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Toward an Experimental Science of PlanningPat Langley and Mark Drummond�AI Research Branch, Mail Stop 244{17NASA Ames Research CenterMo�ett Field, CA 94035 USAAbstractIn this paper we outline an experimentalmethod for the study of planning. We arguethat experimentation should occupy a centralrole in planning research, identify some depen-dent measures of planning behavior, and notesome independent variables that can inuencethis behavior. We also discuss some issues ofexperimental design and di�erent stages thatmay occur in the development of an experi-mental science of planning.1. Experimentation in Planning ResearchMany sciences, such as physics and chemistry, at-tempt to integrate theory and experiment. For instance,theoretical physicists make predictions that are testedby experimental physicists, and when prediction andobservation di�er, the theory must be revised. Suchcooperation between theoretician and experimentalist isa sign of a �eld's maturity, and it should be encouragedwhenever possible.At �rst glance, AI work on planning may appear in-herently di�erent from the natural sciences. Becauseresearchers study artifacts over which they have com-plete control, one might think there is no need for ex-perimentation and that formal analysis should su�ce.But this view ignores the fact that all theories relyon assumptions that may or may not hold when ap-plied to actual algorithms or real-world domains. Test-ing theoretical predictions through experiments lets onegather evidence in favor of correct assumptions, and itcan point toward modi�cations when assumptions provefaulty. Long-term progress in planning will depend onsuch interaction between the theoretical and experimen-tal paradigms.Also, the complexity of most planning methods makesit di�cult to move beyond worst-case analyses, suggest-ing experimentation as the only practical approach toobtaining average-case results. Thus, the �eld promises�Also a�liated with Sterling Federal Systems.

to have a signi�cant empirical component for the foresee-able future. And unlike some empirical sciences, such asastronomy and sociology, planning is fortunate enoughto have control over a wide range of factors, makingexperimentation easy and pro�table.In any science, the goal of experimentation is to bet-ter understand a class of behaviors and the conditionsunder which they occur. Ideally, this will lead to empir-ical laws that can aid the process of theory formation.In our �eld, the central behavior is planning, and theconditions involve the algorithm employed and the en-vironment in which planning occurs. An implementedplanning algorithm is necessary but not su�cient; oneshould also attempt to specify both when it operateswell and the reasons for its behavior. Experimentationcan provide evidence on both these issues.As normally de�ned, an experiment is a study in whichone systematically varies one or more independent vari-ables and examines their e�ect on some dependent vari-ables. Thus, a planning experiment involves more thanrunning a planning algorithm on a single problem; itinvolves a number of runs carried out under di�erentconditions. In each case, one must measure some aspectof planning behavior for comparison across the di�er-ent conditions. Below we consider some dependent andindependent variables that are relevant to planning re-search. We then turn to broader issues in designingexperiments and in developing an experimental scienceof planning.12. Dependent Measures of BehaviorTo evaluate any planning system, one needs somemeasures of its behavior. In most experiments, these arethe dependent variables that one would like to predict.There are two obvious classes of metrics for planningalgorithms { the quality of the generated plans and thee�ort required to generate them.There exist many variations on the notion of planquality. In a classical planning framework, one might1For other discussions of experimentation in AI, see Ki-bler and Langley (1988) and Cohen and Howe (1988).



