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Abstract. In this paper, we review hierarchical problem networks, which
encode knowledge about how to decompose planning tasks, and report an
approach to learning this expertise from sample solutions. In this frame-
work, procedural knowledge comprises a set of conditional methods that
decompose problems – sets of goals – into subproblems. Problem solving
involves search through a space of hierarchical plans that achieve top-
level goals. Acquisition involves creation of new methods, including state
conditions for when they are relevant and goal conditions for when to
avoid them. We describe HPNL, a system that learns new methods by
analyzing sample hierarchical plans, using violated constraints to identify
state conditions and ordering conflicts to determine goal conditions. Ex-
periments with on-line learning in three planning domains demonstrate
that HPNL acquires expertise that reduces search on novel problems
and examine the importance of learning goal conditions. In closing, we
contrast the approach with earlier methods for acquiring search-control
knowledge, including explanation-based learning and inductive logic pro-
gramming. We also discuss limitations and plans for future research.

Keywords: Learning for problem solving · Hierarchical planning
· Search-control knowledge · Learning decomposition rules

1 Introduction

Three elements underlie classic accounts of intelligence in humans and machines:
reasoning, search, and knowledge. Early work on AI saw rapid progress on the
first two areas, but major applications were delayed until the advent of ex-
pert systems, which focused on the third topic. These saw widespread use but
they were expensive to construct and maintain. Recognition of these drawbacks
fostered increased research in machine learning, which aimed to automate the
acquisition of such expertise. This movement saw rapid advances in the 1980s,
which in turn led to early fielded applications (Langley & Simon, 1995). These
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grew more common with the automated collection of large data sets and delivery
channels made possible by the World Wide Web.

However, the vast majority of learning applications have focused on classifi-
cation and regression. For settings that require sequential decision making, such
as plan generation, progress has been much slower. Recent successes of rein-
forcement learning have been limited to domains with accurate simulators that
can carry out the thousands or millions of trials required. Instead, we desire
mechanisms that acquire procedural expertise as efficiently as humans through
reasoning about, and learning from, solutions to individual problems.

In this paper, we present a new approach to rapid learning of expertise for
solving planning tasks. We start by reviewing hierarchical problem networks,
a recently proposed formalism for encoding plan knowledge, and their use in
solving complex problems through decomposition. After this, we describe an
approach to acquiring such structures from sample hierarchical plans. Next we
report the results of experiments that demonstrate its effectiveness in three plan-
ning domains. We conclude by reviewing earlier research on learning hierarchical
knowledge for problem solving and outlining directions for future work in this
important but understudied area.

2 A Review of Hierarchical Problem Networks

Breakthroughs in machine learning often follow the introduction of new repre-
sentations for expertise and new mechanisms for using this content. For instance,
inductive logic programming was not possible until formalisms like Prolog had
been developed. In this section, we review a recent notation for knowledge about
planning – hierarchical problem networks – and how this content supports effi-
cient problem solving in sequential domains. The aim is akin to early work on
search-control rules and more recent efforts on hierarchical task and goal net-
works, but we will see that the older frameworks differ in important ways.

2.1 Representing Hierarchical Problem Networks

A recurring theme in both human and machine cognition is decomposition of
complex problems into simpler ones. This idea is central to logic programming
(Lloyd, 1984), which organizes knowledge into hierarchical structures, with non-
terminal symbols serving as connective tissue. This notion is also key to hier-
archical task networks (Nau et al., 2003), which encode knowledge about how
to decompose sequential activities into subactivities, using task names to link
across levels. In both cases, nonterminal symbols support modularity and reuse,
much like subroutine names in traditional programming languages. But reliance
on nonterminals is also a drawback in that learning requires creation of interme-
diate predicates, which is more challenging than identifying rule conditions.

