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Abstract

In this paper we outline an experimental
method for the study of planning. We argue
that experimentation should occupy a central
role in planning research, identify some depen-
dent measures of planning behavior, and note
some independent variables that can influence
this behavior. We also discuss some issues of
experimental design and different stages that
may occur in the development of an experi-
mental science of planning.

1. Experimentation in Planning Research

Many sciences, such as physics and chemistry, at-
tempt to integrate theory and experiment. For instance,
theoretical physicists make predictions that are tested
by experimental physicists, and when prediction and
observation differ, the theory must be revised. Such
cooperation between theoretician and experimentalist is
a sign of a field’s maturity, and it should be encouraged
whenever possible.

At first glance, Al work on planning may appear in-
herently different from the natural sciences. Because
researchers study artifacts over which they have com-
plete control, one might think there is no need for ex-
perimentation and that formal analysis should suffice.
But this view ignores the fact that all theories rely
on assumptions that may or may not hold when ap-
plied to actual algorithms or real-world domains. Test-
ing theoretical predictions through experiments lets one
gather evidence in favor of correct assumptions, and it
can point toward modifications when assumptions prove
faulty. Long-term progress in planning will depend on
such interaction between the theoretical and experimen-
tal paradigms.

Also, the complexity of most planning methods makes
it difficult to move beyond worst-case analyses, suggest-
ing experimentation as the only practical approach to
obtaining average-case results. Thus, the field promises
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to have a significant empirical component for the foresee-
able future. And unlike some empirical sciences, such as
astronomy and sociology, planning is fortunate enough
to have control over a wide range of factors, making
experimentation easy and profitable.

In any science, the goal of experimentation is to bet-
ter understand a class of behaviors and the conditions
under which they occur. Ideally, this will lead to empir-
ical laws that can aid the process of theory formation.
In our field, the central behavior is planning, and the
conditions involve the algorithm employed and the en-
vironment in which planning occurs. An implemented
planning algorithm is necessary but not sufficient; one
should also attempt to specify both when it operates
well and the reasons for its behavior. Experimentation
can provide evidence on both these issues.

As normally defined, an ezperimentis a study in which
one systematically varies one or more independent vari-
ables and examines their effect on some dependent vari-
ables. Thus, a planning experiment involves more than
running a planning algorithm on a single problem; it
involves a number of runs carried out under different
conditions. In each case, one must measure some aspect
of planning behavior for comparison across the differ-
ent conditions. Below we consider some dependent and
independent variables that are relevant to planning re-
search. We then turn to broader issues in designing
experiments and in developing an experimental science
of planning.’

2. Dependent Measures of Behavior

To evaluate any planning system, one needs some
measures of its behavior. In most experiments, these are
the dependent variables that one would like to predict.
There are two obvious classes of metrics for planning
algorithms — the quality of the generated plans and the
effort required to generate them.

There exist many variations on the notion of plan
quality. In a classical planning framework, one might

!For other discussions of experimentation in Al, see Ki-
bler and Langley (1988) and Cohen and Howe (1988).
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simply measure the length of the solution path or the
total number of actions. More sophisticated dependent
variables involve the time taken to execute a plan, the
energy required, or the use of other resources. Alter-
natively, one can examine the robustness of a plan, as
would be characterized by its ability to respond well un-
der changing or uncertain conditions.

However, in many domains, finding any plan at all
requires significant search, making it important to mea-
sure the time or effort spent in generating a plan. Mea-
sures of this sort have predominated in recent exper-
imental studies of learning in planning domains (e.g.,
Minton, 1990; Iba, 1989). The simplest measure in-
volves the total CPU time, but this metric can depend
on both machines and implementations. More appropri-
ate measures include the number of nodes considered in
a search tree (Minton, 1990; Mooney, 1989), the number
of unifications required (Allen & Langley, 1990), and the
number of subgoals generated during the planning pro-
cess (Jones, 1989). Of course, such internal measures
are less interesting for intelligent agents that interact
with an external environment; in such cases, measures
of overall external time for planning and execution be-
come relevant, despite possible differences in hardware.

