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Abstract

In this paper we define the task of place learning and
describe one approach to this problem. The frame-
work represents distinct places using evidence grids,
a probabilistic description of occupancy. Place recog-
nition relies on case-based classification, augmented
by a registration process to correct for translations.
The learning mechanism is also similar to that in case-
based systems, involving the simple storage of inferred
evidence grids. Experimental studies with both phys-
ical and simulated robots suggest that this approach
improves place recognition with experience, that it can
handle significant sensor noise, and that it scales well
to increasing numbers of places. Previous researchers
have studied evidence grids and place learning, but
they have not combined these two powerful concepts,
nor have they used the experimental methods of ma-
chine learning to evaluate their methods’ abilities.

1. Introduction and Basic Concepts

A physical agent exists in an environment, and knowl-
edge about that environment can aid its achievement,
of goals. Research on the representation, use, and
acquisition of spatial knowledge has occupied an im-
portant role in robotics. In this paper, we consider a
novel approach to this area that combines ideas from
robotics and machine learning.

Let us begin with some definitions of concepts and
tasks that appear central to spatial reasoning. Con-
sider a physical agent, say a robot, that is situated in
the world. We can say that:

Definition 1 The POSITION of an agent is a coordi-
nate in 2D or 3D space.

Position corresponds to ground truth, giving the actual
location of the agent in some established coordinate
system. We can also define the related concept of agent

*Also affiliated with the Robotics Laboratory, Com-
puter Science Department, Stanford University.

orientation, but in this paper we will assume that the
agent has a 360 degree field of view, making this notion
less central.

A physical agent does not typically have direct access
to knowledge of its position, but it does have indirect
information.

Definition 2 A SENSOR READING is a description of
the environment around the agent’s position that has
been filtered through its sensors.

The information in sensor readings may be imperfect
in various ways. For example, it may be incomplete
in that it describes only certain characteristics of the
local environment, and it may be noisy in that sensor
readings for the same position may produce different
results at different times.

Nevertheless, the agent must find some way to use this
information to make useful inferences. This suggests
a natural task for a physical agent:

Definition 3 LOCALIZATION inwvolves the determina-
tion of an agent’s position in the environment from a
set of sensor readings.

Other tasks, such as navigating from position A to po-
sition B, are certainly possible. However, note that
an agent cannot begin to carry out such a task with-
out first knowing A and without knowing when it has
achieved B. Thus, localization seems more basic than
navigation, and we will focus our attention on it here.

However, in many cases humans seem to care less
about their exact position in space than about more
abstract spatial regions. This suggests another, some-
what different, concept:

Definition 4 A PLACE is a contiguous set of positions
wn 2D or 3D space.

Robotics researchers have paid relatively little atten-
tion to the notion of place, but its central role in hu-
man spatial reasoning suggests that it deserves a closer



look. Naturally, this new concept lets us define an as-
sociated performance task by analogy with the local-
ization task:

Definition 5 PLACE RECOGNITION involves deter-
mining the place in which the agent currently resides
from a set of sensor readings.

At least in principle, the place recognition task seems
more tractable than localization, in that it transforms
a problem of numeric prediction into one involving dis-
crete classification. One can also carry out localization
within the context of a given place, but this in turn
may be easier than global localization. Navigation be-
tween two places may also be simpler than navigation
between two positions.

Of course, reliance on places rather than positions also
introduces a problem: one must specify some descrip-
tions in memory that let the agent map sensor read-
ings onto place names. One might attempt to enter
such descriptions manually, but it seems desirable to
automate this process, suggesting a final task:

Definition 6 PLACE LEARNING involves the induc-
tion of descriptions, from the sensor readings and place
names for a set of training positions, that let the agent
accurately recognize the places of novel positions.

Note that this task formulation makes minimal de-
mands on the teacher, who does not have to give the
agent information about its actual positions. Rather,
the agent collects its own sensor readings, and the
teacher must only label each reading as an instance
of one place or another. This formulation assumes su-
pervised training data, but unsupervised versions, in
which the agent decides on its own place names, are
possible as well. We will touch briefly on unsupervised
place learning in Section 7, but we will focus on the
supervised version in this paper.