Hierarchical problem networks (HPNs) offer a way to encode planning knowl-
edge that sidesteps this complication. Like other formalisms, they divide content
into rules or methods, each indicating how to decompose a class of problems into
simpler ones. More specifically, each HPN method includes a head that describes
a goal to be achieved and an operator that accomplishes it. A method also con-



Learning Hierarchical Problem Networks 3

Table 1. Four methods for logistics planning that include a head, state conditions,
an operator, a subproblem, and optional goal conditions. These partially encode an
HPN procedure that solves problems in the logistics domain efficiently. The notation
assumes that distinct variables will match against different constant expressions. Bold
and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))

conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l2)

(location ?l1) (in-city ?l3 ?c1) (in-city ?l2 ?c1) (in-city ?l1 ?c1)
(at ?t1 ?l2) (at ?o1 ?l1))

operator: (unload-truck ?o1 ?t1 ?l3)

subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))

conditions: ((truck ?t1) (location ?l2) (location ?l1) (city ?c1)

(in-city ?l2 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l2))
operator: (drive-truck ?t1 ?l2 ?l1 ?c1)

subproblem: ((at ?t1 ?l2))

unless-goals ((in ?o ?t1))

((in ?o1 ?t1))

conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l2)
(in-city ?l1 ?c1) (in-city ?l2 ?c1) (at ?t1 ?l2) (at ?o1 ?l1))

operator: (load-truck ?o1 ?t1 ?l1)

subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)

:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)
(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)

:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

tains a subproblem based on the operator’s conditions that should be solved be-
fore one applies it. In addition, each method includes state conditions specifying
relations that must hold for the decomposition to be appropriate. Teleoreactive
logic programs (Langley & Choi, 2006) and hierarchical goal networks (Shiv-
ashankar et al., 2012; Fine-Morris et al., 2020) also index methods by goals they
achieve, but neither defines subproblems in terms of operator conditions.

Table 1 shows four methods from a hierarchical problem network for logistics
planning, a domain that has been widely used in the literature. The first method
indicates that, to achieve (at ?o1 ?l3), we apply (unload-truck ?o1 ?t1 ?l3), but
only if we first satisfy this operator’s two conditions (at ?t1 ?l3) and (in ?o1 ?t1).
Moreover, this decomposition is only relevant when the truck ?t1 is located in
the same city as the object ?o1 that we want to transport. The second method
specifies how to achieve (at ?t1 ?l1) by applying (drive-truck ?t1 ?l2 ?l1 ?c1), but
again only when its current and desired location are in the same city. The last
two methods detail where to load an object into a truck, with one for situations
when they are in the same city and another when they differ.
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Table 2. Three operators for the logistics planning domain, each specifying an action
(head), conditions, and effects. The domain also includes operators (not shown) for
unloading an airplane, flying an airplane between cities, and loading an airplane.

((unload-truck ?o ?t ?l)

:conditions ((object ?o)(truck ?t)(location ?l)(at ?t ?l)(in ?o ?t))

:effects ((at ?o ?l)(not (in ?o ?t))))

((drive-truck ?t ?l1 ?l2 ?c)

:conditions ((truck ?t)(location ?l1)(location ?l2)(city ?c)

(in-city ?l1 ?c)(in-city ?l2 ?c)(at ?t ?l1))

:effects ((at ?t ?l2)(not (at ?t ?l1))))

((load-truck ?o ?t ?l)

:conditions ((object ?o)(truck ?t)(location ?l)(at ?t ?l)(at ?o ?l))

:effects ((in ?o ?t)(not (at ?o ?l))))

However, HPN methods can also include an optional field that specifies when
we should not invoke them. This refers not to the current state but rather to
other goals in the current problem that are unsatisfied in the state. The second
method in Table 1 includes such an unless-goals condition, which indicates that
we should not attempt to achieve (at ?t1 ?l1) by driving truck ?t1 if (in ?o ?t1)
is an open goal. The reasoning is straightforward: any package that we want in
the truck should already be in the vehicle before we move it. Such constraints
are similar in spirit to rejection rules in problem solvers like Prodigy (Minton,
1988), but they are embedded in methods rather than stored separately.