Planning as an Experimental Science 110simply measure the length of the solution path or thetotal number of actions. More sophisticated dependentvariables involve the time taken to execute a plan, theenergy required, or the use of other resources. Alter-natively, one can examine the robustness of a plan, aswould be characterized by its ability to respond well un-der changing or uncertain conditions.However, in many domains, �nding any plan at allrequires signi�cant search, making it important to mea-sure the time or e�ort spent in generating a plan. Mea-sures of this sort have predominated in recent exper-imental studies of learning in planning domains (e.g.,Minton, 1990; Iba, 1989). The simplest measure in-volves the total CPU time, but this metric can dependon both machines and implementations. More appropri-ate measures include the number of nodes considered ina search tree (Minton, 1990; Mooney, 1989), the numberof uni�cations required (Allen & Langley, 1990), and thenumber of subgoals generated during the planning pro-cess (Jones, 1989). Of course, such internal measuresare less interesting for intelligent agents that interactwith an external environment; in such cases, measuresof overall external time for planning and execution be-come relevant, despite possible di�erences in hardware.Most measures of plan quality and planning e�ort im-plicitly assume that the planner will �nd a solution toevery problem, but this is unrealistic in resource-limitedsituations. In such cases, the agent may be unable tosolve certain problems, and it is important to take thisinto account when reporting experimental results. Oneresponse involves explicitly incorporating this result intothe quality measure by giving unsuccessful attempts avery low score. Incorporating these cases into measuresof e�ort is more di�cult. As Segre, Elkan, and Rus-sell (1990) have noted, averaging failed problems intoe�ort scores can bias results in favor of one system overanother. Alternatively, one can simply report the per-centage of solved problems, treating this as a separatedependent measure.3. Comparative Studies of PlanningInformal comparisons among planning algorithmsabound in the AI literature, but there are relativelyfew systematic experiments that examine the behaviorof di�erent algorithms on the same problems. However,such comparative studies have an important role to playin developing a well-founded discipline.3.1 Gross Comparisons of Planning MethodsThe simplest form of planning experiment involvescomparing the behavior of entirely di�erent algorithmson the same problem or problems. In this case, theindependent variable is the particular planning systembeing used and the dependent variable is one or more ofthe measures described above. For instance, Sacerdoticompared the behavior of a simple means-ends planner

to that of a planner incorporating means-ends analysisand abstraction. More recently, Ruby and Datta (1990)have reported more extensive experiments, comparingthese two approaches in terms of nodes searched andlength of solution path. One can also imagine exper-imental comparisons between preplanning and reactivesystems, between search-based and case-based methods,and between speci�c algorithms within the same basicparadigm.In such comparative studies, it is important to placethe systems' behavior in context. To this end, one canusually compare their performance to that of a `strawman' that uses a simple-minded strategy (e.g., a tradi-tional nonlinear planner) on the same set of problems.If one of the `advanced' algorithms actually carries outmore search or generates lower-quality solutions thanthis naive approach, this is a cause for concern. Lowerbounds of this sort help calibrate the quality of systembehavior.3.2 Parametric Studies of PlanningGross comparisons between di�erent planning meth-ods have the aura of a competition, in which one methodwins and the others lose. However, a science of planningshould aim not for simple-minded conclusions but for in-creased understanding. To this end, researchers shouldattempt to identify the reasons for success or failure ona problem or class of problems, attempting to generalizebeyond a speci�c system and experiment.This goal requires �ner-grained studies of planningalgorithms and their behavior. For instance, many sys-tems contain a set of user-speci�ed parameters, and insuch cases one can experimentally determine the e�ectof the parameter settings on system behavior. A numberof parameters suggest themselves:� in preplanning systems, the maximum amount ofresources devoted to generating a plan (e.g., limitson time, memory, or search);� in reactive systems, the frequency at which theagent samples its environment;� in combined systems, the ratio of deliberation toexecution (Maes, in press; Sutton, 1990); and� in knowledge-intensive systems, the bias towardmodifying stored plans versus dynamically con-structing new plans.Ideally, behavior will be `acceptable' within a wide rangeof parameter values, with the system's behavior varyingslowly as a function of the settings. Hopefully, the samerange of values will work across a variety of domains.A related issue concerns the evaluation function orcontrol scheme that a planning system uses to directsearch. If the function contains parameters, then onecan examine their relative importance through simple



