
Case-Based Acquisition of Place KnowledgePat Langley� (Langley@cs.stanford.edu)Institute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306 USAKarl Pfleger (KPfleger@hpp.stanford.edu)Knowledge Systems Laboratory, Computer Science Dept.Stanford University, Stanford, CA 94305 USAAbstractIn this paper we de�ne the task of place learning anddescribe one approach to this problem. The frame-work represents distinct places using evidence grids,a probabilistic description of occupancy. Place recog-nition relies on case-based classi�cation, augmentedby a registration process to correct for translations.The learning mechanism is also similar to that in case-based systems, involving the simple storage of inferredevidence grids. Experimental studies with both phys-ical and simulated robots suggest that this approachimproves place recognition with experience, that it canhandle signi�cant sensor noise, and that it scales wellto increasing numbers of places. Previous researchershave studied evidence grids and place learning, butthey have not combined these two powerful concepts,nor have they used the experimental methods of ma-chine learning to evaluate their methods' abilities.1. Introduction and Basic ConceptsA physical agent exists in an environment, and knowl-edge about that environment can aid its achievementof goals. Research on the representation, use, andacquisition of spatial knowledge has occupied an im-portant role in robotics. In this paper, we consider anovel approach to this area that combines ideas fromrobotics and machine learning.Let us begin with some de�nitions of concepts andtasks that appear central to spatial reasoning. Con-sider a physical agent, say a robot, that is situated inthe world. We can say that:De�nition 1 The position of an agent is a coordi-nate in 2D or 3D space.Position corresponds to ground truth, giving the actuallocation of the agent in some established coordinatesystem. We can also de�ne the related concept of agent�Also a�liated with the Robotics Laboratory, Com-puter Science Department, Stanford University.

orientation, but in this paper we will assume that theagent has a 360 degree �eld of view, making this notionless central.A physical agent does not typically have direct accessto knowledge of its position, but it does have indirectinformation.De�nition 2 A sensor reading is a description ofthe environment around the agent's position that hasbeen �ltered through its sensors.The information in sensor readings may be imperfectin various ways. For example, it may be incompletein that it describes only certain characteristics of thelocal environment, and it may be noisy in that sensorreadings for the same position may produce di�erentresults at di�erent times.Nevertheless, the agent must �nd some way to use thisinformation to make useful inferences. This suggestsa natural task for a physical agent:De�nition 3 Localization involves the determina-tion of an agent's position in the environment from aset of sensor readings.Other tasks, such as navigating from position A to po-sition B, are certainly possible. However, note thatan agent cannot begin to carry out such a task with-out �rst knowing A and without knowing when it hasachieved B. Thus, localization seems more basic thannavigation, and we will focus our attention on it here.However, in many cases humans seem to care lessabout their exact position in space than about moreabstract spatial regions. This suggests another, some-what di�erent, concept:De�nition 4 A place is a contiguous set of positionsin 2D or 3D space.Robotics researchers have paid relatively little atten-tion to the notion of place, but its central role in hu-man spatial reasoning suggests that it deserves a closer



Case-Based Acquisition of Place Knowledge 345look. Naturally, this new concept lets us de�ne an as-sociated performance task by analogy with the local-ization task:De�nition 5 Place recognition involves deter-mining the place in which the agent currently residesfrom a set of sensor readings.At least in principle, the place recognition task seemsmore tractable than localization, in that it transformsa problem of numeric prediction into one involving dis-crete classi�cation. One can also carry out localizationwithin the context of a given place, but this in turnmay be easier than global localization. Navigation be-tween two places may also be simpler than navigationbetween two positions.Of course, reliance on places rather than positions alsointroduces a problem: one must specify some descrip-tions in memory that let the agent map sensor read-ings onto place names. One might attempt to entersuch descriptions manually, but it seems desirable toautomate this process, suggesting a �nal task:De�nition 6 Place learning involves the induc-tion of descriptions, from the sensor readings and placenames for a set of training positions, that let the agentaccurately recognize the places of novel positions.Note that this task formulation makes minimal de-mands on the teacher, who does not have to give theagent information about its actual positions. Rather,the agent collects its own sensor readings, and theteacher must only label each reading as an instanceof one place or another. This formulation assumes su-pervised training data, but unsupervised versions, inwhich the agent decides on its own place names, arepossible as well. We will touch briey on unsupervisedplace learning in Section 7, but we will focus on thesupervised version in this paper.In the pages that follow, we present one approach todealing with knowledge about places. First we de-scribe a representational formalism for storing placeknowledge { evidence grids { and then examine amethod for place recognition that operates on this rep-resentation. After this, we consider a simple learningprocess that lets one acquire and re�ne knowledge ofplaces. Next we present some hypotheses about ourapproach, along with some experimental tests of thosehypotheses. Finally, we review related work on spatiallearning and discuss some directions for future work.One important di�erence between our approach andearlier robotics work on spatial knowledge lies in ourincorporation of ideas from machine learning. In par-ticular, we view place recognition as a classi�cationtask and we view place learning as a supervised con-cept induction task. This suggests not only certainlearning methods, but also the use of experimentalmethods prevalent in machine learning to evaluate our