In the pages that follow, we present one approach to
dealing with knowledge about places. First we de-
scribe a representational formalism for storing place
knowledge — evidence grids — and then examine a
method for place recognition that operates on this rep-
resentation. After this, we consider a simple learning
process that lets one acquire and refine knowledge of
places. Next we present some hypotheses about our
approach, along with some experimental tests of those
hypotheses. Finally, we review related work on spatial
learning and discuss some directions for future work.

One important difference between our approach and
earlier robotics work on spatial knowledge lies in our
incorporation of ideas from machine learning. In par-
ticular, we view place recognition as a classification
task and we view place learning as a supervised con-
cept induction task. This suggests not only certain
learning methods, but also the use of experimental
methods prevalent in machine learning to evaluate our
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technique. However, the tasks of place recognition and
learning introduce some difficulties not usually present
in machine learning research, in particular the perva-
sive presence of significant sensor noise. Our approach
to representing, using, and learning place knowledge is
designed with this in mind.

2. The Evidence Grid Representation

Robotics researchers have explored a variety of for-
malisms for representing spatial knowledge. One ap-
proach relies on using geometric primitives to describe
the edges or surfaces of obstacles in the environment.
For example, one can use a set of lines to approxi-
mate the walls of an office and the furniture it con-
tains. Such representations are precise, but Schiele
and Crowley (1994) note that they can be difficult to
use when sensors are noisy.

Another common scheme involves dividing the envi-
ronment into a rectangular grid of mutually exclu-
sive cells, each corresponding to a distinct position in
space. In this framework, each cell is specified as either
occupied (containing an obstacle) or open (containing
none). This approach is well suited to navigation tasks
in which one already knows the structure of the envi-
ronment (i.e., which cells are occupied) and the posi-
tion of the agent within the grid. However, this scheme
is not designed to handle the uncertainty that arises
when the position is unknown or when the agent has
yet to learn the structure of the environment.

An alternative framework uses the ewvidence grid
(Elfes, 1989; Moravec & Blackwell, 1992), a data struc-
ture that is specifically designed to deal with uncer-
tainty. In this approach, each cell C has an associated
probability that C' is occupied by some tangible ob-
ject that would block the agent’s path if it tried to
move through the cell. These probabilities range from
near zero (nearly certain a cell is open) to near one
(nearly certain a cell is occupied), with the middle
corresponding to cells for which little information is
available (e.g., behind a wall or inside an object). We
will adopt this framework in the current paper.

Figure 1 shows the position of an agent in a room
within a larger office environment, similar in structure
to an actual area at Stanford University. Figure 2 de-
picts evidence grids constructed from simulated sensor
readings taken from a position (a) in the top left room
and (b) in the lower left room from the same orienta-
tion. Note that open regions within the agent’s view
have low probability of being occupied (lighter shades)
and that edges of obstacles and walls within view have
high probability (darker shades). However, areas that
are occluded, such as those behind obstacles and walls,
have probabilities around % (empty regions), since the
agent’s sensors provide no information about them.

Previous work with evidence grids has emphasized
their use in representing single rooms over a relatively



346 Langley and Pfleger

" B

Figure 1: A simulated office environment with a num-
ber of distinct places.

short period. However, they also have potential for
handling large-scale spatial knowledge over longer time
spans. An agent could store its knowledge about an
entire building or even a city in a single, large evidence
grid. But this scheme seems impractical from a com-
putational viewpoint, and odometry errors could cause
grid cells to become increasingly uncertain over time.

A more tractable approach to representing large-scale
spatial knowledge, which we take here, involves stor-
age of separate evidence grids for each distinct place.
For example, one might use one or a few grids to en-
code each room in a building. This knowledge can
be augmented by geometric relations among places,
which would support navigation planning, but we will
not address that aspect here. The retention of place
descriptions in memory has much in common with the
storage of a case library in work on case-based reason-
ing (Aha, Kibler, & Albert, 1991; Kolodner, 1993). In
both frameworks, the stored items represent alterna-
tive situations in which the agent can find itself, and
which suggest different inferences.

