Inducing Hierarchical Process M odelsin Dynamic Domains

LjupCo Todorovski,"? Will Bridewell,* Oren Shiran,! and Pat Langley!
LComputational Learning Laboratory, CSLI, Stanford University, Stanford, USA
2Department of Knowledge Technologies, JoZef Stefan Institute, Ljubljana, Slovenia
ljupco.todorovski@ijs.si, {willo@csli, oren@sccm,langley@csli }.stanford.edu

Abstract

Research on inductive process modeling combines back-
ground knowledge with time-series data to construct explana
tory models, but previous work has placed few constraints
on search through the model space. We present an extended
formalism that organizes process knowledge in a hierarchi-
cal manner, and we describe HIPM, a system that carries out
constrained search for hierarchical process models. We report
experiments that suggest this approach produces more accu-
rate and plausible models with less effort. We conclude by
discussing related research and directions for future work.

Introduction

Scientists spend much of their time constructing models that
explain observed phenomena in terms of established theo-
retical concepts. This claim holds especially for researchers
in integrative fields like Earth science, who attempt to un-
derstand the behavior of complex systems as interactions
among their parts. Although research on computational sci-
entific discovery has a long history within Al (Langley et al.
1987), there has been relatively little effort on techniques for
inferring such explanatory models.

Recently, some researchers (Langley et al. 2003; Todor-
ovski 2003) have argued that processes play a central role
in many scientific accounts, and that the induction of quan-
titative process models is an important task for the field.
Their initial systems combine domain knowledge with time-
series data to construct accurate and meaningful differential
equation models in a variety of environmental, biological,
and engineering domains. However, analyses suggest that
their methods’ operation would benefit from additional con-
straints about the space of plausible models, both to lower
variance and to reduce computation time.

We extend these earlier efforts by incorporating the notion
of hierarchical processes that characterize an observed sys-
tem’s behavior at distinct levels. Providing a model induc-
tion method with such hierarchical knowledge lets it carry
out search through an AND/OR space rather than an OR
space, thus reducing the number of candidate models con-
sidered and ensuring that these models will make sense to
domain scientists. This approach requires slightly greater ef-
fort to encode background knowledge, but we anticipate it
will be offset by more efficient search, more plausible mod-
els, and better fits to data.

Copyright (© 2005, American Association for Artifi cial Intelli-
gence (www.aaai.org). All rights reserved.

In the next section, we review the previous work on in-
ductive process modeling, motivate the need for a hierar-
chical representation, and present an expanded framework
that incorporates this idea. After this, we describe HIPM,
a system that searches a space of hierarchical process mod-
els constrained by background knowledge and observations.
We then report experimental studies, with both synthetic and
natural data, that evaluate the system’s ability to induce ac-
curate and plausible scientific models. In closing, we discuss
related work and identify directions for additional research.

Quantitative Process Models

We live in a world where entities participate in activities that
instigate change in the participants’ states. Any means for
modeling change over time must address this fundamental
relationship. In equations, variables represent the state of
the entities, while mathematical operators encode the inter-
actions. Although this structure provides a powerful method
for representing such change, it forfeits information about
the higher-level relationships among terms in return for gen-
erality of application. Thus, mathematical equations serve
better as a base language upon which we can build models
of complex dynamic systems.

Previous Work on Process Modeling

Following Forbus (1984), we represent models as a collec-
tion of variables and processes. Each process includes at
least one differential or algebraic equation that relates the
values of participating variables. The major conceptual shift
involves seeing the equations within the processes as explic-
itly grouped terms of a larger system of differential and al-
gebraic equations. Table 1 shows the relationship between
the process and the system of equations representations for
a predator—prey model. Notice how the processes give mean-
ing to the terms, especially in the case of predation, which
shows that the terms in the right-hand side intertwine.

In addition to clarifying a model’s meaning, processes
provide a way to constrain model induction. Instead of
searching through the space of all possible equations, an
induction system can piece together only the meaningful
terms. One advantage of this approach is that a program can
more readily determine the plausibility of equation forms;
for example, a model of predator—prey interaction must have
a term specifying the growth rate of the prey. Another ad-
vantage is that grouped terms stand or fall together. For in-
stance, because predation affects both participating popula-

Table 1: A differential equation model of predator—prey in-
teractions and a corresponding quantitative process model.