Planning as an Experimental Science 111parametric studies. However, one can also replace theentire control scheme with di�erent ones in an attemptto �nd improved search methods. For instance, in acase-based system one might compare an existing sim-ilarity criterion for indexing knowledge with other ap-proaches, such as Bayesian methods.3.3 Lesion Studies of Planning ComponentsSome planning systems contain a number of indepen-dent components, and one can study the usefulness ofeach by removing it from the system. In such a `lesion'experiment,2 one runs the system with and without agiven component, measuring the di�erence in perfor-mance. If a component does not aid the overall plan-ning process, then it can be removed without undesir-able consequences. Some obvious candidates for lesion-ing include:� mechanisms for abstraction planning;� methods for hierarchical planning;� heuristics for identifying when to replan; and� techniques for handling special forms of goals.The above components focus on processes, but one canalso imagine lesioning knowledge from a system. For ex-ample, some planning systems (Wilkins, 1988) incorpo-rate constraints that may narrow the search or improvesolution quality, but the inuence of these constraints onbehavior is an empirical question. Similarly, case-basedplanning systems draw upon a library of plans (Ham-mond, 1989) or plan components (Jones, 1989) in theconstruction of new plans, and one can determine thechange in behavior as one adds or removes cases frommemory.One special case of lesion studies focuses on learning,and much of the recent experimental work on planningfalls into this area. In this paradigm, one runs a plan-ning system with and without a learning component,then examines di�erences in performance between thetwo variants. Allen and Langley (1990), Iba (1989),Minton (1990), Ruby and Kibler (1989), and Shavlik(1990) report evidence that a variety of learning com-ponents can improve the behavior of planning systemsafter su�cient experience in a given domain.In some cases, researchers have also found negativeresults; both Iba (1989) and Minton (1990) have shownthat naive learning methods can actually degrade plan-ning performance in terms of search required to �ndsolutions. However, rather than abandoning the use oflearning methods, both used their results to identify thesource of degradation and went on to develop learningmethods that improve performance. This work provides2This approach is common in neuroscience, where re-searchers excise a speci�c region of the brain to determineits e�ect on behavior.

an excellent role model for those interested in the exper-imental study of planning. Kibler and Langley (1988)discuss additional issues that arise in experiments withlearning planners, as do Segre et al. (1990).4. Varying the Planning DomainSeldom will one system always appear superior to an-other, and this leads naturally to the idea of identify-ing the conditions under which one approach has betterperformance than another. To study the e�ect of theenvironment on a planning system, one must vary thedomain in which it operates. Natural domains, such aspath planning for an autonomous vehicle or manipula-tor planning for an industrial robot arm, are the mostobvious because they show real-world relevance. Also,successful runs on a number of di�erent natural domainsprovide evidence of generality.The simplest approach to this issue involves designinga set of `benchmark problems'. To be scienti�cally use-ful, each benchmark problem should highlight certainproblem attributes to help isolate planners' particularabilities. In addition, a realistic set of benchmark prob-lems can help the scienti�c community explain its resultsin terms that can make a di�erence to those concernedwith practical applications. These two goals { foster-ing scienti�c comparison and engineering development{ place rather di�erent constraints on a set of bench-mark problems.For the purposes of scienti�c comparison, one must beable to independently vary di�erent task attributes. Toachieve this, some benchmark problems should involvearti�cial domains. For situations that involve planningand execution, relevant attributes relate to the initialstate speci�cation, the goals, and the domain dynamics.For instance, one might consider the following sorts oftask attributes:� the length of the `optimal' solution path (e.g., thenumber of actions in a block-stacking task);� the e�ective branching factor (e.g., the number ofactions considered for each plan step);� the complexity of the environment (e.g., the numberof obstacles in a navigation task);� the amount of goal interaction in a planning task;� the reliability of the domain (e.g., the probabilitythat e�ectors will have the desired e�ect); and� the rate of environmental change not due to theagent's actions.However the list of task attributes is constructed, theset of representative problems should provide a completecoverage of the task attribute space. Complete coveragewill let researchers choose problems from the set thathighlight the system capabilities they seek to measure.