3. Case-Based Recognition of Places

Now that we have described the nature of evidence
grids, we can examine their use in place recognition.
Let us assume the agent has a stored place library,
with each place described as an n x m evidence grid
with an associated place name. Our approach to place
recognition relies on a three-step process that is closely
akin to case-based reasoning.

First, the agent constructs a temporary or short-term
evidence grid for its current position from a set of sen-
sor readings. This involves transforming each sensor

reading into a probability of occupancy for each cell.
Following Moravec and Blackwell (1992), we assume
a sensor model that specifies this mapping. The re-
sult is an initial temporary evidence grid, based on
the sensor reading, that characterizes the region in the
vicinity of the agent. The agent repeats this process a
specified number of times, in each case incorporating
the result into the temporary grid using a Bayesian
updating scheme. We will not describe this updating
process in depth, but readers can find details in Elfes
(1989) and in Moravec and Blackwell (1992).

Next, the agent matches the short-term evidence grid
against each of the grids stored in the place library.
The evaluation function used in this comparison pro-
cess measures the degree of match between two grids.
Specifically, if S, . is the probability associated with
the rth of R rows and the cth of C' columns for the
short-term grid, and if L, . is the analogous probabil-
ity for the stored, long-term grid, then

R C
M = Z ZF(S’I‘7C:LT,C)

computes the similarity between the short-term and
stored grids. Omne can instantiate the function F' in
many ways, provided they satisfy certain properties:
two cells should be treated as similar if they are con-
fident in the same direction, as dissimilar if they are
confident in opposite directions, and generally ignored
if either is uncertain.

Moravec and Blackwell (1992) implement this cell-to-
cell component of grid similarity F(S, ¢, L, ) as

lOg [Sr,ch,c + (]- - Sr,c)(]- - Lr,c)] + ]- I

which varies from one (a perfect match) to negative
infinity (the worst possible match). Reflection suggests
that this scheme might give very low match scores to
reasonably similar grids if even a few cells are confident
in opposite directions. For this reason, we decided to
use an alternative definition of F/(Sy ¢, Ly c):

1 if S, > 2 and L., > 2
1 if S, < -2 and L., < -2
-1 if S,. > % and L,. < -2
-1 if S,. < -2 and L,. > 2

0 otherwise .

We felt this measure would be less sensitive to situa-
tions in which disagreements arise between cells hav-
ing high certainty, and initial experiments (Langley
& Pfleger, 1995) suggest that our version fares much
better than the Moravec/Blackwell measure.

The above metrics assume that the stored and tempo-
rary grids are described in the same coordinate system.
One can plausibly assume the presence of a reason-
ably accurate compass to determine the relative ro-
tations, but possible differences in translation require
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Figure 2: Evidence grids generated from simulated sonar readings for (a) the top left room in Figure 1 and (b)

the lower left room in the same figure.

some form of registration that coerces the temporary
evidence grid into the same coordinate system as the
stored place. To this end, our system carries out an
exhaustive search using operators that modify the po-
sition by one grid row or column, evaluating each alter-
native using the metric M defined above! and select-
ing the translation that gives the highest score. If the
compass is not accurate, one can extend this approach
to correct for small offsets in rotation estimates.

Finally, the agent compares the match scores for the
various registered grids and selects the best of these
competitors. This strategy provides both the place
name associated with the selected evidence grid and
the estimated position within that place description.
Because adjacent evidence grids may cover overlapping
regions, this scheme has some potential for misclassify-
ing a place based on its outlying rather than its central
cells. However, this issue has not been a problem in
our studies to date.

As we noted earlier, this approach has much in com-
mon with methods for case-based reasoning. Here the
evidence grids in the place library correspond to stored
cases, whereas the short-term grid maps on to the test
case for which one wants to make a prediction. The
match function corresponds to the similarity metric
that determines the nearness of the test case to each
stored case in an R x C dimensional space, and the
final classification step is similar to that used in the
nearest neighbor method, perhaps the simplest case-
based technique. The fact that each evidence grid

"When translation causes two grids to overlap on only
R' x C' cells, the metric uses only these cells in its sum-
mation. This creates a bias toward stored grids that share
more cells with the temporary grid, which seems reason-
able, but it does not actively punish a stored grid for having
only partial overlap.

may be a probabilistic summary, computed from a set
of sensor readings, differs from the prototypical case-
based system, but abstract cases are not that unusual.
A more intriguing difference concerns the registration
process. Many case-based systems incorporate some
adaptation method, but usually this occurs after case
selection, whereas here adaptation (registration) takes
place during the evaluation (match) process itself.