Table 2: Generic processes for predator—prey interaction.
Both predator and prey are types of population.

%prey = 2.5xprey + 0.3 % 0.1 x prey * pred
%pred = —1.2x pred — 0.1 x prey * pred

process prey_growth
equations d[prey,t,1] = 2.5 % prey
process pred_loss
equations d[pred,t,1] = —1.2 x pred
process predation
equations d[prey,t,1] = —0.1 % prey * pred
d[pred,t,1] = 0.3 0.1 * prey * pred

tions, we need not consider any model of predation wherein
the predator kills, but does not eat, the prey. Of course, we do
not always know the variable interactions or the system pa-
rameters, so we would like to search the space of plausible
process models to identify such relationships. To facilitate
this task, an induction system should employ background
knowledge cast as generic processes.

These generic processes resemble their instantiated coun-
terparts, except that they contain placeholders for variables,
which have type constraints, and parameters, which have up-
per and lower bounds. Table 2 shows a set of generic pro-
cesses related to the specific processes from Table 1. Notice
that the type restrictions in the predation process will keep
an induction system from suggesting implausible models in
which the prey devours the predator. This constraint illus-
trates the power of the process model representation, which
can avoid such missteps.

The IPM procedure (Langley et al. 2003) for inducing
process models searches concurrently through the space
of model structures and parameter instantiations. This ap-
proach has produced interesting and useful models of bat-
tery charge and discharge cycles, aquatic ecosystems, and
fjord hydrodynamics. The process modeling formalism not
only organizes models of dynamic systems in a manner re-
lated to our beliefs about causation, but provides a powerful
means for capturing domain knowledge that constrains the
construction of scientific models.

Limitations of the Previous For malism

Although the previous approach to inducing process models
has proven successful on a variety of modeling tasks, two
assumptions about how to combine processes into a model
limit its usefulness. The first suggests that one can combine
any set of generic processes to produce a valid model struc-
ture. This assumption leads to an underconstrained model
space containing many candidates that violate domain ex-
perts’ expectations. The second portrays all process influ-
ences as additive, which is unrealistic in some domains. We
can illustrate the problems raised by these assumptions with
an example from population dynamics.

Consider an aquatic ecosystem in which a single plank-
ton species depends on two inorganic nutrients—nitrate and
phosphorus. A human expert would expect a well-formed

generic process exponential _growth
variables P{population}
parameters g[0, in f]
equationsd[P,t,1] = g« P
generic process exponential _loss
variables P{population}
parameters g[0, in f]
equationsd[P,t,1] = —1% g * P
generic process predation_hl
variables P1{prey}, P2{predator}
parameters [0, in f], e[0, in f]
equationsd[P1,t,1] = —1 %7 * Pl x P2
d[P2,t,1] = exr* Pl P2

model to include a process for plankton growth, whereas
IPM would consider models that omit it. The expert would
also treat some processes as mutually exclusive, such as ex-
ponential and nutrient-limited plankton growth, whereas the
system would consider models that include both processes.
Finally, the expert would understand that the effects of ni-
trate and phosphorus limits on plankton growth should be
multiplied, whereas IPM would assume they are added. As
a result, the program would search a much larger space of
model structures than necessary and might return candidates
that seem ill formed to the human modeler.

Hierarchical Process Models

To overcome these limitations, we designed an extended
formalism that supports hierarchical process models like
the one in Table 3. This model specifies that two high-
level processes influence the change in plankton concen-
tration. The first, limited_growth, states that the concentra-
tions of two nutrients limit plankton growth, whereas ex-
ponential _loss characterizes the loss of plankton. To indi-
cate the specific limitations the nutrients impose on plank-
ton growth, the model incorporates two subprocesses having
type holling_type_1, one for each nutrient.

