5 − 0.05)P − 0.15Z by
disregarding the partial derivative ∂P∂z . Repeating this proce-
dure for all spatial slices (e.g., for each depth recorded in the
data set) creates a set of ODEs whose solution approximates
that of the original PDE. By learning structural constraints
after modeling each slice, SCISM′ can systematically reduce
the number of candidate solutions in each subsequent search.

Integrating this added layer of search into SCISM′ re-
quires slight changes to the input and substantial changes
to SCISM’s implementation. First, the input differs in that
SCISM′ needs to know how many spatial slices it should
use. Oceanographic data may have measurements from sev-
eral depths, but modeling the dynamics at only a few may
constrain the PDE search sufficiently. The system also needs
a function for calculating the threshold used by MISC. Re-
call that we utilize this number to label candidate models as
either accurate or inaccurate for use during constraint induc-
tion. Currently, we assume that models with an r2 greater
than 0.7 are accurate and those below 0.7 are inaccurate.

During its initial cycle, SCISM′ searches for ODE-based
process models that fit the first spatial slice, storing all the
candidates that it evaluates. MISC takes these candidates
as input and learns a set of rules that classify the inaccu-
rate models. A separate component transforms these rules
into constraints for process modeling. For example, if MISC
finds the rule

inaccurate model(M) :-
includes_process(M,process_1),
includes_process_group(M, group_1),
does_not_include_process_group(M, group_2) ,

then SCISM′ produces the three Boolean constraints
¬process_1,
¬process_2 ∧ ¬process_3,
process_4 ∨ process_5 ∨ process_6 ,

based on the knowledge that group_1 includes process_2
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Figure 1: In SCISM′, the number of models in the search
space decreases as constraints accumulate. In SCISM the
size of the search space is identical to the top bar, but the
required computation is equal to full bars for each slice.

and process_3, while group_2 includes process_4,
process_5, and process_6. The system then uses the con-
straints to limit search when modeling the next spatial slice.
This procedure iterates through all the slices, ending with a
search through the space of quantitative process models that
include partial derivatives. Figure 1 illustrates how this ap-
proach reduces the number of structures considered at each
layer. Figure 2 summarizes the SCISM′ framework, includ-
ing communication channels between SCISM and MISC.

Inducing Spatio-Temporal Models
The previous sections introduced SCISM and SCISM′, two
systems that solve the expanded task of inducing process
models with both temporal and spatial dynamics. In this
section, we demonstrate their effectiveness and report on the
difference in their computation costs.

To study the ability of SCISM and SCISM′ to build
spatio-temporal models, we started with a hand-constructed
model of an aquatic ecosystem that incorporates one-
dimensional spatial dynamics within a water column in ad-
dition to changes over time. The model has three entities
for phytoplankton, zooplankton, and nitrate, and it includes
ten processes that control growth, grazing, nutrient mixing,
and other interactions. We simulated the model to create
a synthetic data set with 75 measurements for three vari-
ables at ten depth levels. To perturb the data, we added noise
to each trajectory by replacing each generated value v with
(1 + 0.1g)v, where g was a Gaussian random variable with
a mean of 0 and a standard deviation of 1.

First we determined that SCISM and SCISM′ can recover
the original model from these data. To this end, we took
the complete trajectories and split them into three smaller
sets, containing 50 time points each, to mimic more realistic
data sets with missing values. We then ran both systems on
each set of trajectories with a library of 24 generic processes
originally developed with the assistance of Earth scientists.
This library generated a total of 672 candidate model struc-
tures. In every case, the highest scoring model found by
SCISM and SCISM′ had a structure identical to the origi-
nal model. There was some variation in the parameter val-
ues, but we expected this given the perturbations that we in-
troduced. The average mean–squared-error for SCISM was

S
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WalkSAT
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Figure 2: The frameworks of SCISM and SCISM′.

0.25 with a standard error of 0.08. The average for SCISM′
was 0.21 with a standard error of 0.06. The slightly better
scores for SCISM′ are attributable to variation in the param-
eter estimation routine.