Most measures of plan quality and planning effort im-
plicitly assume that the planner will find a solution to
every problem, but this is unrealistic in resource-limited
situations. In such cases, the agent may be unable to
solve certain problems, and it is important to take this
into account when reporting experimental results. One
response involves explicitly incorporating this result into
the quality measure by giving unsuccessful attempts a
very low score. Incorporating these cases into measures
of effort is more difficult. As Segre, Elkan, and Rus-
sell (1990) have noted, averaging failed problems into
effort scores can bias results in favor of one system over
another. Alternatively, one can simply report the per-
centage of solved problems, treating this as a separate
dependent measure.

3. Comparative Studies of Planning

Informal comparisons among planning algorithms
abound in the AI literature, but there are relatively
few systematic experiments that examine the behavior
of different algorithms on the same problems. However,
such comparative studies have an important role to play
in developing a well-founded discipline.

3.1 GrROSS COMPARISONS OF PLANNING METHODS

The simplest form of planning experiment involves
comparing the behavior of entirely different algorithms
on the same problem or problems. In this case, the
independent variable is the particular planning system
being used and the dependent variable is one or more of
the measures described above. For instance, Sacerdoti
compared the behavior of a simple means-ends planner

to that of a planner incorporating means-ends analysis
and abstraction. More recently, Ruby and Datta (1990)
have reported more extensive experiments, comparing
these two approaches in terms of nodes searched and
length of solution path. One can also imagine exper-
imental comparisons between preplanning and reactive
systems, between search-based and case-based methods,
and between specific algorithms within the same basic
paradigm.

In such comparative studies, it is important to place
the systems’ behavior in context. To this end, one can
usually compare their performance to that of a ‘straw
man’ that uses a simple-minded strategy (e.g., a tradi-
tional nonlinear planner) on the same set of problems.
If one of the ‘advanced’ algorithms actually carries out
more search or generates lower-quality solutions than
this naive approach, this is a cause for concern. Lower
bounds of this sort help calibrate the quality of system
behavior.

3.2 PARAMETRIC STUDIES OF PLANNING

Gross comparisons between different planning meth-
ods have the aura of a competition, in which one method
wins and the others lose. However, a science of planning
should aim not for simple-minded conclusions but for in-
creased understanding. To this end, researchers should
attempt to identify the reasons for success or failure on
a problem or class of problems, attempting to generalize
beyond a specific system and experiment.

This goal requires finer-grained studies of planning
algorithms and their behavior. For instance, many sys-
tems contain a set of user-specified parameters, and in
such cases one can experimentally determine the effect
of the parameter settings on system behavior. A number
of parameters suggest themselves:

e in preplanning systems, the maximum amount of
resources devoted to generating a plan (e.g., limits
on time, memory, or search);

e in reactive systems, the frequency at which the
agent samples its environment;

e in combined systems, the ratio of deliberation to
execution (Maes, in press; Sutton, 1990); and

e in knowledge-intensive systems, the bias toward
modifying stored plans versus dynamically con-
structing new plans.

Ideally, behavior will be ‘acceptable’ within a wide range
of parameter values, with the system’s behavior varying
slowly as a function of the settings. Hopefully, the same
range of values will work across a variety of domains.

A related issue concerns the evaluation function or
control scheme that a planning system uses to direct
search. If the function contains parameters, then one
can examine their relative importance through simple
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parametric studies. However, one can also replace the
entire control scheme with different ones in an attempt
to find improved search methods. For instance, in a
case-based system one might compare an existing sim-
ilarity criterion for indexing knowledge with other ap-
proaches, such as Bayesian methods.