The model in Table 3 is organized not as a simple set of
processes, but as a hierarchy that reflects domain-specific
rules about models in population dynamics. One such rule,
applied at the top level, specifies that change in plankton
concentration results from the processes of both growth and
loss. The next level has another rule that specifies the type
of each limiting factor. For example, any model structure
that includes limited_growth(phyto, {nitrate, phosphate})
but lacks one of the holling_type_1 processes would be
deemed incomplete.

In the extended formalism, generic processes encode the
knowledge about model structure. Table 4 presents a simpli-
fied hierarchy of generic processes for modeling population
dynamics. The top node of the hierarchy, primary_concen-
tration_change, relates one primary-producer population P
to a set of nutrients N, where the optional qualifier <0 to
inf> gives the lower and upper bounds of this set’s cardinal-
ity. The third line of the first process states that changes in

Table 3: A hierarchical process model of an aquatic ecosys-
tem wherein phytoplankton (phyto) depends on the nutri-
ents nitrate and phos.

process primary_concentration_change(phyto, {nitrate, phos})
process limited_growth(phyto, {nitrate, phos})
equations d[phyto.conc, t, 1] = 2.3 * phyto.conc *
phyto.limit_rate
d[nitrate.conc, t,1] = —1.2 % phyto.conc *
phyto.limit_rate x 2.3
d[phos.conc,t,1] = —0.9 * phyto.conc *
phyto.limit_rate x 2.3
process holling_type_la(nitrate, phyto)
equations phyto.limit_rate = nitrate.conc
process holling_type_1b(phos, phyto)
equations phyto.limit_rate = phos.conc
process exponential _|oss(phyto)
equations d[phyto.conc, t,1] = —1.2 % phyto.conc

primary concentration result from processes of growth and
loss, with the latter being optional. Thus, a plausible model
of primary-producer change includes exactly one growth
process and at most one loss process. Similarly, lower in the
hierarchy, the process limited_growth indicates that exactly
one limiting_factor must exist for each specified nutrient.

This structural hierarchy interleaves with a process type,
or is-a, hierarchy. For example, the process identifier growth
refers to a generic process type that includes two alterna-
tives: exponential_growth and limited_growth. The type hier-
archy can specify mutually exclusive modeling alternatives.
For example, an induction system can use either the expo-
nential_growth or limited_growth process to model the pri-
mary producer’s growth, but not both.

Thus, the interleaved structure—type hierarchy of generic
processes facilitates placing two kinds of constraints on the
space of candidate models. Using process types, we can
specify mutually exclusive modeling alternatives. Using a
subprocess hierarchy, we can define a correct model struc-
ture in terms of the minimal set of necessary component sub-
models. This organization contrasts with IPM’s “flat” col-
lection of generic processes, which could be combined arbi-
trarily into candidate model structures.

Finally, note that Table 4 also replaces variables with en-
tities that group properties of the observed organisms and
nutrients. Entities can have two kinds of properties: vari-
ables, which can change over time (such as the concentration
conc), and parameters, which describe constant aspects (e.g.,
loss_rate) of an entity. Process influences on entity variables
can be combined using different aggregation functions. For
example, influences on concentration variables are added,
whereas influences on limitation rates are multiplied.

Inducing Hierarchical Process Models

One previous method for inducing process models, 1PM,
employs constrained exhaustive search through the space
of candidate model structures (Langley et al. 2003). That
system operates in three stages, the first of which creates

Table 4: A simple hierarchy of generic processes for model-
ing population dynamics.

entity primary_producer
variables conc{add}, limit_rate{multiply}
parameters maz_growth|0, inf], loss_ratel0,inf]
entity nutrient
variables conc{add}
parameters toCratiol0,in f]

process primary_concentration_change
relates P{primary_producer}, N{nutrient} <0toinf>
processes growth(P, N), [loss(P)]
process exponential_growth{growth}
relates P{primary_producer}
equations d[P.conc, t, 1] = P.max_growth * P.conc
process limited_growth{ growth}
relates P{primary_producer}, N{nutrient} <0toinf>
processes limiting_factor(N, P)
equations d[N.conc,t,1] = —1 x N.toCratio * P.conc *
P.limit_rate x P.max_growth
d[P.conc, t,1] = P.conc = P.limit_rate *
P.maz_growth
process holling_type_1{limiting_factor}
relates N{nutrient}, P{primary_producer}
equations P.limit_rate = N.conc