technique. However, the tasks of place recognition andlearning introduce some di�culties not usually presentin machine learning research, in particular the perva-sive presence of signi�cant sensor noise. Our approachto representing, using, and learning place knowledge isdesigned with this in mind.2. The Evidence Grid RepresentationRobotics researchers have explored a variety of for-malisms for representing spatial knowledge. One ap-proach relies on using geometric primitives to describethe edges or surfaces of obstacles in the environment.For example, one can use a set of lines to approxi-mate the walls of an o�ce and the furniture it con-tains. Such representations are precise, but Schieleand Crowley (1994) note that they can be di�cult touse when sensors are noisy.Another common scheme involves dividing the envi-ronment into a rectangular grid of mutually exclu-sive cells, each corresponding to a distinct position inspace. In this framework, each cell is speci�ed as eitheroccupied (containing an obstacle) or open (containingnone). This approach is well suited to navigation tasksin which one already knows the structure of the envi-ronment (i.e., which cells are occupied) and the posi-tion of the agent within the grid. However, this schemeis not designed to handle the uncertainty that ariseswhen the position is unknown or when the agent hasyet to learn the structure of the environment.An alternative framework uses the evidence grid(Elfes, 1989; Moravec & Blackwell, 1992), a data struc-ture that is speci�cally designed to deal with uncer-tainty. In this approach, each cell C has an associatedprobability that C is occupied by some tangible ob-ject that would block the agent's path if it tried tomove through the cell. These probabilities range fromnear zero (nearly certain a cell is open) to near one(nearly certain a cell is occupied), with the middlecorresponding to cells for which little information isavailable (e.g., behind a wall or inside an object). Wewill adopt this framework in the current paper.Figure 1 shows the position of an agent in a roomwithin a larger o�ce environment, similar in structureto an actual area at Stanford University. Figure 2 de-picts evidence grids constructed from simulated sensorreadings taken from a position (a) in the top left roomand (b) in the lower left room from the same orienta-tion. Note that open regions within the agent's viewhave low probability of being occupied (lighter shades)and that edges of obstacles and walls within view havehigh probability (darker shades). However, areas thatare occluded, such as those behind obstacles and walls,have probabilities around 12 (empty regions), since theagent's sensors provide no information about them.Previous work with evidence grids has emphasizedtheir use in representing single rooms over a relatively
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Figure 1: A simulated o�ce environment with a num-ber of distinct places.short period. However, they also have potential forhandling large-scale spatial knowledge over longer timespans. An agent could store its knowledge about anentire building or even a city in a single, large evidencegrid. But this scheme seems impractical from a com-putational viewpoint, and odometry errors could causegrid cells to become increasingly uncertain over time.A more tractable approach to representing large-scalespatial knowledge, which we take here, involves stor-age of separate evidence grids for each distinct place.For example, one might use one or a few grids to en-code each room in a building. This knowledge canbe augmented by geometric relations among places,which would support navigation planning, but we willnot address that aspect here. The retention of placedescriptions in memory has much in common with thestorage of a case library in work on case-based reason-ing (Aha, Kibler, & Albert, 1991; Kolodner, 1993). Inboth frameworks, the stored items represent alterna-tive situations in which the agent can �nd itself, andwhich suggest di�erent inferences.3. Case-Based Recognition of PlacesNow that we have described the nature of evidencegrids, we can examine their use in place recognition.Let us assume the agent has a stored place library,with each place described as an n � m evidence gridwith an associated place name. Our approach to placerecognition relies on a three-step process that is closelyakin to case-based reasoning.First, the agent constructs a temporary or short-termevidence grid for its current position from a set of sen-sor readings. This involves transforming each sensor