Next, we compared the time taken by each program to
determine how much SCISM′ reduced the search space for
particular trials. We ran all experiments on machines with
Intel Core 2 Duo processors operating at 3.15GHz, with the
exception that we ran the MISC component on a 2.33GHz
Core 2 Duo processor.3 SCISM finished in an average of
15.35 hours of processor time and SCISM′ took on average
4.73 hours, with 3.33 hours for the SCISM component and
1.40 hours for MISC. Thus, there was more than a three-
fold reduction of computation after integrating MISC into
the process modeling system.

When running SCISM′ we selected three depths to fit
with ODE-based models. After running on the first slice,
the system found eight constraints and reduced the space of
candidates from 672 structures to 144, a reduction of 78%.
After the second slice, SCISM′ found one new constraint,
which further reduced the number of candidates to 128, but
it learned no new constraints from the third slice. The sys-
tem then used SCISM to search through the reduced space
of spatio-temporal process models.

These experiments show not only that one can build sys-
tems to solve the task of inducing spatio-temporal process
models, but that integrating the ability to transfer learned
constraints across spatial slices substantially improves effi-
ciency over the baseline approach. Overall, SCISM′ reduced
expensive search through PDE-based models by more than
80% over SCISM and it cut execution time by nearly 70%.

Discussion
Our research on SCISM and SCISM′ draws on but extends
previous work on equation discovery. For instance, Bradley,
Easley, and Stolle’s (2001) PRET used constraints in con-
structing differential equation models from time series, but
it relied on qualitative analysis to limit search and it could
induce only a single equation. Moreover, it could not handle
spatio-temporal data. Another equation discovery system,

3We separated resources in this manner due to software avail-
ability on the compute cluster.



Todorovski and Džeroski’s (1997) LAGRAMGE, is closely
related to inductive process modelers. Like SC-IPM and
the systems introduced here, it found models composed of
multiple equations that govern a dynamic systems’ behav-
ior. However, it could not build models with hidden vari-
ables and it did not construct process explanations.

SCISM′ has even more in common with Todorovski’s
(2003) PADLES, which discovered models stated as sets of
partial differential equations. Like SCISM′, this system dis-
cretizes spatial components and models each slice with or-
dinary differential equations. After this step, PADLES stores
the n highest scoring models for each slice, selects the fre-
quently occurring ones, adds the needed spatial derivatives,
and estimates the parameters for this reduced list of model
structures. In contrast, SCISM′ uses a more sophisticated
method for reducing search, accumulating constraints based
on modeling experience rather than selecting a fixed number
of models to explore.

SCISM′ constructs promising models in the reduced
search space, but there is room for improvement. For in-
stance, the system currently uses rules about inaccurate
models to develop its constraints because rules for accurate
models tend to be overly restrictive and are, unintuitively,
more likely to rule out the most promising candidates. Find-
ing a way to use the constraints effectively could lead to
further reductions in search. Additionally, we need to ex-
tend the system to work in more than one spatial dimen-
sion. Here the primary concern is computational efficiency
when solving the underlying equations, since the system’s
semi-discrete methods scale exponentially with the number
of spatial dimensions. There are two standard approaches to
this problem: (1) handle the growth through parallel com-
putation or (2) control it by increasing the coarseness of the
simulation. Although increased coarseness can reduce accu-
racy, the results may guide the system in deciding when to
give a model structure a closer look. As a third option, we
could recursively apply the method used in SCISM′ to learn
additional constraints as the system adds spatial dimensions.

In this paper, we introduced the problem of inducing
spatio-temporal process models and described SCISM, a
system that addresses this task in the presence of one spatial
dimension. We also demonstrated that integrating SCISM
with MISC, a system for learning constraints on process
models, leads to substantial reduction in computational costs
while retaining the ability to recover the correct model from
noisy data. These results indicate that SCISM′ is not only
an interesting example of integrated intelligence but also of-
fers a promising approach to aiding scientists in explaining
spatial-temporal observations.

Acknowledgments

The research reported in this paper was supported by NSF
Grant Number IIS-0326059 and occurred while the first au-
thor was a graduate student at Stanford University. We thank
Kevin Arrigo and Stuart Borrett for their advice on the pro-
cess library for aquatic ecosystems and Ljupčo Todorovski
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