Planning as an Experimental Science 112The set of task attributes and benchmark tasks shouldevolve concurrently.Arti�cial domains are gaining acceptance with theplanning community (e.g., Pollack & Ringuette, inpress), since they let researchers systematically studyplanning behavior across a wide range of situations.3Another advantage of arti�cial domains is that theyspecify a variety of domain characteristics. In manycases, this lets one determine plans having optimal qual-ity, thus establishing upper bounds on a planner's out-put. One can then compare the plans generated by ac-tual algorithms against these upper bounds. If planquality approaches this bound, one can also decidewhether additional components or extra computationare worth minor improvements in this regard.For engineering development and technology transferpurposes, tasks that include `practical' di�culties willbe more useful. Domains involving physical output de-vices such as robot arms and physical input devices suchas limit switches will prove more useful in terms of val-idating particular systems. It is important to includeproblems in the evolving set of benchmarks that sup-port such engineering evaluation, but discussion of suchissues is beyond the scope of this paper.5. Issues in Experimental DesignBasic experimental method suggests that researchersvary one independent term at a time while holding oth-ers constant. However, one can repeat this techniquemany times to achieve `factorial' designs that measuredependent variables under all combinations of indepen-dent values. Full factorial designs are impractical whenmany independent variables are involved, but reducedexperimental designs are also possible.The advantage of combinatorial designs is that theylet one go beyond the e�ects of isolated factors and de-tect interactions between independent variables. For in-stance, one might �nd that planning method A behavesbetter than method B in environment X , whereas Bfares better than A in environment Y . Alternatively, onemight �nd that two components of a planning methodlead to synergy, or that the joint presence of two do-main characteristics make planning especially di�cult.We anticipate that many of the most interesting resultsin planning will have this form. The detection of suchinteractions does more than establish the conditions un-der which alternative methods should be used; it canalso suggest hybrid algorithms.Another issue in experimental design involves the useof sampling and statistical tests. In the natural sciences,one can never control all possible variables. As a result,3One can also view resource limitations (e.g., time or en-ergy) as independent variables that a�ect task di�culty. Ex-perimental studies of `anytime' algorithms (Dean & Boddy,1988) might examine the e�ect of planning time on qualityof the resulting plans.

researchers must collect multiple observations for eachcell in their experimental design, average the resultingvalues, and use statistical techniques to ensure that con-clusions about di�erences between cells are justi�ed bythe data. Although in principle one can control all thefactors that inuence a planning system, for practicalreasons this will seldom be possible, and planning re-searchers should consider using them as well.For instance, seldom can one test a planning systemon all possible problems from a given domain. Thus, itmakes sense to select a random sample, run the systemon all problems in this set, and report the mean andvariance on dependent measures of interest. In somesituations, the e�ects of the independent variables willbe large enough that formal signi�cance tests are notnecessary. In other cases, the variances may be suf-�ciently high that statistics should be invoked. Andthough exploratory studies are useful, researchers oftendesign experiments with some hypotheses in mind, andwhenever possible they should explicitly state and testthese hypotheses. In all cases, the experimenter shoulduse caution and common sense in designing his or herexperiments and in interpreting the results.6. An Imaginary Experimental StudyAn imaginary example may clarify the nature of plan-ning experiments. Suppose Dr. Calvin has developeda new planning algorithm, OutStrips, in response tolimitations of earlier systems, say an inability to scaleto complex problems. In this case, the hypothesis isthat the new method will `outstrip' other systems astask complexity increases. This suggests two indepen-dent variables { the algorithm employed and the prob-lem di�culty.At this point, Dr. Calvin must settle on some mea-sures of di�culty. Rather than using the number ofactions in optimal solutions, she favors a more so-phisticated metric that incorporates the idea of goalinteraction.4 She also decides to study the systems' be-haviors in multiple domains, say an idealized manipula-tion task like the blocks world and an idealized naviga-tion task. Similar results in multiple domains will lendcredence to her �ndings, so she includes this as a thirdindependent variable.Calvin must also identify the dependent measures sheplans to use, and the explicit hypotheses she hopes totest. Naturally, she is interested in solution quality,which she will measure as the number of actions in the�nal plan, but she is even more interested in planninge�ort. Calvin has implemented OutStrips on her newpositronic hardware, but she must run the comparisonalgorithms (including a straw man) on archaic siliconmachines. Since all the systems involved in the study de-�ne their search spaces in a similar manner, she decides4Jones (1989) provides an initial approach to measuringgoal interaction for means-ends systems.