reading into a probability of occupancy for each cell.Following Moravec and Blackwell (1992), we assumea sensor model that speci�es this mapping. The re-sult is an initial temporary evidence grid, based onthe sensor reading, that characterizes the region in thevicinity of the agent. The agent repeats this process aspeci�ed number of times, in each case incorporatingthe result into the temporary grid using a Bayesianupdating scheme. We will not describe this updatingprocess in depth, but readers can �nd details in Elfes(1989) and in Moravec and Blackwell (1992).Next, the agent matches the short-term evidence gridagainst each of the grids stored in the place library.The evaluation function used in this comparison pro-cess measures the degree of match between two grids.Speci�cally, if Sr;c is the probability associated withthe rth of R rows and the cth of C columns for theshort-term grid, and if Lr;c is the analogous probabil-ity for the stored, long-term grid, thenM = RXr CXc F (Sr;c; Lr;c)computes the similarity between the short-term andstored grids. One can instantiate the function F inmany ways, provided they satisfy certain properties:two cells should be treated as similar if they are con-�dent in the same direction, as dissimilar if they arecon�dent in opposite directions, and generally ignoredif either is uncertain.Moravec and Blackwell (1992) implement this cell-to-cell component of grid similarity F (Sr;c; Lr;c) aslog [Sr;cLr;c + (1� Sr;c)(1� Lr;c)] + 1 ;which varies from one (a perfect match) to negativein�nity (the worst possible match). Reection suggeststhat this scheme might give very low match scores toreasonably similar grids if even a few cells are con�dentin opposite directions. For this reason, we decided touse an alternative de�nition of F (Sr;c; Lr;c):1 if Sr;c > 23 and Lr;c > 231 if Sr;c < � 23 and Lr;c < � 23�1 if Sr;c > 23 and Lr;c < � 23�1 if Sr;c < � 23 and Lr;c > 230 otherwise .We felt this measure would be less sensitive to situa-tions in which disagreements arise between cells hav-ing high certainty, and initial experiments (Langley& Peger, 1995) suggest that our version fares muchbetter than the Moravec/Blackwell measure.The above metrics assume that the stored and tempo-rary grids are described in the same coordinate system.One can plausibly assume the presence of a reason-ably accurate compass to determine the relative ro-tations, but possible di�erences in translation require
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67 94 80                                                                                                                     Figure 2: Evidence grids generated from simulated sonar readings for (a) the top left room in Figure 1 and (b)the lower left room in the same �gure.some form of registration that coerces the temporaryevidence grid into the same coordinate system as thestored place. To this end, our system carries out anexhaustive search using operators that modify the po-sition by one grid row or column, evaluating each alter-native using the metric M de�ned above1 and select-ing the translation that gives the highest score. If thecompass is not accurate, one can extend this approachto correct for small o�sets in rotation estimates.Finally, the agent compares the match scores for thevarious registered grids and selects the best of thesecompetitors. This strategy provides both the placename associated with the selected evidence grid andthe estimated position within that place description.Because adjacent evidence grids may cover overlappingregions, this scheme has some potential for misclassify-ing a place based on its outlying rather than its centralcells. However, this issue has not been a problem inour studies to date.As we noted earlier, this approach has much in com-mon with methods for case-based reasoning. Here theevidence grids in the place library correspond to storedcases, whereas the short-term grid maps on to the testcase for which one wants to make a prediction. Thematch function corresponds to the similarity metricthat determines the nearness of the test case to eachstored case in an R � C dimensional space, and the�nal classi�cation step is similar to that used in thenearest neighbor method, perhaps the simplest case-based technique. The fact that each evidence grid1When translation causes two grids to overlap on onlyR0 � C0 cells, the metric uses only these cells in its sum-mation. This creates a bias toward stored grids that sharemore cells with the temporary grid, which seems reason-able, but it does not actively punish a stored grid for havingonly partial overlap.

