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AbstractIn this paper we de�ne the task of place learning and describe one approach to this problem. Ourframework represents distinct places as evidence grids, a probabilistic description of occupancy.Place recognition relies on nearest neighbor classi�cation, augmented by a registration process tocorrect for translational di�erences between the two grids. The learning mechanism is lazy in thatit involves the simple storage of inferred evidence grids. Experimental studies with physical andsimulated robots suggest that this approach improves place recognition with experience, that itcan handle signi�cant sensor noise, that it bene�ts from improved quality in stored cases, andthat it scales well to environments with many distinct places. Additional studies suggest thatusing historical information about the robot's path through the environment can actually reducerecognition accuracy. Previous researchers have studied evidence grids and place learning, but theyhave not combined these two powerful concepts, nor have they used systematic experimentation toevaluate their methods' abilities.
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Acquisition of Place Knowledge Page 11. Introduction and Basic ConceptsA physical agent exists in an environment, and knowledge about that environment can aid itsachievement of goals. One important type of environmental knowledge concerns the spatial ar-rangement of the agent's surroundings. For this reason, research on the representation, use, andacquisition of spatial knowledge has occupied an important role in the �eld of robotics. However,work on spatial learning has seldom made contact with the systematic experimental methodologythat predominates in other areas of machine learning. In this paper, we consider a novel approachto this area that incorporates ideas from both of these disciplines.We begin with some de�nitions of concepts and tasks that appear central to spatial reasoning.Consider a physical agent, say a robot, that is situated in the world. We can say that:De�nition 1 The position of an agent is a coordinate in 2D or 3D space.Position corresponds to ground truth, giving the actual location of the agent in some establishedcoordinate system. We might also de�ne the related concept of agent orientation, but here we willassume the agent has a 360 degree �eld of view, making this notion unnecessary.A physical agent does not typically have direct access to knowledge of its position, but it doeshave indirect information.De�nition 2 A sensor reading is a description of the environment around the agent's positionthat has been �ltered through its sensors.The information in sensor readings may be imperfect in various ways. For example, it may beincomplete in that it describes only certain characteristics of the local environment, and it may benoisy in that sensor readings for the same position may produce di�erent results at di�erent times.Nevertheless, the agent must �nd some way to use this information to make useful inferences.This suggests a natural task for a physical agent:De�nition 3 Localization involves determining the position of the agent in the environmentfrom a set of sensor readings.Other tasks, such as navigating from position A to position B, are certainly possible. But an agentcannot begin to carry out such a task without �rst knowing A and without knowing when it hasachieved B. Thus, localization seems more basic than navigation, and we will focus our attentionon it here.However, in many situations humans seem to care less about their exact position in space thanabout more abstract spatial regions. This suggests another, somewhat di�erent, concept:De�nition 4 A place is a contiguous set of positions in 2D or 3D space.Robotics researchers have paid relatively little attention to the notion of place, but its central rolein human spatial reasoning suggests it deserves a closer look. Naturally, this new concept lets usde�ne an associated performance task by analogy with the localization task:



Page 2 Acquisition of Place KnowledgeDe�nition 5 Place recognition involves determining the place in which the agent currentlyresides from a set of sensor readings.At least in principle, the place recognition task seems more tractable (in terms of accuracy) thanlocalization, in that it transforms a problem of numeric prediction into one involving discreteclassi�cation. One can also carry out localization within the context of a given place, but this inturn may be easier than global localization. Navigation between two places may also be simplerthan navigation between two positions, as the former involves less precision than the latter.Of course, reliance on places rather than positions also introduces a problem: one must specifysome descriptions in memory that let the agent map sensor readings onto place names. One mightattempt to enter such descriptions manually, but it seems desirable to automate this process,suggesting a �nal task:De�nition 6 Place learning involves the induction of descriptions, from the sensor readingsand place names for a set of training positions, that let the agent accurately recognize the places ofnovel positions.Note that this task formulation makes minimal demands on the teacher, who does not have togive the agent information about its actual positions. Rather, the agent collects its own sensorreadings, and the teacher must only label each reading as an instance of one place or another.This formulation assumes supervised training data, but unsupervised versions, in which the agentdecides on its own place names, are also possible. We will touch briey on unsupervised placelearning in Section 5, but we will focus on the supervised version in this paper.In the pages that follow, we present one approach to dealing with knowledge about places. Firstwe describe a representational formalism for storing place knowledge { evidence grids { and thenexamine a method for place recognition that operates on this representation, along with a simplelearning process that acquires and re�nes knowledge of places. This approach to place learning islazy rather than eager , in that the storage process involves only the retention of evidence grids,while generalization occurs at retrieval time, during the matching of new grids against those inmemory. After describing this approach, we present some hypotheses about its behavior and someexperimental tests of those hypotheses, then present some additional studies of the role of historicalinformation in place recognition. Finally, we review related work on spatial learning and discusssome directions for future work.One important di�erence between our approach and earlier robotics work on spatial knowledgelies in our incorporation of ideas from the experimental study of machine learning.1 In particular,we view place recognition as a classi�cation task and we view place learning as a supervised conceptinduction task. This suggests not only certain learning methods, but also the use of experimen-tal methods prevalent in machine learning (Kibler & Langley, 1988) to evaluate our technique.However, the tasks of place recognition and place learning introduce some di�culties not usuallypresent in such learning research, such as the pervasive presence of signi�cant sensor noise, andour approach to the problem is designed with these issues in mind. These tasks also provide some1. Other work in robotic learning (e.g., Atkeson, 1989; Moore, 1990) has fared much better in terms of experimentalmethodology, especially in the use of well-de�ned performance tasks.