process exponential _loss{loss}
relates P{primary_producer}
equations d[P.conc,t,1] = —1 % P.loss_rate % P.conc

instantiated processes by matching the types of the prob-
lem variables with the placeholders in each generic process,
then generating all possible assignments. The second stage
comprises searching through a space of limited cardinality
subsets of these process instances, where each subset cor-
responds to a candidate model structure. Using these struc-
tures, IPM invokes a nonlinear optimization method to fit
the parameters, producing a model score that reflects the
discrepancy between observed and simulated data. Finally,
IPM outputs the parameterized model with the lowest score.

Exhaustively generating all possible subsets of process in-
stances can be prohibitive, even for a relatively small num-
ber of variables. In a two-fold response, the HIPM algorithm
uses heuristic beam search and knowledge-guided refine-
ment operators to navigate the model space more effectively.
The system takes as input a hierarchy of generic processes,
a set of entities with associated variables, a set of observed
trajectories 7 of the entities’ variables, and a parameter b
that specifies the beam width.

On each beam-search iteration, HIPM refines the current
selection of models by one step, adding the nonredundant
structures back to the beam. In the first iteration, the sys-
tem generates all permitted models that exclude any optional
processes. For instance, when given one primary_producer,
two nutrients, and the generic process library from Table 4,
HIPM would produce two models, one containing exponen-
tial_growth and the other containing limited_growth with as-
sociated limiting_factor subprocesses for both nutrients. In
subsequent iterations, the refinement operator would add a

single optional process to the current model structure, which
may require the addition of multiple processes, depending
on the background knowledge. In the above example, HIPM
would expand the two initial models to contain an instantia-
tion of exponential_loss.

Once HIPM refines the model structures in the beam, it
fits their parameters to the training data. Past work (Lang-
ley et al. 2003) searched through the parameter space using
a gradient descent method that evaluated each set of candi-
date parameters using model simulation over the full time
span of 7. HIPM extends the previous approach by incor-
porating teacher forcing (Williams & Zipser 1989), which
finds parameters that best predict observations 7;, ;1 solely
from those at 7;. In both the teacher forcing and full sim-
ulation stages of parameter fitting, it employs a nonlinear
least-squares algorithm (Bunch et al. 1993) that carries out
second-order gradient descent. To avoid entrapment in lo-
cal minima, HIPM does eight restarts with different initial
parameter values, one based on the results from teacher forc-
ing. Finally, the procedure selects the best set of parameters
for each model structure, based on the sum of squared errors.

In the last step of each refinement iteration, HIPM retains
the best b models as determined by their sum of squared er-
rors. The search ends when a further iteration fails to alter
the beam contents. At this point, the program returns the pa-
rameterized model with the best error score.

Experimental Evaluation

We conjecture that using hierarchical knowledge for pro-
cess model induction will improve the efficiency of search,
increase the plausibility of induced models, and improve
the models’ predictive performance. We evaluated these hy-
potheses empirically by applying HIPM to three modeling
tasks related to population dynamics. In each experiment,
we compared the plausibility and predictive performance of
the models induced using hierarchal generic processes to
those induced using flat structures. To ensure a fair com-
parison, we used HIPM in both conditions rather than the
older IPM, which uses a different parameter estimation rou-
tine. To mimic the latter’s behavior, we removed higher-level
processes from the inputs, providing only low-level ones.

We measured the predictive performance of an induced
model in terms of the discrepancy between the values of ob-
served system variables and the values obtained by simu-
lating the model. To this end, we used the average of the
correlation coefficient (r2) over all the observable variables,
which summarizes the amount of variance explained. In ad-
dition, we recorded the number of candidate model struc-
tures considered during model induction as a measure of the
system’s search efficiency.