Naturally, an HPN knowledge base also requires definitions for the domain
operators that appear in methods. As in other AI planning frameworks, these
give the name and arguments for an action, its effects in terms of added and
deleted relations, and the conditions under which these effects occur. Table 2
presents operator descriptions for three actions from the logistics domain: un-
loading a truck, driving a truck, and loading a truck. The domain knowledge
also includes three analogous actions for unloading an airplane at an airport,
flying it from one airport to another, and loading it at an airport. Instances of
these operators serve as terminal nodes in hierarchical plans, whereas instances
of HPN methods correspond to nonterminal nodes.

2.2 Hierarchical Problem Decomposition

The HPN framework assumes the presence of a problem solver that can use
available methods to generate plans. We can specify this performance task more
explicitly in terms of inputs and outputs:

• Given: A set of HPN methods and associated domain operators;

• Given: An initial state specified as a conjunctive set of relations;

• Given: A problem specified as a conjunctive set of goals;

• Find : A hierarchical plan that transforms the initial state into one that
satisfies all problem goals.
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Two supporting structures, the problem stack and the state sequence, are altered
during the problem-solving process. The first is simply a stack of problems and
their ancestors, whereas the latter is a list of states in reverse order of generation.

Plan generation recursively decomposes the top-level problem into subprob-
lems. The decomposition mechanism relies on three main subprocesses: method
matching, method selection, and method expansion. Problem solving iteratively
examines the topmost element on the problem stack and, if necessary, uses HPN
methods to place new subproblems above it. These are popped when satisfied,
which in turn allows application of the associated operator. This produces a
new state that may lead to new subproblems. Before adding a subproblem or
applying an operator, the procedure checks the stack for problem loops (with
identical goals) and state loops (with identical states), rejecting a candidate if
either occurs. The overall process is similar to that used with hierarchical task
networks and goal networks. The key difference is that it relies on a stack of
problems rather than tasks or individual goals, which supports checking of un-
less conditions that avoid goal interactions. Langley and Shrobe (2021) describe
HPD, a hierarchical planner that implements these processing postulates.

In summary, planning in this framework involves search through a space of
decompositions defined by methods, operators, problem goals, and an initial
state. The need for backtracking can arise when the HPN’s methods have overly
general state conditions or when they lack necessary unless-goals conditions.
However, given appropriate knowledge about a domain, the HPD problem solver
mimics a deterministic procedure in that it selects a useful decomposition at each
step. Langley and Shrobe reported this behavior experimentally in three planning
domains, as well as the search that results when state and goal conditions are
omitted from the knowledge base.

3 Learning HPNs from Sample Solutions

Now that we have described hierarchical problem networks as a representational
framework and their use in efficient generation of hierarchical plans, we can turn
to the acquisition of this knowledge. As with the performance task, we specify
the learning problem in terms of inputs and outputs:

• Given: A set of domain operators that specify conditional effects of actions;

• Given: A set of training tasks comprising initial states and conjunctive goals;

• Given: A hierarchical plan for each task that achieves its associated goals;

• Find : A hierarchical problem network that solves the training tasks efficiently
and that generalizes well to new cases.

This statement does not specify precisely the two measures of success, ‘efficiently’
or ‘generalizes well’. Naturally, we desire learned knowledge that solves planning
tasks with little or no search, and we want improvement on this front to occur
rapidly, but these are empirical issues, not definitional ones.

In this section, we present an approach to addressing the problem of acquir-
ing hierarchical problem networks from sample solutions. First we describe the
inputs to the learning process more clearly and introduce an example that we
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draw upon later. After this, we explain how the structure of training problems
maps onto new HPN methods and how the approach extracts state and goal
conditions for each method. We also report an implementation of these ideas in
the HPNL system, which builds on the existing HPD problem solver.

3.1 Inputs to HPN Learning

As we have seen, one input to the learning process is a set of domain operators,
each of which describes the conditional effects of some action. Table 2 presented
three such operators from the logistics domain for unloading an object from a
truck, driving a truck from one location to another, and loading a package into a
truck. In addition, each operator-effect pair maps onto a naive HPN method that
indicates how one can achieve the effect by first achieving the operator’s condi-
tions and then applying it. Thus, we can generate a naive hierarchical problem
network from the operators alone, but it can still require substantial search to
solve problems. To move beyond this incomplete knowledge, we need experience
with specific training problems (i.e., initial states with goal descriptions). In ad-
dition, we need hierarchical plans that decompose the top-level problems into
subproblems to make contact with their starting situations. Each component of
these plans links some goal to a conjunction of subgoals through an operator
instance, with terminal literals corresponding to elements of the initial state.