3.3 LESION STUDIES OF PLANNING COMPONENTS

Some planning systems contain a number of indepen-
dent components, and one can study the usefulness of
each by removing it from the system. In such a ‘lesion’
experiment,? one runs the system with and without a
given component, measuring the difference in perfor-
mance. If a component does not aid the overall plan-
ning process, then it can be removed without undesir-
able consequences. Some obvious candidates for lesion-
ing include:

e mechanisms for abstraction planning;
e methods for hierarchical planning;
e heuristics for identifying when to replan; and

e techniques for handling special forms of goals.

The above components focus on processes, but one can
also imagine lesioning knowledge from a system. For ex-
ample, some planning systems (Wilkins, 1988) incorpo-
rate constraints that may narrow the search or improve
solution quality, but the influence of these constraints on
behavior is an empirical question. Similarly, case-based
planning systems draw upon a library of plans (Ham-
mond, 1989) or plan components (Jones, 1989) in the
construction of new plans, and one can determine the
change in behavior as one adds or removes cases from
memory.

One special case of lesion studies focuses on learning,
and much of the recent experimental work on planning
falls into this area. In this paradigm, one runs a plan-
ning system with and without a learning component,
then examines differences in performance between the
two variants. Allen and Langley (1990), Iba (1989),
Minton (1990), Ruby and Kibler (1989), and Shavlik
(1990) report evidence that a variety of learning com-
ponents can improve the behavior of planning systems
after sufficient experience in a given domain.

In some cases, researchers have also found negative
results; both Iba (1989) and Minton (1990) have shown
that naive learning methods can actually degrade plan-
ning performance in terms of search required to find
solutions. However, rather than abandoning the use of
learning methods, both used their results to identify the
source of degradation and went on to develop learning
methods that improve performance. This work provides

2 . . . .

This approach is common in neuroscience, where re-
searchers excise a specific region of the brain to determine
its effect on behavior.

an excellent role model for those interested in the exper-
imental study of planning. Kibler and Langley (1988)
discuss additional issues that arise in experiments with
learning planners, as do Segre et al. (1990).

4. Varying the Planning Domain

Seldom will one system always appear superior to an-
other, and this leads naturally to the idea of identify-
ing the conditions under which one approach has better
performance than another. To study the effect of the
environment on a planning system, one must vary the
domain in which it operates. Natural domains, such as
path planning for an autonomous vehicle or manipula-
tor planning for an industrial robot arm, are the most
obvious because they show real-world relevance. Also,
successful runs on a number of different natural domains
provide evidence of generality.

The simplest approach to this issue involves designing
a set of ‘benchmark problems’. To be scientifically use-
ful, each benchmark problem should highlight certain
problem attributes to help isolate planners’ particular
abilities. In addition, a realistic set of benchmark prob-
lems can help the scientific community explain its results
in terms that can make a difference to those concerned
with practical applications. These two goals foster-
ing scientific comparison and engineering development
— place rather different constraints on a set of bench-
mark problems.

For the purposes of scientific comparison, one must be
able to independently vary different task attributes. To
achieve this, some benchmark problems should involve
artificial domains. For situations that involve planning
and execution, relevant attributes relate to the initial
state specification, the goals, and the domain dynamics.
For instance, one might consider the following sorts of
task attributes:

e the length of the ‘optimal’ solution path (e.g., the
number of actions in a block-stacking task);

e the effective branching factor (e.g., the number of
actions considered for each plan step);

e the complexity of the environment (e.g., the number
of obstacles in a navigation task);

e the amount of goal interaction in a planning task;

e the reliability of the domain (e.g., the probability
that effectors will have the desired effect); and

e the rate of environmental change not due to the
agent’s actions.

However the list of task attributes is constructed, the
set of representative problems should provide a complete
coverage of the task attribute space. Complete coverage
will let researchers choose problems from the set that
highlight the system capabilities they seek to measure.
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The set of task attributes and benchmark tasks should
evolve concurrently.