Studieswith Synthetic Data

In the first experiment, we used a hypothetical model of an
aquatic ecosystem to generate five simulation traces based
on five different initial conditions. The model included four
entities and nine processes. We sampled each simulated tra-
jectory at 100 equidistant time points with a time step of 1.5.
To make the data more realistic, we introduced noise by re-
placing each simulated value 7; with 7; - (1+0.05-x), where

Table 5: Predictive performance (in terms of correlation co-
efficient, »2) of the models induced by HIPM on synthetic
training (TRAIN) data with 5% Gaussian noise and noise-free
test data using hierarchical (H) and flat (F) generic processes
and two beam widths (Bw). The #cms column presents the
number of candidate structures considered.

BW LIB #CcMs TRAIN72 CV-TEST r?
4 H 57.0+1.6 0.98+0.01 0.994+0.01
F 416.8+18.4 0.994+0.01 0.93+0.16

8 H 99.0+2.3 0.9940.00 0.99+0.02
F 797.8+£27.5 0.98+0.01 0.91+0.16

x is a Gaussian random variable with mean 0 and variance
1. To evaluate the generalization performance of the mod-
els on novel test data, we used five-fold cross validation.
Each training set comprised four of the complete simula-
tion traces described above, whereas each test set consisted
of the noise-free version of the fifth trace.

Table 5 summarizes the results of this study. The first two
rows present the cross-validation scores for the hierarchi-
cal and flat conditions with a beam width of four. Compar-
ing efficiency measures shows that the hierarchical scheme
greatly reduced the number of model structures considered
during search, with the reduction factor being greater than
seven. Furthermore, cross-validation estimates suggest that
flat models tend to overfit—they perform slightly better than
hierarchical models on the training trajectories, but they per-
form worse on the test data.

The results of running HIPM with a larger beam width,
shown in the last two rows of the table, confirm that the hi-
erarchical scheme reduces the number of model structures
considered and avoids overfitting. As before, hierarchical
models outperform flat ones on the test data. Inspecting the
structure of the induced models reveals a possible expla-
nation for this difference. Although all hierarchical mod-
els have plausible structures, none of the induced flat mod-
els are valid from a population dynamics view. Further-
more, HIPM reconstructed all the processes from the origi-
nal model structure in six out of ten runs and, in the remain-
ing four, the program induced a model that differed from the
original by only a single process.

Studieswith Natural Data

In the second experiment, we applied HIPM to the task
of modeling population dynamics in the Ross Sea (Arrigo,
Worthen, & Robinson 2003), where concentrations of the
primary producer phytoplankton and the nutrient nitrate
have been measured for 188 consecutive days, along with
light levels. Ecology experts who provided measurement
data specified that two unobserved entities, zooplankton and
residue, are important for modeling phytoplankton growth.

We again used five-fold cross validation for evaluation.
Lacking multiple data sets, we randomly selected time
points from the observed trajectories using the measured
values to create the equal-sized subsets and ensured that
all training sets had the same initial conditions. We ran
HIPM on those data, varying the structure of the back-

Table 6: Predictive performance of the models induced by
HIPM on aquatic ecosystem data from the Ross Sea.

BW LIB #CMS SSE r?

4 68 1577 0.68
492 2126 0.53

H
E

8 H 117 1564 0.68
E
H
=

845 1787 0.62

447 1113 0.84
3572 1633 0.68

32

ground knowledge (hierarchical or flat) and the beam width
(4, 8, or 32). The system overlaid the learned trajectories
onto the test data to calculate the error scores.

Table 6 presents the results of this experiment, which
complement the findings of the synthetic data study. Flat
models perform worse than hierarchical ones for all beam
widths, and error decreases with beam width. The most ac-
curate hierarchical model induced from the entire training
set with beam width of 32 has the same structure as the
best known model of the Ross Sea aquatic ecosystem (As-
gharbeygi et al. in press). Figure 1 compares the observed
and simulated trajectories produced by this model for phyto-
plankton and nitrate concentrations.

Finally, we considered an ecosystem composed of the mi-
croscopic species aurelia and nasutum, in which the latter
preys on the former (Jost & Ellner 2000). The time-series
data included 51 measurements of the two species’ concen-
trations at twelve-hour intervals, yielding five cycles of pop-
ulation increase and decline. Here we used the same param-
eter settings for HIPM as in the previous experiment and
carried out a similar five-fold cross validation.