Figure 1 depicts a hierarchical plan for a simple logistics problem with the
single goal (at o1 l3) and an initial state containing (at o1 l1), (at t1 l2), and
static relations like (location l1) and (in-city l1 c1). The plan indicates that, to
achieve (at o1 l2), we can apply the operator instance (unload-truck o1 t1 l2),
which in turn requires solving subgoals (in o1 t1) and (at t1 l3). Furthermore, to
achieve (in o1 t1), we can apply (load-truck o1 t1 l1), which means addressing
the subgoals (at t1 l1) and (at o1 l1). The latter holds in the initial state and
(at t1 l1) can be satisfied by invoking (drive-truck t1 l2 l1 c1), provided that
(at t1 l2), which is true at the outset. In addition, we can achieve (at t1 l3) by
applying (drive-truck t1 l1 l3 c1). The plan does not mention other locations,
trucks, packages, or relations that are not relevant to the solution. We might
instead require the learner to find its own hierarchical plan for each training
problem, as in early work on learning for search control (Sleeman et al., 1982).
However, the learner would still need to transform the resulting hierarchical
plans into a set of HPN methods, so we have chosen to focus on this central
issue rather than on such preprocessing steps.

3.2 Identifying HPN Structure

Classic research on learning for hierarchical decomposition has addressed three
questions. The first concerns how to break a sample solution into segments in
order to identify the structure of new methods. The second issue deals with
when to associate the same head or task name with distinct methods. The final
matter involves what conditions to place on each method. Different approaches
to learning hierarchical procedures address these design choices in different ways,
but the HPN framework offers straightforward answers to the first two questions.
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Fig. 1. A hierarchical plan for a simple logistics task that involves four problem decom-
positions and associated operator instances.

Recall that sample problem solutions, whether provided by a human or gen-
erated through search, specify a hierarchical plan. Each literal in this structure
(except for terminal nodes) is associated with an operator instance that achieves
it and the instantiated set of conditions for that operator. Each triple of this sort
maps onto a candidate HPN method. For instance, the topmost goal (at o1 l3)
in Figure 1, the operator (unload-truck o1 t1 l3) that achieves it, and the latter’s
conditions together map onto the first method in Table 1. The operator’s static
conditions, such as (object o1), contribute to the method’s state conditions, al-
though we will see soon that others may augment them. Dynamic conditions,
such as (at t1 l3) and (in o1 t1), become elements of the :subproblem field. Con-
stant arguments of predicates are replaced with variables in a consistent way
throughout the method. The four operator instances in Figure 1 correspond to
four distinct methods that such a process might add to the knowledge base.

The second issue, when to assign a common head to different methods, also
has a simple response in the HPN framework. Because each method refers to a
goal that it achieves, every structure that addresses the same goal will have the
same head. For instance, three methods constructed from the hierarchical plan in
Figure 1 would both have heads with the predicate at, even though one involves
the unload operator and the others invoke the drive operator. This approach is
very different from techniques for learning classical hierarchical task networks,
whose heads include task names that are distinct from state predicates. How-
ever, it is similar to early mechanisms for learning teleoreactive logic programs
(Langley & Choi, 2006; Nejati et al., 2006).

3.3 Inferring State Conditions

The organization of each sample solution determines the structure of the learned
HPN, but we must still identify the conditions under which to apply each rule.
Let us start with state-related conditions. One option would use explanation-

based learning to analyze logical dependencies and identify conditions from each
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sample solution, which would seem to support rapid learning. For example, for
the top-level decomposition in Figure 1, it would collect all terminal nodes in
the hierarchical plan as conditions for a new method. However, empirical studies
revealed that such analytic techniques can create complex, specific rules that are
expensive to match and generalize poorly. This leads to a utility problem, where
learning reduces search but increases planning time (Minton, 1988). Another re-
sponse would use inductive logic programming or similar schemes for relational
learning. These often carry out general-to-specific search for conditions that find
simpler, more general rules, but typically require multiple examples to discrim-
inate positive from negative cases, which reduces the learning rate. We desire a
way to identify state conditions on HPN methods that combines learning from
individual training solutions with an inductive bias toward generality.