Artificial domains are gaining acceptance with the
planning community (e.g., Pollack & Ringuette, in
press), since they let researchers systematically study
planning behavior across a wide range of situations.?
Another advantage of artificial domains is that they
specify a variety of domain characteristics. In many
cases, this lets one determine plans having optimal qual-
ity, thus establishing upper bounds on a planner’s out-
put. One can then compare the plans generated by ac-
tual algorithms against these upper bounds. If plan
quality approaches this bound, one can also decide
whether additional components or extra computation
are worth minor improvements in this regard.

For engineering development and technology transfer
purposes, tasks that include ‘practical’ difficulties will
be more useful. Domains involving physical output de-
vices such as robot arms and physical input devices such
as limit switches will prove more useful in terms of val-
idating particular systems. It is important to include
problems in the evolving set of benchmarks that sup-
port such engineering evaluation, but discussion of such
issues is beyond the scope of this paper.

5. Issues in Experimental Design

Basic experimental method suggests that researchers
vary one independent term at a time while holding oth-
ers constant. However, one can repeat this technique
many times to achieve ‘factorial’ designs that measure
dependent variables under all combinations of indepen-
dent values. Full factorial designs are impractical when
many independent variables are involved, but reduced
experimental designs are also possible.

The advantage of combinatorial designs is that they
let one go beyond the effects of isolated factors and de-
tect interactions between independent variables. For in-
stance, one might find that planning method A behaves
better than method B in environment X, whereas B
fares better than A in environment Y. Alternatively, one
might find that two components of a planning method
lead to synergy, or that the joint presence of two do-
main characteristics make planning especially difficult.
We anticipate that many of the most interesting results
in planning will have this form. The detection of such
interactions does more than establish the conditions un-
der which alternative methods should be used; it can
also suggest hybrid algorithms.

Another issue in experimental design involves the use
of sampling and statistical tests. In the natural sciences,
one can never control all possible variables. As a result,

30ne can also view resource limitations (e.g., time or en-
ergy) as independent variables that affect task difficulty. Ex-
perimental studies of ‘anytime’ algorithms (Dean & Boddy,
1988) might examine the effect of planning time on quality
of the resulting plans.

researchers must collect multiple observations for each
cell in their experimental design, average the resulting
values, and use statistical techniques to ensure that con-
clusions about differences between cells are justified by
the data. Although in principle one can control all the
factors that influence a planning system, for practical
reasons this will seldom be possible, and planning re-
searchers should consider using them as well.

For instance, seldom can one test a planning system
on all possible problems from a given domain. Thus, it
makes sense to select a random sample, run the system
on all problems in this set, and report the mean and
variance on dependent measures of interest. In some
situations, the effects of the independent variables will
be large enough that formal significance tests are not
necessary. In other cases, the variances may be suf-
ficiently high that statistics should be invoked. And
though exploratory studies are useful, researchers often
design experiments with some hypotheses in mind, and
whenever possible they should explicitly state and test
these hypotheses. In all cases, the experimenter should
use caution and common sense in designing his or her
experiments and in interpreting the results.

6. An Imaginary Experimental Study

An imaginary example may clarify the nature of plan-
ning experiments. Suppose Dr. Calvin has developed
a new planning algorithm, OUTSTRIPS, in response to
limitations of earlier systems, say an inability to scale
to complex problems. In this case, the hypothesis is
that the new method will ‘outstrip’ other systems as
task complexity increases. This suggests two indepen-
dent variables — the algorithm employed and the prob-
lem difficulty.

At this point, Dr. Calvin must settle on some mea-
sures of difficulty. Rather than using the number of
actions in optimal solutions, she favors a more so-
phisticated metric that incorporates the idea of goal
interaction.* She also decides to study the systems’ be-
haviors in multiple domains, say an idealized manipula-
tion task like the blocks world and an idealized naviga-
tion task. Similar results in multiple domains will lend
credence to her findings, so she includes this as a third
independent variable.