may be a probabilistic summary, computed from a setof sensor readings, di�ers from the prototypical case-based system, but abstract cases are not that unusual.A more intriguing di�erence concerns the registrationprocess. Many case-based systems incorporate someadaptation method, but usually this occurs after caseselection, whereas here adaptation (registration) takesplace during the evaluation (match) process itself.4. Case-Based Learning of PlacesNow let us consider an approach to the acquisition ofplace knowledge that is stored in evidence grids. Wewould like an incremental learning process, since theagent encounters its environment sequentially. How-ever, we are not concerned here with the task of ef-fectively exploring an unknown world, so we will as-sume that the agent is led to a position, given time toobserve its surroundings, given a place name, led toanother position, and so forth.Given our commitment to a place library and to acase-based method for place recognition, we naturallyassume a case-based learning scheme as well. In par-ticular, at each position to which it is led, the agentcollects a speci�ed number of sensor readings and con-structs a short-term evidence grid S using the methoddescribed in the previous section. The system thensimply adds the new grid to the place library, alongwith the speci�ed place name. The same place namemay be associated with multiple evidence grids, butthis seems appropriate for places that appear di�erentfrom di�erent positions.At �rst glance, this approach to place learning soundsguaranteed to work, in that one simply stores a de-scription for each place, after which recognition willbe perfect. However, this view ignores the central fea-



348 Langley and Pegerture of the task { uncertainty. Even with noise-freesensors, the same place typically looks di�erent fromdi�erent positions, if only because certain regions areoccluded. Moreover, standard robotic sensors such assonar are notoriously noisy, and will produce di�erentsensor readings, and thus di�erent evidence grids, evenwhen repeated from the same position. Thus, the ade-quacy of this approach remains an open question thatis best answered by experiment.5. Experiments with Place LearningIn Section 1 we formulated the place learning task interms similar to those used to describe other inductionproblems. Thus, we can use the experimental meth-ods developed for machine learning to evaluate the ro-bustness of our framework. In this section we present anumber of hypotheses about the system's behavior, fol-lowed by experimental tests of those hypotheses. Ourprimary measure of performance is recognition accu-racy for places in a test set of evidence grids that di�erfrom those in the training set.The experiments we designed to evaluate the abili-ties of our approach relied on both a physical robot{ a Nomad 200 with a 16-sensor sonar ring { and ahigh-�delity simulation of this machine. The physicalenvironment was a suite of o�ces and common areasat Stanford University, and the simulated environmentwas an idealized layout of a similar suite, depicted ear-lier in Figure 1. We used the physical Nomad to ensurerealism in our results, while the simulation gave us ex-perimental control over device parameters not possiblewith the actual robot.We generated each training or test case by placing thephysical or simulated robot in a position, collectingreadings from the sonar ring to construct an initialevidence grid, rotating and/or moving the robot (asdescribed below), collecting new sonar readings andupdating the evidence grid, and repeating this processmany times. For the simulated robot, we generated sixdi�erent grids for each of six distinct places,2 giving36 total evidence grids. For the physical robot, weproduced only three grids for each place (because theprocess took longer), giving 18 total grids.The Nomad simulator incorporates a number param-eters that a�ect the quality of sonar information. Forexample, the error parameter controls random vari-ation in the distance returned by the sonar sensors,critical controls the angle of incidence at whichspecular reection occurs, and halfcone controls theangular width of each sonar signal. Unless otherwisespeci�ed, we set error to 0.15, which was our best es-timate of the error encountered by the physical robot,2We de�ned these places so they corresponded to thelower left, lower right, middle right, and upper left roomsin Figure 1, and to the areas to the left and right of theoctagonal table in the �gure.