Remember that a key purpose of state conditions in the HPN framework is
to ensure that all arguments of a method’s operator are bound. Some of these
variables are already specified in the head, but others may remain unconstrained.
For instance, the third method in Table 1 says that we can achieve (in ?o1 ?t1) by
applying (load-truck ?o1 ?t1 ?l1), so the object and truck appear in the head, but
not the location. Information about argument types (e.g., that ?l1 is a location)
do not suffice to eliminate ambiguity. Fortunately, we can combine knowledge
implicit in operators with details about the state in which a decomposition occurs
to infer additional conditions. Figure 1 reveals that (in o1 t1) is achieved by
(load-truck o1 t1 l1), which has (at t1 l1) as one of its conditions. The latter
relation is achieved in turn by (drive-truck t1 l2 l1 c1), which deletes (at t1 l2)
and adds (at t1 l1), so the two literals are mutually exclusive, at least in this
context. This suggests (at t1 l2), appropriately generalized, as a state condition
for the third method, as denoted by bold font in the table.

We can use operator specifications to identify constraints for this purpose:
any relation that an operator deletes and replaces with another implies a mutual
exclusion. Examples include (load-truck ?o ?t ?l), which removes the literal (at
?o ?l) with (in ?o ?t), and (unload-truck ?o ?t ?l), which does the opposite.
Three such constraints arise in the logistics domain: an entity cannot be at two
places, it cannot be in two vehicles, and it cannot be at a place and in a vehicle.
To find state conditions for a method M with operator O, for each argument of
O not bound in M’s head, we can note which relations held when the sample
decomposition occurred but are inconsistent with O’s conditions.

Unfortunately, the resulting conditions may not suffice and static literals
may be necessary to ensure proper argument bindings. For instance, in Logistics
the conditions (in-city ?l2 ?c1) and (in-city ?l1 ?c1) in Table 1’s third method
indicate that ?l2, the truck’s location, and ?l1, the package’s location, must be in
the same city. The fourth method specifies a different configuration in which we
should load the truck at an airport when the package is in a different city. We can
identify such static conditions by chaining outward from unbound arguments in
a sample solution. For the state in which a decomposition occurs, we find literals
that contain such an argument, note any new arguments that are introduced, and
find relations that contain them. This process continues until no new arguments
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arise, at which point we replace constants with variables in a consistent manner.
Table 1 uses italics to highlight conditions found through this mechanism. The
second method, for achieving (at ?t ?l1) with drive-truck, does not include any
because it inherits all necessary static conditions from its operator.

3.4 Identifying Goal Conditions

Now let us turn to the construction of unless-goals conditions. These serve to
constrain the order in which methods are selected during hierarchical decompo-
sition. The only example of an unless condition in Table 1 occurs in the second
method, which indicates that one should not attempt to achieve (at ?t1 ?l1)
with (drive-truck ?t1 ?l2 ?l1 ?c1) if there is an unsatisfied goal of the form
(in ?o ?t1). To identify such priorities, we examine the sample solution to find
which state literals held when each goal decomposition took place. We then note
which operator instance achieved each goal and calculate its composed condi-
tions and effects, much as in techniques for forming macro-operators (e.g., Iba,
1989). When two goals appear as siblings in the sample hierarchical plan, we see
whether the composed effects of the subplan carried out later would ‘clobber’ the
composed conditions of the one carried out earlier. If so, then we add an unless-
goals condition that requires the method learned from the later subplan not be
selected when the goal achieved by the earlier subplan still remains unsatisfied.