Calvin must also identify the dependent measures she
plans to use, and the explicit hypotheses she hopes to
test. Naturally, she is interested in solution quality,
which she will measure as the number of actions in the
final plan, but she is even more interested in planning
effort. Calvin has implemented OUTSTRIPS on her new
positronic hardware, but she must run the comparison
algorithms (including a straw man) on archaic silicon
machines. Since all the systems involved in the study de-
fine their search spaces in a similar manner, she decides

“Jones (1989) provides an initial approach to measuring
goal interaction for means-ends systems.
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to use the number of expanded nodes as her measure of
effort.

In carrying out her experiment, the researcher must
randomly select from problems at each level of difficulty,
since the number of possible problems increases rapidly
with difficulty. However, Calvin is careful to use the
same test problems for each system. For each problem,
she measures the various systems’ search and plan qual-
ity, recording the mean and variance for each system-
difficulty combination. She follows this procedure in
each of the planning domains selected for study.

In this case, let us suppose that, for each domain,
OUTSTRIPS requires more search than its competitors
on simple tasks, but that it expands considerably fewer
nodes on difficult problems, with the gap widening as the
difficulty increases. These results constitute evidence in
favor of the original hypothesis that OuTSTRIPS scales
better than other methods. However, Calvin also notes
that her system’s plan quality is slightly worse than that
for the more expensive algorithms. As expected, she also
notes that all systems perform better than the straw
man, except on the simplest problems.

In response to these findings, Calvin designs a le-
sion study in an attempt to identify the particular con-
straints used by OUTSTRIPS that lead to its superiority.
To this end, she repeats the above experiment with le-
sioned versions of her algorithm, finding that some con-
straints greatly reduce planning effort, but that one of
them is partly responsible for decrements in plan qual-
ity. As a result, Calvin has not only arrived at a deeper
understanding of her system’s success (and how its con-
straints might be transferred to other systems); she has
also determined that deletion of one component actually
produces a superior system with respect to plan qual-
ity. Of course, this is not the end of the story, for ad-
ditional experiments by other researchers may identify
conditions under which OUTSTRIPS fares poorly, sug-
gesting ideas for even better algorithms.

7. Toward an Experimental Science

Different goals are appropriate for different stages of
a developing experimental science. Although planning
work remains in the early steps of this evolution, it is
worthwhile considering the states that may arise on the
path toward a mature scientific discipline.

In the initial stages, researchers should be satisfied
with qualitative regularities that show one method as
better than another under certain conditions, or that
show one environmental factor as more devastating to
a certain algorithm than another. Experimental eval-
uations should become the norm for published papers,
with researchers comparing new algorithms against well-
tested systems that act as ‘straw men’. Parametric and

lesion studies should examine the contributions of spe-
cific components, leading to improved algorithms that
build on limitations identified earlier. Comparative
studies that examine different algorithms on the same
domains should proliferate, not to show one method su-
perior to another, but to suggest directions for improve-
ment. Online libraries of representative domains should
encourage such comparisons.

Later stages of planning research should move beyond
qualitative conclusions, using experimental studies to di-
rect the search for quantitative laws that can actually
predict performance on unobserved situations. In the
longer term, results of this sort should lead to theoreti-
cal analyses that explain such effects at a deeper level,
using average-case methods rather than worst-case as-
sumptions. For instance, Segre et al. (1990) outline a
simple mathematical model of search in planning, which
they propose to use in analyzing experimental results.
Other researchers should follow this lead, aiming for ro-
bust theories of planning algorithms that predict behav-
ior in novel experimental situations. Failed predictions
should lead in turn to revised theories, in the same fash-
ion that experiment and prediction interact in the nat-
ural sciences.

In summary, the planning field has already started its
development toward an experimental science, and future
advances should produce improved dependent measures,
better independent variables, more useful experimental
designs, and ultimately an integration of theory and ex-
periment. However, even the earliest qualitative stages
of an empirical science can strongly influence the di-
rection of research, identifying promising methods and
revealing important roadblocks. Research on planning
is just entering this first stage, but we believe the field
will progress rapidly once it has started along the path
of careful experimental evaluation.