4. Case-Based Learning of Places

Now let us consider an approach to the acquisition of
place knowledge that is stored in evidence grids. We
would like an incremental learning process, since the
agent encounters its environment sequentially. How-
ever, we are not concerned here with the task of ef-
fectively exploring an unknown world, so we will as-
sume that the agent is led to a position, given time to
observe its surroundings, given a place name, led to
another position, and so forth.

Given our commitment to a place library and to a
case-based method for place recognition, we naturally
assume a case-based learning scheme as well. In par-
ticular, at each position to which it is led, the agent
collects a specified number of sensor readings and con-
structs a short-term evidence grid S using the method
described in the previous section. The system then
simply adds the new grid to the place library, along
with the specified place name. The same place name
may be associated with multiple evidence grids, but
this seems appropriate for places that appear different
from different positions.

At first glance, this approach to place learning sounds
guaranteed to work, in that one simply stores a de-
scription for each place, after which recognition will
be perfect. However, this view ignores the central fea-
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ture of the task uncertainty. Even with noise-free
sensors, the same place typically looks different from
different positions, if only because certain regions are
occluded. Moreover, standard robotic sensors such as
sonar are notoriously noisy, and will produce different
sensor readings, and thus different evidence grids, even
when repeated from the same position. Thus, the ade-
quacy of this approach remains an open question that
is best answered by experiment.

5. Experiments with Place Learning

In Section 1 we formulated the place learning task in
terms similar to those used to describe other induction
problems. Thus, we can use the experimental meth-
ods developed for machine learning to evaluate the ro-
bustness of our framework. In this section we present a
number of hypotheses about the system’s behavior, fol-
lowed by experimental tests of those hypotheses. Our
primary measure of performance is recognition accu-
racy for places in a test set of evidence grids that differ
from those in the training set.

The experiments we designed to evaluate the abili-
ties of our approach relied on both a physical robot
— a Nomad 200 with a 16-sensor sonar ring — and a
high-fidelity simulation of this machine. The physical
environment was a suite of offices and common areas
at Stanford University, and the simulated environment
was an idealized layout of a similar suite, depicted ear-
lier in Figure 1. We used the physical Nomad to ensure
realism in our results, while the simulation gave us ex-
perimental control over device parameters not possible
with the actual robot.

We generated each training or test case by placing the
physical or simulated robot in a position, collecting
readings from the sonar ring to construct an initial
evidence grid, rotating and/or moving the robot (as
described below), collecting new sonar readings and
updating the evidence grid, and repeating this process
many times. For the simulated robot, we generated six
different grids for each of six distinct places,? giving
36 total evidence grids. For the physical robot, we
produced only three grids for each place (because the
process took longer), giving 18 total grids.

The Nomad simulator incorporates a number param-
eters that affect the quality of sonar information. For
example, the error parameter controls random vari-
ation in the distance returned by the sonar sensors,
critical controls the angle of incidence at which
specular reflection occurs, and halfcone controls the
angular width of each sonar signal. Unless otherwise
specified, we set error to 0.15, which was our best es-
timate of the error encountered by the physical robot,

2We defined these places so they corresponded to the
lower left, lower right; middle right, and upper left rooms
in Figure 1, and to the areas to the left and right of the
octagonal table in the figure.

and we left all other parameters at their default values,
which produce a 25 degree field of view for each sensor
and specular reflection at angles of incidence with the
sensed surface of 30 degrees or less.

For each experimental condition with the simulated
environment, we ran the learning system 400 times
with different random partitions of the evidence grids
into 33 training and three test cases, randomly order-
ing the storage of training cases. For the physical en-
vironment, we partitioned the grids into 17 training
cases and one test case, again averaging over 400 runs
for each condition.