For example, the goals (in o1 t1) and (at t1 l3) in Figure 1 each have associ-
ated subplans that achieve them. The composed conditions of the first subplan
include the state literal (at t1 l1), which is needed for loading o1 into t1. How-
ever, the composed effects of the second subplan includes deletion of (at t1 l1)
because this is a necessary result of driving t1 from l1 to l3. Thus, carrying out
the two subplans in reverse order will not succeed and, to avoid this negative
interaction, we add the unless-goals condition (in ?o ?t1) to the second method
in Table 1. A different sample solution that involves flying an airplane from one
city to another would lead to a similar goal condition, although a method for
this goal-operator combination does not appear in the table.

3.5 Implementation Details

We have implemented this approach to learning hierarchical problem networks
in Steel Bank Common Lisp. The resulting system – HPNL – inputs domain
operators, training problems with associated hierarchical plans, and constraints
about which relations are mutually exclusive. The program processes sample
solutions one at a time, adding new methods as suggested by these traces. Before
the system creates a method, it compares the candidate with existing structures
to see if they are structurally isomorphic by checking whether their heads, state
conditions, and operators map onto each other. In such cases, it increments a
counter rather than adding a duplicate and the HPD problem solver uses these
scores to select among multiple matches, favoring methods with higher counts.

HPNL acquires hierarchical methods in an incremental, monotonic manner
that is unaffected by the order of training problems. In practice, it constructs
only a few methods from each solution trace, as subplans often have similar struc-
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tures, and in some cases none are created at all. For classic planning domains,
handcrafted programs can require only one or two methods per operator-effect
pair. Nevertheless, HPNL treats each hierarchical plan as a potential learning
experience, as new configurations of initial states and goals are always possi-
ble. When the implementation detects a goal interaction, it adds an analogous
unless-goals condition to each method with the same goal-operator pair.

4 Empirical Evaluation

Our approach to learning hierarchical problem networks holds promise for rapid
acquisition of planning expertise, but we must still demonstrate its effectiveness.
To this end, we designed and ran experiments that studied the learning behavior
of the HPNL implementation. For a given domain, we manually created a set
of methods that solved problems with little or no search. We also generated a
set of state-goal configurations and used the expert knowledge to generate a
hierarchical plan for each such problem. We primed HPNL with content about
domain operators and constraints,3 then presented sample problems and plans
sequentially, using each one first as a test case and then as a training case. We
were concerned with two measures of performance – number of decompositions
and CPU time – which we recorded on each run. We were also interested in
rate of improvement, so we collected learning curves that plotted performance
against number of training samples, averaged across different training orders.

We evaluated HPNL’s learning behavior on three different problem-solving
domains to provide evidence of generality. These settings will be very familiar
to readers of the AI planning literature:

• Blocks World involves changing an initial configuration of blocks into a
target configuration. States were encoded with six dynamic predicates af-
fected by four operators – stack, unstack, putdown, and pickup. The expert
HPN program for this domain included six methods, two for holding and one
each for other dynamic predicates. Problems involved four to six blocks and
ranged from four to six goals, while solution lengths were six to 16 steps.

• Logistics requires transporting packages from initial to target locations.
States involved seven static relations but only two dynamic predicates –
at and in – that were altered by six operators. The expert knowledge base
included seven methods, four for achieving the at relation and three for the
in predicate. Tasks included two packages and two goals in one or two cities,
each with three locations, with solutions varying from four to 19 steps.

• Depots involves moving crates from some pallets to others and stacking them
in specified towers. There were six static predicates and six dynamic relations
– available, lifting, at, on, in, and clear – influenced by five operators. Expert
knowledge comprised eight methods, two for on, two for lifting, and one each
for other dynamic predicates. Problems contained two or three depots, three
to four crates, and three to four goals, while solutions were seven to 21 steps.

3 We constructed these constraints manually, although in principle they could have
been extracted automatically from the operators’ definitions.
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Fig. 2. Number of decompositions (left) and CPU time (right) needed to solve problems
in the Blocks World by an expert HPN knowledge base, HPN methods learned from
sample plans, and learned methods that lack unless-goals conditions. Each curve reports
mean values with 95 percent confidence intervals over 100 random problem orders.