and we left all other parameters at their default values,which produce a 25 degree �eld of view for each sensorand specular reection at angles of incidence with thesensed surface of 30 degrees or less.For each experimental condition with the simulatedenvironment, we ran the learning system 400 timeswith di�erent random partitions of the evidence gridsinto 33 training and three test cases, randomly order-ing the storage of training cases. For the physical en-vironment, we partitioned the grids into 17 trainingcases and one test case, again averaging over 400 runsfor each condition.Following Kibler and Langley (1988), we can divide thefactors that a�ect the learner's behavior into two broadtypes, those involving characteristics of the environ-ment and those involving features of the learner. Themost basic environmental characteristic is the numberof training cases available. Naturally, we hypothesizedthat the accuracy of place recognition would improveas the agent encounters more positions. However, theliterature sometimes reports actual decreases in per-formance, so we needed to test this expectation.Figure 3 (a) shows the learning curve, giving 95% con-�dence intervals, for the physical Nomad robot wheneach training and test grid was based on 45 sets ofsonar readings, taken from a single position but withsuccessive orientations incremented by one degree. Asexpected, the system's ability to recognize places grad-ually increases as it observes and stores more trainingcases. However, the shape of the curve suggests thatthe learning task is not trivial, in that multiple casesfor each place are needed to achieve even 70% accu-racy. The curve has not yet leveled o� at 17 instances,so presumably additional cases would further improverecognition.Figure 3 (a) also shows an analogous learning curve forthe simulated robot. The general shape of the curve isvery similar to that for the physical device, but the rateof learning is somewhat higher. Although a few errorsstill occur even after 35 training cases, the performancecomponent generally assigns the correct place name tothe test cases.We were interested not only in our method's ability torecognize places, but in its ability to identify the pre-cise position of the robot within a given place. Thus,we also measured the absolute di�erence between theactual robot position in each test case and the esti-mated position as computed during the registrationprocess. Figure 3 (b) shows the learning curves forthe physical robot, as well as similar results for thesimulated one. In this case, since we are measuring er-ror rather than accuracy, the quantities start high andgradually decrease with experience. Again, behaviorin the simulated environment generally mimics that inthe physical world, though the system fares somewhatbetter on the former.
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Figure 3: Learning curves with 95% con�dence intervals for the case-based place learning system for a physicalNomad robot and a simulated robot in a similar o�ce environment, (a) using recognition accuracy as theperformance measure and (b) using error in estimated position.The amount of sensor noise constitutes a more inter-esting environmental factor. We would not expect in-creased noise to a�ect the asymptotic accuracy, butit should decrease the rate of place learning, that is,the number of training cases needed to reach a givenaccuracy level. Fortunately, our reliance on evidencegrids suggested a natural response to noisy sense data.Because each stored case can be based on multiple sen-sor signals, we can attempt to improve the quality ofthese cases by increasing the number of the signalsused to generate them. We hypothesized that placedescriptions based on more sensor readings would beless a�ected by increases in sensor noise. Thus, we pre-dicted an interaction between these two independentvariables, speci�cally one that a�ects learning rate butnot asymptotic accuracy.To test this hypothesis, we used the Nomad simula-tor to produce four di�erent levels of sensor noise, inwhich the error parameter was set to 0.0, 0.15, 0.30,and 0.45, respectively. We also attempted to vary thequality of the stored cases by using two di�erent sens-ing strategies. In one, we based each evidence grid(both training and test cases) on 45 sonar readingscollected from a single position but produced at ori-entations one degree apart, as used to generate theresults in Figure 3. In the other, we based each gridon 90 readings, produced by repeating this strategyin two nearby, randomly selected positions within thesame room.Figure 4 (a) shows the learning curves that result forthe zero and 0.45 noise levels using the one-positionsensing strategy, whereas Figure 4 (b) presents anal-ogous results for the two-position strategy. (The re-sults for the 0.15 and 0.3 settings fell between theseextremes; we have omitted them for the sake of clar-

ity.) The two-position scheme clearly fares better thanthe simpler strategy, but the curves diverge somewhatfrom our predictions. The rate of learning for thetwo-position method is much higher than for the one-position method, even when no sensor noise is present.Also, the introduction of sensor noise clearly a�ectsboth strategies, but it alters only the learning rate forthe more sophisticated scheme, while it actually ap-pears to reduce the asymptotic recognition accuracyfor the simpler one.Some real-world environments contain many distinctplaces, and we hypothesized that our learning methodwould scale well as the number of places increased. Weobtained preliminary results along these lines by exam-ining our algorithm's behavior with di�erent subsets ofthe places available in our environment. Figure 5 (a)shows the learning curves that result for two throughsix places, with each case based on 45 simulated sonarreadings from one position. Each reported accuracy isaveraged over 400 runs for each possible subset of kout of six places, using 35 randomly selected trainingcases and one test case. Thus, when k = 2 we car-ried out � 62 � � 400 = 6000 runs, and when k = 3 wecarried out � 63 � � 400 = 8000 runs. We have not re-ported con�dence intervals here, since the accuraciesare averages of averages.Naturally, increasing the number of places decreasesthe speed of learning, but we can also examine the rateof this decrease. Note that the �gure also shows whereeach learning curve crosses the level of 90 percent accu-racy. These crossover points produce the scaling curvein Figure 5 (b), which maps the number of distinctplaces against the number of training cases needed toreach this accuracy level.