Following Kibler and Langley (1988), we can divide the
factors that affect the learner’s behavior into two broad
types, those involving characteristics of the environ-
ment and those involving features of the learner. The
most basic environmental characteristic is the number
of training cases available. Naturally, we hypothesized
that the accuracy of place recognition would improve
as the agent encounters more positions. However, the
literature sometimes reports actual decreases in per-
formance, so we needed to test this expectation.

Figure 3 (a) shows the learning curve, giving 95% con-
fidence intervals, for the physical Nomad robot when
each training and test grid was based on 45 sets of
sonar readings, taken from a single position but with
successive orientations incremented by one degree. As
expected, the system’s ability to recognize places grad-
ually increases as it observes and stores more training
cases. However, the shape of the curve suggests that
the learning task is not trivial, in that multiple cases
for each place are needed to achieve even 70% accu-
racy. The curve has not yet leveled off at 17 instances,
so presumably additional cases would further improve
recognition.

Figure 3 (a) also shows an analogous learning curve for
the simulated robot. The general shape of the curve is
very similar to that for the physical device, but the rate
of learning is somewhat higher. Although a few errors
still occur even after 35 training cases, the performance
component generally assigns the correct place name to
the test cases.

We were interested not only in our method’s ability to
recognize places, but in its ability to identify the pre-
cise position of the robot within a given place. Thus,
we also measured the absolute difference between the
actual robot position in each test case and the esti-
mated position as computed during the registration
process. Figure 3 (b) shows the learning curves for
the physical robot, as well as similar results for the
simulated one. In this case, since we are measuring er-
ror rather than accuracy, the quantities start high and
gradually decrease with experience. Again, behavior
in the simulated environment generally mimics that in
the physical world, though the system fares somewhat
better on the former.
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Figure 3: Learning curves with 95% confidence intervals for the case-based place learning system for a physical
Nomad robot and a simulated robot in a similar office environment, (a) using recognition accuracy as the
performance measure and (b) using error in estimated position.

The amount of sensor noise constitutes a more inter-
esting environmental factor. We would not expect in-
creased noise to affect the asymptotic accuracy, but
it should decrease the rate of place learning, that is,
the number of training cases needed to reach a given
accuracy level. Fortunately, our reliance on evidence
grids suggested a natural response to noisy sense data.
Because each stored case can be based on multiple sen-
sor signals, we can attempt to improve the quality of
these cases by increasing the number of the signals
used to generate them. We hypothesized that place
descriptions based on more sensor readings would be
less affected by increases in sensor noise. Thus, we pre-
dicted an interaction between these two independent
variables, specifically one that affects learning rate but
not asymptotic accuracy.

To test this hypothesis, we used the Nomad simula-
tor to produce four different levels of sensor noise, in
which the error parameter was set to 0.0, 0.15, 0.30,
and 0.45, respectively. We also attempted to vary the
quality of the stored cases by using two different sens-
ing strategies. In one, we based each evidence grid
(both training and test cases) on 45 sonar readings
collected from a single position but produced at ori-
entations one degree apart, as used to generate the
results in Figure 3. In the other, we based each grid
on 90 readings, produced by repeating this strategy
in two nearby, randomly selected positions within the
same room.

Figure 4 (a) shows the learning curves that result for
the zero and 0.45 noise levels using the one-position
sensing strategy, whereas Figure 4 (b) presents anal-
ogous results for the two-position strategy. (The re-
sults for the 0.15 and 0.3 settings fell between these
extremes; we have omitted them for the sake of clar-

ity.) The two-position scheme clearly fares better than
the simpler strategy, but the curves diverge somewhat
from our predictions. The rate of learning for the
two-position method is much higher than for the one-
position method, even when no sensor noise is present.
Also, the introduction of sensor noise clearly affects
both strategies, but it alters only the learning rate for
the more sophisticated scheme, while it actually ap-
pears to reduce the asymptotic recognition accuracy
for the simpler one.

Some real-world environments contain many distinct
places, and we hypothesized that our learning method
would scale well as the number of places increased. We
obtained preliminary results along these lines by exam-
ining our algorithm’s behavior with different subsets of
the places available in our environment. Figure 5 (a)
shows the learning curves that result for two through
six places, with each case based on 45 simulated sonar
readings from one position. Each reported accuracy is
averaged over 400 runs for each possible subset of k
out of six places, using 35 randomly selected training
cases and one test case. Thus, when k£ = 2 we car-
ried out ( S ) x 400 = 6000 runs, and when k£ = 3 we
carried out ( § ) x 400 = 8000 runs. We have not re-
ported confidence intervals here, since the accuracies
are averages of averages.