For each domain, we trained and tested the system on 30 distinct problems, lim-
iting effort on each task to 20,000 method decompositions (i.e., nodes visited in
the search tree). We also limited plan length to 30 steps in the Blocks World and
50 steps in the other domains. For each run, we recorded both CPU seconds and
the decompositions carried out, assigning the maximum number if the system
failed to find a solution. To factor out order effects, we called the system 100
times with random problem sequences and averaged performance across runs.

For this initial study, we wanted to understand HPNL’s rate of learning, how
acquired expertise compares to handcrafted methods, and how important goal
conditions are to success. For these reasons, we examined three experimental
conditions – handcrafted structures, learned methods, and the same methods
without unless-goals conditions. We did not compare the HPNL’s behavior to
other systems for acquiring plan knowledge because, in most cases, their inputs
would not be comparable. Moreover, our aim was not to show which approach
is superior but to demonstrate the viability of our new framework.

Figure 2 presents results for the Blocks World. The left graph plots the num-
ber of decompositions required to solve each task, whereas the right displays the
CPU times. As expected, the manually created HPN for this domain solved each
problem with little or no search and took negligible processing time. More im-
portant, the HPNL system, which started with overly general methods, initially
needed substantial search to find solutions, but it acquired expertise rapidly and
its performance on both measures reached near expert level by the 20th task.

The figure also shows HPNL’s behavior when we removed the ability to test
unless-goals conditions on learned methods, and thus the ability to master goal
orderings. The lesioned system’s performance improved slightly with training
but continued to require massive search, which indicates that goal conditions are
crucial for expert behavior in this domain. In addition, note that the learning
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Fig. 3. Number of decompositions needed to solve problems in Logistics (left) and
Depots (right) by an expert HPN knowledge base, HPN methods learned from sample
plans, and learned methods that lack unless-goals conditions. Each curve reports means
and 95 percent confidence intervals over 100 random problem orders.

curves for the number of decompositions and time have very similar shapes. This
suggests that HPNL does not suffer from the classic utility problem, in which
learning reduces search but actually slows processing. This phenomenon arose
in recursive domains like the Blocks World, so its absence here is encouraging.

The leftmost graph in Figure 3 shows results for the Logistics domain. As
before, the handcrafted knowledge base solves all problems very rapidly with
almost no search. In this case, learning reduces the number of decompositions
more slowly, only reaching expert level by the 26th training problem. Again,
the asymptote is substantially higher when the system does not use unless-
goals conditions, although it fares better than in the Blocks World. Although
not shown, the learning curve for CPU time again parallels the one for number
of decompositions. Results for the Depots domain, in the rightmost graph of
Figure 3, are less impressive in that HPNL never quite reaches the expert level
and some search through the space of hierarchical plans remains. This suggests
that the constraint-based learning mechanism is finding overly specific conditions
that do not generalize to new problems as much as desired.

Examination of structures acquired in the three domains is consistent with
this interpretation. For the Blocks World, HPNL created only six methods and
these were nearly identical to the six handcrafted ones. In contrast, the system
learned 29 methods for Logistics and 30 for Depots, substantially more than the
11 and 10 rules in their expert knowledge bases. Further inspection revealed that
many methods were idiosyncratic variants of the handcrafted ones. For instance,
the system learned 11 different Logistics methods for achieving the at relation
with unload-truck: when the target and truck locations are the same, when
the truck is at the airport, and others. We posit two reasons for this behavior:
direct replacement of constants with variables introduces identities that are not
logically required and the technique for adding static relations finds conditions
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not needed to constrain variables. Neither issue arose in the Blocks World, which
is why the system found fewer, more general methods in that domain.

In summary, our experimental findings were mixed. In two domains, HPNL
achieved expert-level performance from under 30 sample plans, but learning did
not eliminate search in the third domain and specialized conditions reduced
its generalization. Another issue was that the learned methods sometimes found
much longer solutions than did handcrafted ones. Thus, our approach to learning
expertise for hierarchical planning achieved some but not all of our original aims.