Of course, the potential benefits of experimentation
do not mean that empiricists should report gratuitous
experiments any more than theoreticians should pub-
lish vacuous proofs. Whether they lead to positive or
negative results, experiments are worthwhile only to the
extent that they illuminate the nature of planning mech-
anisms and the reasons for their success or failure. Al-
though experimental studies are not the only path to
understanding, we feel they constitute one of planning’s
brightest hopes for rapid scientific progress.

Acknowledgements

We would like to thank John Allen for useful com-
ments on an earlier draft. Parts of this paper are similar
to an earlier manuscript on research in machine learn-
ing, co-authored with Dennis Kibler, who has greatly
influenced our ideas on experimentation.



PLANNING AS AN EXPERIMENTAL SCIENCE 114

References

Allen, J., & Langley, P. (1990). The acquisition, organi-
zation, and use of plan memory (Technical Report).
Moffett Field, CA: NASA Ames Research Center,
AT Research Branch.

Cohen, P. R., & Howe, A. E. (1988). How evaluation
guides Al research. AI Magazine, 9, 35-43.

Dean, T., & Boddy, M. (1988). An analysis of
timedependent planning. Proceedings of the Sev-
enth National Conference on Artificial Intelligence
(pp- 49 54). St. Paul, MN: Morgan Kaufmann.

Hammond, K. J. (1989). Case-based planning: View-
ing planning as a memory task. In B. Chan-
drasekaran (Ed.), Perspectives in artificial intelli-
gence. Boston: Academic Press.

Iba, G. A. (1989). A heuristic approach to the discovery
of macro-operators. Machine Learning, 3,285 317.

Jones, R. (1989). A model of retrieval in problem solv-
ing. Doctoral dissertation, Department of Informa-
tion & Computer Science, University of California,
Irvine.

Kibler, D., & Langley, P. (1988). Machine learning as an
experimental science. Proceedings of the Third Eu-
ropean Working Session on Learning (pp. 81-92).
Glasgow: Pittman.

Maes, P. (in press). How to do the right thing. Connec-
tion Science.

Minton, S. (1990). Quantitative results concerning the
utility of explanation-based learning. Artificial In-
telligence, 42, 363-391.

Mooney, R. (1989). The effect of rule use on the utility
of explanation-based learning. Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence (pp. 725-730). Detroit, MI: Mor-
gan Kaufmann.

Pollack, M. E., & Ringuette, M. (in press). Introduc-
ing the Tileworld: Experimentally evaluating agent
architectures. Proceedings of the Fighth National
Conference on Artificial Intelligence. Cambridge,
MA: AAAT Press.

Ruby, D., & Datta, P. (1990). Reacting to interac-
tions in abstract plans. Unpublished manuscript,
Department of Information & Computer Science,
University of California, Irvine.

Ruby, D., & Kibler, D. (1989). Learning subgoal se-
quences for planning. Proceedings of the Eleventh
International Joint Conference on Artificial Intel-
ligence (pp. 609-614). Detroit, MI: Morgan Kauf-
mann.

Sacerdoti, E. D. (1974). Planning in a hierarchy of ab-
straction spaces. Artificial Intelligence, 5, 115-135.

Segre, A., Elkan, C., & Russell, A. (1990). On wvalid
and invalid methodologies for experimental evalua-
tions of EBL (Technical Report 90-1126). Ithaca,
NY: Cornell University, Department of Computer
Science.

Shavlik, J. W. (1990). Acquiring recursive and iterative
concepts with explanation-based learning. Machine
Learning, 5, 39 70.

Sutton, R. S. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximat-
ing dynamic programming. Proceedings of the Sev-
enth International Conference on Machine Learn-
ing (pp. 216 224). Austin, TX: Morgan Kaufmann.

Wilkins, D. E. (1988). Practical planning: Extending the
classical AI planning paradigm. San Mateo, CA:
Morgan Kaufmann.