Planning as an Experimental Science 113to use the number of expanded nodes as her measure ofe�ort.In carrying out her experiment, the researcher mustrandomly select from problems at each level of di�culty,since the number of possible problems increases rapidlywith di�culty. However, Calvin is careful to use thesame test problems for each system. For each problem,she measures the various systems' search and plan qual-ity, recording the mean and variance for each system-di�culty combination. She follows this procedure ineach of the planning domains selected for study.In this case, let us suppose that, for each domain,OutStrips requires more search than its competitorson simple tasks, but that it expands considerably fewernodes on di�cult problems, with the gap widening as thedi�culty increases. These results constitute evidence infavor of the original hypothesis that OutStrips scalesbetter than other methods. However, Calvin also notesthat her system's plan quality is slightly worse than thatfor the more expensive algorithms. As expected, she alsonotes that all systems perform better than the strawman, except on the simplest problems.In response to these �ndings, Calvin designs a le-sion study in an attempt to identify the particular con-straints used by OutStrips that lead to its superiority.To this end, she repeats the above experiment with le-sioned versions of her algorithm, �nding that some con-straints greatly reduce planning e�ort, but that one ofthem is partly responsible for decrements in plan qual-ity. As a result, Calvin has not only arrived at a deeperunderstanding of her system's success (and how its con-straints might be transferred to other systems); she hasalso determined that deletion of one component actuallyproduces a superior system with respect to plan qual-ity. Of course, this is not the end of the story, for ad-ditional experiments by other researchers may identifyconditions under which OutStrips fares poorly, sug-gesting ideas for even better algorithms.7. Toward an Experimental ScienceDi�erent goals are appropriate for di�erent stages ofa developing experimental science. Although planningwork remains in the early steps of this evolution, it isworthwhile considering the states that may arise on thepath toward a mature scienti�c discipline.In the initial stages, researchers should be satis�edwith qualitative regularities that show one method asbetter than another under certain conditions, or thatshow one environmental factor as more devastating toa certain algorithm than another. Experimental eval-uations should become the norm for published papers,with researchers comparing new algorithms against well-tested systems that act as `straw men'. Parametric and

lesion studies should examine the contributions of spe-ci�c components, leading to improved algorithms thatbuild on limitations identi�ed earlier. Comparativestudies that examine di�erent algorithms on the samedomains should proliferate, not to show one method su-perior to another, but to suggest directions for improve-ment. Online libraries of representative domains shouldencourage such comparisons.Later stages of planning research should move beyondqualitative conclusions, using experimental studies to di-rect the search for quantitative laws that can actuallypredict performance on unobserved situations. In thelonger term, results of this sort should lead to theoreti-cal analyses that explain such e�ects at a deeper level,using average-case methods rather than worst-case as-sumptions. For instance, Segre et al. (1990) outline asimple mathematical model of search in planning, whichthey propose to use in analyzing experimental results.Other researchers should follow this lead, aiming for ro-bust theories of planning algorithms that predict behav-ior in novel experimental situations. Failed predictionsshould lead in turn to revised theories, in the same fash-ion that experiment and prediction interact in the nat-ural sciences.In summary, the planning �eld has already started itsdevelopment toward an experimental science, and futureadvances should produce improved dependent measures,better independent variables, more useful experimentaldesigns, and ultimately an integration of theory and ex-periment. However, even the earliest qualitative stagesof an empirical science can strongly inuence the di-rection of research, identifying promising methods andrevealing important roadblocks. Research on planningis just entering this �rst stage, but we believe the �eldwill progress rapidly once it has started along the pathof careful experimental evaluation.Of course, the potential bene�ts of experimentationdo not mean that empiricists should report gratuitousexperiments any more than theoreticians should pub-lish vacuous proofs. Whether they lead to positive ornegative results, experiments are worthwhile only to theextent that they illuminate the nature of planning mech-anisms and the reasons for their success or failure. Al-though experimental studies are not the only path tounderstanding, we feel they constitute one of planning'sbrightest hopes for rapid scienti�c progress.AcknowledgementsWe would like to thank John Allen for useful com-ments on an earlier draft. Parts of this paper are similarto an earlier manuscript on research in machine learn-ing, co-authored with Dennis Kibler, who has greatlyinuenced our ideas on experimentation.
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