350 Langley and Peger

0 5 10 15 20 25 30 35

Number of training cases

(a)
0.

5
0.

6
0.

7
0.

8
0.

9
1

R
ec

og
ni

tio
n 

ac
cu

ra
cy

Sensor noise = 0.45

Sensor noise = 0.0

0 5 10 15 20 25 30 35

Number of training cases

(b)

0.
5

0.
6

0.
7

0.
8

0.
9

1

R
ec

og
ni

tio
n 

ac
cu

ra
cy

Sensor noise = 0.45

Sensor noise = 0.0

Figure 4: Learning curves for the case-based place learning system for two levels of sensor noise when evidencegrids are based on (a) 45 readings from one position and (b) 90 readings from two nearby positions.This higher-order curve seems to be either linear orquadratic, but the analogous scaling curve for thetwo-position sensing strategy de�nitely appears linear.These results suggest that our approach requires, moreor less, a �xed number of training cases per place, inde-pendent of the total number of places. This encouragesus to believe that the method will scale well to domainsthat involve many more di�erent places than the sixwe have examined, though ultimately we should testthis prediction using larger environments.Clearly, there exist many other factors that could inu-ence the behavior of our place-learning method. Theseinclude the resolution of the evidence grids, the dis-tinctiveness of the places to be learned, and the com-plexity of these places in terms of the number of sep-arate grids needed to describe them adequately. How-ever, we will reserve these issues for future studies, asthe current experiments have been su�cient to showthat our approach is a promising one.6. Related Work on Spatial LearningOur research on the acquisition of spatial knowledgeis certainly not the �rst in this area. Clearly, ourwork owes a strong intellectual debt to Elfes (1989),Moravec and Blackwell (1992), and other developersof the evidence grid framework. Our basic representa-tion and our performance system directly employ tech-niques developed by these researchers. However, mostresearch in this framework has focused on the construc-tion of a single global map, rather than a collectionof evidence grids for distinct places. Although suchapproaches clearly acquire spatial knowledge, they donot involve induction in the sense of using training in-stances to improve performance on novel test cases,whereas our work on place learning �ts easily into thisparadigm. Thrun (1993) has used reinforcement learn-

ing to improve sensor interpretation for evidence-gridconstruction, but his goal was to construct a globalmap. Mahadevan (1992) describes a method thatforms generalizations expressed as evidence grids, buthis aim was to learn not places but action models.Nevertheless, some work outside the evidence grid for-malism has focused on place learning. For example,Yamauchi and Beer (1994) describe Elden, a systemthat represents places in terms of means and vari-ances of direct sensor readings, rather than inferredgrid occupancies. Their place descriptions also in-clude features for the robot's position as estimatedthrough dead reckoning and connections to recentlyvisited places. Place recognition involves passing eachattribute's value through Gaussian functions associ-ated with each place, then selecting the competitorwith the highest sum. Learning consists of updatingthe means and variances for recognized places, creatingnew places when no existing ones match well enough,and adding predictive connections between places. Ya-mauchi and Beer's reliance on a Gaussian distancemetric makes their method similar to our case-basedapproach, though Elden di�ers in its use of instanceaveraging, its use of raw sensor data, and the unsuper-vised nature of the learning processes.3Lin, Hanson, and Judd (1994) have taken a similarapproach to representing and using spatial knowledge.Their system also describes places (which they calllandmarks) as means and variances of sonar readingsand uses a Gaussian metric to determine the degreeof match against the current sensor signals. However,their learning mechanisms include not only the cre-3Yamauchi and Beer's system also incorporates an ev-idence grid representation, but it constructs a global mapand uses this map for correcting errors in dead reckoningrather than for place recognition.
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Figure 5: (a) Learning curves for di�erent numbers of distinct places, based on 45 sonar readings from oneposition. (b) Scaling curves that map, for two di�erent sensing strategies, the number of training cases neededto achieve 90% accuracy as a function of the number of places.ation and updating of place descriptions, but also areinforcement process designed to improve estimatesof the robot's location. This latter technique can leadthe learner to add a new place or remove an existingone if these actions reduce errors in location estimates.Kuipers and Byun's (1988) NX system also operates ondirect sensory readings, but it stores only places thatare distinctive in terms of optimizing certain measures.For example, NX de�nes the central point in a hall-way corner as being symmetrical and being equidis-tant from the walls, in addition to containing informa-tion about the angles and distances to obstacles. Thesystem also describes edges, which connect distinctiveplaces, in terms of length, width, and similar charac-teristics. Whenever NX encounters a local optimum Lon one of its measures, it compares the sensor readingsto each known place P stored in memory; if the de-scriptions for L and P are similar, and if their locationsare metrically or topologically close, the system clas-si�es L as the known place P . Otherwise, NX createsa new place based on L's description and stores thisin memory, along with its connections to other places.Mataric (1991) describes a similar scheme, though thedetails of place creation are di�erent.In methodological terms, Kortencamp and Wey-mouth's (1994) work is perhaps the most similar toour own. Their approach emphasizes gateways such asdoors that connect two regions, but their system rep-resents these locations using a grid structure and theyevaluate its behavior in terms of recognition accuracy.However, their scheme uses hand-coded descriptionsfor a few gateway types to recognize candidate placesand create new ones, rather than actual supervisedtraining data, and they compare a number of di�erent