Table 7 presents the results of this study, which shows that
flat models have lower errors and higher 2 scores than the
hierarchical ones for all beam widths. When using the hi-
erarchical library, a beam width of 32 suffices to allow an
exhaustive search of the space of unique model structures.
Oddly, with a beam width of 8, HIPM appears to examine
an extra model. This anomaly can be attributed to the pro-
gram’s lack of a long-term memory. That is, multiple paths
in the search space may lead to the same model, but unless a
matching structure exists in the beam, HIPM has no way to
remember it has been seen.

Inspection of the induced models, which we lack the
space to present, revealed that none of the flat structures give
a plausible explanation of the predator—prey interaction, in
that they omit key processes or include mutually exclusive
ones. We conjecture that the generic process library overly
constrains the search space so that none of the valid model
structures can fit the measurements well. We believe that en-
riching the library with alternative forms of the basic process
types will overcome this problem, but testing this hypothesis
is a matter of future work.

1IPM found this model, but only when it was provided with
a carefully crafted set of generic processes that limited search
through the model space and omitted many viable candidates.

Table 7: Predictive performance of the models induced by
HIPM on predator—prey data.

BW LIB #CMS SSE T

4 18 67157 0.35
120 39771 0.56

H
F
8 H 25 67157 0.35
F
H
F

203 37371 0.59

24 67157 0.35
476 37324 0.58

32

Concluding Remarks

Our approach to scientific model construction draws ideas
from a number of earlier traditions. The most obvious con-
nections are to research on equation discovery in scien-
tific and engineering domains. For example, Zytkow et al.’s
(1990) FAHRENHEIT specified its search space as a set of
candidate functional forms, for which it then fit parame-
ters. More recently, Bradley et al.’s (2001) PRET also uti-
lized knowledge to constrain search for quantitative models
of dynamical systems, although their framework associated
classes of functions with qualitative behaviors like oscilla-
tion rather than combining domain-specific elements. Induc-
tive process modeling also has links to work from the quali-
tative reasoning community on compositional modeling. For
instance, Falkenhainer and Forbus (1991) report a method
which constructed qualitative models by instantiating and
combining model fragments that were directly analogous to
our generic processes.

However, none of these earlier systems organized their
background knowledge in a hierarchical manner. On this di-
mension, HIPM comes closest to Todorovski’s (2003) LA-
GRAMGE, which also used hierarchically organized pro-
cesses to generate differential equation models of time se-
ries. A key difference is that its induction procedure trans-
formed the hierarchies into grammars, which precludes or-
dering the search space by the number of processes involved.
The system also required all entities to be directly observ-
able, which our Ross Sea example indicates is unrealistic.
Thus, HIPM constitutes a significant conceptual advance
over LAGRAMGE, and our experiments provide encourag-
ing evidence of its effectiveness in terms of reduced search,
decreased generalization error, and improved plausibility.

Of course, hierarchical knowledge structures have seen
wide use in other branches of artificial intelligence, includ-
ing natural language, planning, and vision. As in our frame-
work, they transform extensive search through an OR space
into a more constrained AND/OR search, with correspond-
ing benefits. This idea has also appeared in other areas of
machine learning. For example, methods for explanation-
based learning (DeJong & Mooney 1986) created conjunc-
tive structures from training cases only if they could be de-
rived from background knowledge, which typically took a
hierarchical form. The constraints imposed by process hi-
erarchies also resemble those provided by declarative bias
within inductive logic programming (Nédellec et al. 1996).

50

—— observed

—— predicted

phyto

RMSE = 5.84408, r2 = (.8441

300 350 400 450

time

nitrate

RMSE = 2.93449, r? = 0.8336

30

—— observed

—— predicted

20 -

15

10 -

300 350 400 450

time

Figure 1: Comparison of observed and simulated trajectories for phytoplankton and nitrate concentrations.

Our hierarchical processes specify relations among entities
and, like Horn clauses, organize them into higher-level struc-
tures that constrain model construction.