Naturally, increasing the number of places decreases
the speed of learning, but we can also examine the rate
of this decrease. Note that the figure also shows where
each learning curve crosses the level of 90 percent accu-
racy. These crossover points produce the scaling curve
in Figure 5 (b), which maps the number of distinct
places against the number of training cases needed to
reach this accuracy level.
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Figure 4: Learning curves for the case-based place learning system for two levels of sensor noise when evidence
grids are based on (a) 45 readings from one position and (b) 90 readings from two nearby positions.

This higher-order curve seems to be either linear or
quadratic, but the analogous scaling curve for the
two-position sensing strategy definitely appears linear.
These results suggest that our approach requires, more
or less, a fixed number of training cases per place, inde-
pendent of the total number of places. This encourages
us to believe that the method will scale well to domains
that involve many more different places than the six
we have examined, though ultimately we should test
this prediction using larger environments.

Clearly, there exist many other factors that could influ-
ence the behavior of our place-learning method. These
include the resolution of the evidence grids, the dis-
tinctiveness of the places to be learned, and the com-
plexity of these places in terms of the number of sep-
arate grids needed to describe them adequately. How-
ever, we will reserve these issues for future studies, as
the current experiments have been sufficient to show
that our approach is a promising one.

6. Related Work on Spatial Learning

Our research on the acquisition of spatial knowledge
is certainly not the first in this area. Clearly, our
work owes a strong intellectual debt to Elfes (1989),
Moravec and Blackwell (1992), and other developers
of the evidence grid framework. Our basic representa-
tion and our performance system directly employ tech-
niques developed by these researchers. However, most
research in this framework has focused on the construc-
tion of a single global map, rather than a collection
of evidence grids for distinct places. Although such
approaches clearly acquire spatial knowledge, they do
not involve induction in the sense of using training in-
stances to improve performance on novel test cases,
whereas our work on place learning fits easily into this
paradigm. Thrun (1993) has used reinforcement learn-

ing to improve sensor interpretation for evidence-grid
construction, but his goal was to construct a global
map. Mahadevan (1992) describes a method that
forms generalizations expressed as evidence grids, but
his aim was to learn not places but action models.

Nevertheless, some work outside the evidence grid for-
malism has focused on place learning. For example,
Yamauchi and Beer (1994) describe ELDEN, a system
that represents places in terms of means and vari-
ances of direct sensor readings, rather than inferred
grid occupancies. Their place descriptions also in-
clude features for the robot’s position as estimated
through dead reckoning and connections to recently
visited places. Place recognition involves passing each
attribute’s value through Gaussian functions associ-
ated with each place, then selecting the competitor
with the highest sum. Learning consists of updating
the means and variances for recognized places, creating
new places when no existing ones match well enough,
and adding predictive connections between places. Ya-
mauchi and Beer’s reliance on a Gaussian distance
metric makes their method similar to our case-based
approach, though ELDEN differs in its use of instance
averaging, its use of raw sensor data, and the unsuper-
vised nature of the learning processes.?

Lin, Hanson, and Judd (1994) have taken a similar
approach to representing and using spatial knowledge.
Their system also describes places (which they call
landmarks) as means and variances of sonar readings
and uses a Gaussian metric to determine the degree
of match against the current sensor signals. However,
their learning mechanisms include not only the cre-

*Yamauchi and Beer’s system also incorporates an ev-
idence grid representation, but it constructs a global map
and uses this map for correcting errors in dead reckoning
rather than for place recognition.
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Figure 5: (a) Learning curves for different numbers of distinct places, based on 45 sonar readings from one
position. (b) Scaling curves that map, for two different sensing strategies, the number of training cases needed
to achieve 90% accuracy as a function of the number of places.

ation and updating of place descriptions, but also a
reinforcement process designed to improve estimates
of the robot’s location. This latter technique can lead
the learner to add a new place or remove an existing
one if these actions reduce errors in location estimates.