recognition strategies, including one that combines ev-idence from sonar and visual sensors.On another dimension, our approach is most similar toYeap's (1988) work on spatial reasoning. His frame-work also posits the storage of distinct places, the de-scriptions of which are not direct sensory readings butinferred summaries. However, his \absolute space rep-resentation" does not take the form of evidence gridsbut rather consists of a connected sequence of line seg-ments that, except for occasional openings, enclose anarea. Yeap does not describe a performance elementthat uses these descriptions in place recognition but,as in our own framework, learning involves the simplestorage of the inferred place descriptions, which sug-gests the use of a case-based method.7. Directions for Future WorkAlthough our experimental studies of place learninghave revealed some insight into our approach, clearlymore work remains to be done. The most immediateextension would replace the current supervised learn-ing method with an unsupervised one that can identifydistinctive places on its own. To this end, we plan toemploy a technique similar to that used by Yamauchiand Beer (1994), but adapted to operate on evidencegrids rather than direct sensor descriptions. As theagent moves through the environment, it would reg-ularly stop and construct a short-term evidence grid,merging this with the previous place description if thematch was high enough and using the short-term gridas the basis for a new place otherwise. Discontinuitiescaused by passage through doors and past obstaclesshould be enough to identify distinguishable places.



352 Langley and PegerUnlike the current system, this approach could pro-duce exactly one evidence grid for each place.Most methods for place learning, including those dis-cussed above, also construct topological maps thatconnect di�erent places. Clearly, this is another im-portant direction in which to extend our approach. Weexpect that storing rough estimates of the direction ofmovement between one place and its successor will besu�cient for many navigation tasks. Upon executing anavigation plan, the agent would still need to registerits location upon entering each place along the path,but expectations about the next place and its roughtranslation should greatly increase the speed of theregistration process.4 Storing recently visited placeswith each grid could also aid recognition in domainswith perceptually similar places.In future work, we also hope to develop methods forrecognizing places that change over time, as occurs inrooms with moveable furniture. We plan to store twolevels of evidence grid, one that averages over all en-counters with a given place and another that describesindividual encounters. The former generalized gridswould contain fewer cells with near-certain scores, butthey could be used to generate priors for known placesbefore they are entered, and also used to focus atten-tional resources toward regions of uncertainty.In summary, we have presented a framework for rep-resenting, using, and learning knowledge about placesin which evidence grids play a central role. Our ap-proach draws on earlier work for updating these proba-bilistic summaries, but diverges from previous schemesby storing a set of local grids in a case library, thenretrieving and matching them for use in place recog-nition. Experimental studies adapted from the ma-chine learning literature indicate that this approachimproves recognition accuracy with experience, thatthe quality of stored cases can o�set the e�ects of sen-sor noise, and that the method scales well to increasednumbers of places. Many other environmental and sys-tem factors remain to be examined, but the basic ap-proach appears promising and suggests many naturalextensions.AcknowledgementsWe owe thanks to Hans Moravec for making his ev-idence grid software available for use, and to BrianYamauchi for integrating that code with the Nomad200 interface. Alan Schultz, Brian Yamauchi, and BillAdams made many useful suggestions, and BarbaraHayes-Roth and Nils Nilsson provided access to a No-madics robot. This research was supported in partby Grant Number N00014-94-1-0505 from the O�ceof Naval Research.4We also plan to extend the registration process to han-dle minor errors in orientation estimates due to compassimperfections.
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