5 Related Research

Our approach to learning expertise for problem solving incorporates ideas from
the previous literature, but it also makes novel contributions. Langley and Shrobe
(2021) have reviewed the HPN framework’s relation to other hierarchical for-
malisms, so we will focus here on the acquisition of expertise. Some early work
on learning search-control knowledge (Sleeman et al., 1982) emphasized induc-
tion of state-related conditions on when to apply operators, whereas later efforts
on learning search-control rules (e.g., Minton, 1988) and macro-operators (Iba,
1989) invoked explanation-based techniques. Most relied on forward search from
states, but some systems chained backward from goals, as in our framework.

A few early researchers addressed the acquisition of hierarchical structures
for planning and problem solving. Ruby and Kibler’s (1991) SteppingStone and
Marsella and Schmidt’s (1993) PRL acquired decomposition rules, but they
did not associate operators with them. Shavlik (1990) reported an approach
that learned hierarchical rules, some recursive, using analytic techniques, but
it worked within the situation calculus. The closest relative to our work from
this era was Reddy and Tadepalli’s (1997) X-Learn, which also learned rules for
decomposing goals but used inductive logic programming to identify conditions.

There has also been research on learning hierarchical task networks and re-
lated structures. For instance, Ilghami et al. (2002) used successful HTN plans
as training cases, invoking a version-space technique to induce conditions on
methods. Hogg et al. (2008) instead used a form of explanation-based learning
to derive conditions on methods from definitions of operators used in sample
traces. In this arena, the nearest kin is Nejati et al.’s (2006) work on learning
goal-driven teleoreactive logic programs from sample plans, which also acquired
methods from individual problems but used simpler analysis than other efforts.

Schmid and Kitzelmann (2011) present a very different approach that learns
recursive programs by detecting and generalizing patterns in a small set of sample
traces. Their formulation differs from ours but shares the aim of rapidly acquiring
search-free procedures. Finally, Cropper and Muggleton (2015) report a system
that uses meta-interpretive learning, which combines abductive reasoning with
abstract knowledge, to create hierarchical rules for sequential behavior with in-
vented nonterminal symbols. In contrast, our approach to learning hierarchical
problem networks avoids the need for such predicates because it indexes acquired
methods by goals they achieve. In summary, our framework shares features with
earlier research on procedural learning but also has important differences.
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6 Concluding Remarks

In this paper, we reviewed hierarchical problem networks and presented a novel
approach to learning them from sample plans. A primary innovation was the
use of domain constraints to identify simple conditions on hierarchical methods
from single subplans, which avoids both the overly complex rules generated by
explanation-based techniques and the reliance of relational induction on mul-
tiple training cases. Another important contribution was a means for learning
unless-goals conditions on methods that ensure goals are tackled in the proper
order. Experiments in three domains provided evidence that this approach leads
to effective planning knowledge which substantially reduces both search and
problem-solving time on novel problems from the same domain.

Despite the progress that we have reported here, our mechanisms for acquir-
ing plan knowledge require further development to improve their rate of learning.
One promising approach involves abandoning simple substitution of constants
with variables, which encodes accidental identities, and instead propagates de-
pendencies through sample plans. This should reduce the number of idiosyncratic
methods and improve generalization to new problems. Another response is to re-
place the chaining technique that finds static relations with a specialized form
of inductive logic programming. Recall that state conditions serve to distinguish
desirable bindings for operator arguments that will achieve the method’s goal
from ones that will not. Each sample decomposition offers one positive instance
of such bindings and typically provides multiple negative cases that can support
induction of conditions about both dynamic and static relations.

We intend to implement both techniques in future research and run experi-
ments that identify the conditions under which they are effective. We should also
compare our approach to classic methods for analytic learning, including macro-
operator formation, and to inductive logic programming. Finally, we should ex-
amine learning mechanisms’ behaviors on additional planning domains to further
demonstrate their generality and to uncover any unexpected drawbacks. Never-
theless, our initial results have been encouraging and suggest that our framework
for acquiring expertise in hierarchical planning merits additional study.
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