However, inductive process modeling remains a distinct
enterprise from other paradigms for reasoning and learning,
both in its focus on scientific domains and its concern with
continuous time series. The methods we have reported in this
paper constitute clear progress over earlier approaches to
this problem, and we intend to make use of them in our con-
tinuing work on the topic. One promising extension would
utilize knowledge about relations among parameters to re-
duce dimensionality of the parameter space and simplify
their estimation. We also hope to make parameter fitting
more tractable by decomposing this task into nearly inde-
pendent subproblems, much as Chown and Dietterich (2000)
did in their work on ecosystem modeling. On the structural
side, we hope to incorporate more incremental methods for
model revision (Todorovski 2003) which, like human scien-
tists, are driven by observational anomalies that their cur-
rent account cannot explain. Taken together, these exten-
sions should produce an even more robust framework for
the induction of scientific process models.

Acknowledgements

This research was supported by NSF Grant Number I1S-
0326059. We thank Kevin Arrigo for data from and knowl-
edge about the Ross Sea, along with Kazumi Saito and Nima
Asgharbeygi for early work on the predator—prey system.

References

Arrigo, K.; Worthen, D.; and Robinson, D. 2003. A
coupled ocean-ecosystem model of the Ross Sea. part 2:
Iron regulation of phytoplankton taxonomic variability and
primary production. Journal of Geophysical Research
108(C7):3231.

Asgharbeygi, N.; Bay, S.; Langley, P.; and Arrigo, K. in
press. Inductive revision of quantitative process models.
Ecological Modelling.

Bradley, E.; Easley, M.; and Stolle, R. 2001. Reason-
ing about nonlinear system identification. Artificial Intelli-
gence 133:139-188.

Bunch, D.; Gay, D.; and Welsch, R. 1993. Algorithm 717:
Subroutines for maximum likelihood and quasi-likelihood
estimation of parameters in nonlinear regression models.
ACM Transactions on Mathematical Software 19:109-130.

Chown, E., and Dietterich, T. 2000. A divide and conquer
approach to learning from prior knowledge. In Proceedings
of the Seventeenth International Conference on Machine
Learning, 143-150. San Francisco: Morgan Kaufmann.

DeJong, G. F,, and Mooney, R. J. 1986. Explanation-based
learning: An alternative view. Machine Learningl:145-176.

Falkenhainer, B., and Forbus, K. D. 1991. Compositional
modeling: Finding the right model for the job. Artificial
Intelligence 51:95-143.

Forbus, K. D. 1984. Qualitative process theory. Artificial
Intelligence 24:85-168.

Jost, C., and Ellner, S. 2000. Testing for predator depen-
dence in predator-prey dynamics: A non-parametric ap-
proach. Proceedings of the Royal Society of London B
267:1611-1620.

Langley, P.; Simon, H. A.; Bradshaw, G.; and Zytkow, J. M.
1987. Scientific Discovery. Cambridge, MA: MIT Press.
Langley, P.; George, D.; Bay, S.; and Saito, K. 2003. Ro-
bust induction of process models from time-series data. In
Proceedings of the Twentieth International Conference on
Machine Learning, 432-439. Menlo Park: AAAI Press.
Nédellec, C.; Rouveirol, C.; Adé, H.; Bergadano, F.; and
Tausend, B. 1996. Declarative bias in ILP. In de Raedt,
L., ed., Advances in Inductive Logic Programming. Ams-
terdam: 10S Press. 82-103.

Todorovski, L. 2003. Using domain knowledge for auto-
mated modeling of dynamic systems with equation discov-
ery. Ph.D. Dissertation, Faculty of Computer and Informa-
tion Science, University of Ljubljana, Ljubljana, Slovenia.

Williams, R., and Zipser, D. 1989. A learning algorithm for
continually running fully recurrent neural networks. Neu-
ral Computation 1:270-280.

Zytkow, J. M.; Zhu, J.; and Hussam, A. 1990. Automated
discovery in a chemistry laboratory. In Proceedings of the
Eighth National Conference on Artificial Intelligence, 889—
894. Boston: AAAI Press.