Kuipers and Byun’s (1988) NX system also operates on
direct sensory readings, but it stores only places that
are distinctive in terms of optimizing certain measures.
For example, NX defines the central point in a hall-
way corner as being symmetrical and being equidis-
tant from the walls, in addition to containing informa-
tion about the angles and distances to obstacles. The
system also describes edges, which connect distinctive
places, in terms of length, width, and similar charac-
teristics. Whenever NX encounters a local optimum L
on one of its measures, it compares the sensor readings
to each known place P stored in memory; if the de-
scriptions for L and P are similar, and if their locations
are metrically or topologically close, the system clas-
sifies L as the known place P. Otherwise, NX creates
a new place based on L’s description and stores this
in memory, along with its connections to other places.
Mataric (1991) describes a similar scheme, though the
details of place creation are different.

In methodological terms, Kortencamp and Wey-
mouth’s (1994) work is perhaps the most similar to
our own. Their approach emphasizes gateways such as
doors that connect two regions, but their system rep-
resents these locations using a grid structure and they
evaluate its behavior in terms of recognition accuracy.
However, their scheme uses hand-coded descriptions
for a few gateway types to recognize candidate places
and create new ones, rather than actual supervised
training data, and they compare a number of different

recognition strategies, including one that combines ev-
idence from sonar and visual sensors.

On another dimension, our approach is most similar to
Yeap’s (1988) work on spatial reasoning. His frame-
work also posits the storage of distinct places, the de-
scriptions of which are not direct sensory readings but
inferred summaries. However, his “absolute space rep-
resentation” does not take the form of evidence grids
but rather consists of a connected sequence of line seg-
ments that, except for occasional openings, enclose an
area. Yeap does not describe a performance element
that uses these descriptions in place recognition but,
as in our own framework, learning involves the simple
storage of the inferred place descriptions, which sug-
gests the use of a case-based method.

7. Directions for Future Work

Although our experimental studies of place learning
have revealed some insight into our approach, clearly
more work remains to be done. The most immediate
extension would replace the current supervised learn-
ing method with an unsupervised one that can identify
distinctive places on its own. To this end, we plan to
employ a technique similar to that used by Yamauchi
and Beer (1994), but adapted to operate on evidence
grids rather than direct sensor descriptions. As the
agent moves through the environment, it would reg-
ularly stop and construct a short-term evidence grid,
merging this with the previous place description if the
match was high enough and using the short-term grid
as the basis for a new place otherwise. Discontinuities
caused by passage through doors and past obstacles
should be enough to identify distinguishable places.
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Unlike the current system, this approach could pro-
duce exactly one evidence grid for each place.

Most methods for place learning, including those dis-
cussed above, also construct topological maps that
connect different places. Clearly, this is another im-
portant direction in which to extend our approach. We
expect that storing rough estimates of the direction of
movement between one place and its successor will be
sufficient for many navigation tasks. Upon executing a
navigation plan, the agent would still need to register
its location upon entering each place along the path,
but expectations about the next place and its rough
translation should greatly increase the speed of the
registration process.® Storing recently visited places
with each grid could also aid recognition in domains
with perceptually similar places.

In future work, we also hope to develop methods for
recognizing places that change over time, as occurs in
rooms with moveable furniture. We plan to store two
levels of evidence grid, one that averages over all en-
counters with a given place and another that describes
individual encounters. The former generalized grids
would contain fewer cells with near-certain scores, but
they could be used to generate priors for known places
before they are entered, and also used to focus atten-
tional resources toward regions of uncertainty.

In summary, we have presented a framework for rep-
resenting, using, and learning knowledge about places
in which evidence grids play a central role. Our ap-
proach draws on earlier work for updating these proba-
bilistic summaries, but diverges from previous schemes
by storing a set of local grids in a case library, then
retrieving and matching them for use in place recog-
nition. Experimental studies adapted from the ma-
chine learning literature indicate that this approach
improves recognition accuracy with experience, that
the quality of stored cases can offset the effects of sen-
sor noise, and that the method scales well to increased
numbers of places. Many other environmental and sys-
tem factors remain to be examined, but the basic ap-
proach appears promising and suggests many natural
extensions.
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