Acquisition of Place Knowledge Page 3information not available for most classi�cation problems, such as historical context about previousplaces, which we consider later in the paper.2. Representation, Use, and Acquisition of Place KnowledgeWith the above de�nitions in hand, we can examine one approach to learning place knowledge.However, before we address the acquisition process, we should �rst consider the manner in whichwe represent knowledge about places and the performance element that takes advantage of thatspatial knowledge base.2.1 The Evidence Grid RepresentationRobotics researchers have explored a variety of formalisms for representing spatial knowledge.One approach relies on geometric primitives to describe the edges or surfaces of obstacles in theenvironment. For example, one can use a set of lines to approximate the walls of an o�ce and thefurniture it contains. Such representations are precise, but Schiele and Crowley (1994) note thatthey can be di�cult to use when sensors are noisy.Another common scheme involves dividing the environment into a rectangular grid of mutuallyexclusive cells, each corresponding to a distinct position in space. In this framework, each cell isspeci�ed as either occupied (containing an obstacle) or open (containing none). This approach iswell suited to navigation tasks in which one already knows the structure of the environment (i.e.,which cells are occupied) and the position of the agent within the grid. However, this scheme isnot designed to handle the uncertainty that arises when the position is unknown or when the agenthas yet to learn the structure of the environment.An alternative framework uses the evidence grid (Elfes, 1989; Moravec & Blackwell, 1992), adata structure that is speci�cally designed to tolerate uncertainty. In this approach, each cell Chas an associated probability that C is occupied by some tangible object that would block theagent's path if it tried to move through the cell. These probabilities range from near zero (nearlycertain a cell is open) to near one (nearly certain a cell is occupied), with the middle correspondingto cells for which little information is available (e.g., behind a wall or inside an object). We willadopt this framework in the current paper.Figure 1 shows the position of an agent in a room within a larger o�ce environment, similarin structure to an actual area at Stanford University. Figure 2 depicts evidence grids constructedfrom simulated sensor readings taken from positions (a) in the top left room and (b) in the lowerleft room from the same orientation. Open regions within the agent's view have low probabilityof being occupied (lighter shades) and that edges of obstacles and walls within view have highprobability (darker shades). However, areas that are occluded, such as those behind obstacles andwalls, have probabilities around 12 (empty regions), since the agent's sensors provide no informationabout them. Of course, the agent can construct a more complete evidence grid by moving aroundthe environment to collect sensor readings from di�erent viewpoints.
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(b)

(a)

Figure 1. A simulated o�ce environment with a number of distinct places.Previous work with evidence grids (Elfes, 1989; Moravec & Blackwell, 1992) has emphasized theiruse in representing single rooms over a relatively short period. However, they also have potential forhandling large-scale spatial knowledge over longer time spans. An agent could store its knowledgeabout an entire building or even a city in a single, large evidence grid. But this scheme seemsimpractical due to the di�culties inherent in integrating information from distant regions into asingle map.A more tractable approach to representing large-scale spatial knowledge, which we take here,involves storage of separate evidence grids for each distinct place. For example, one might use adi�erent grid to encode each room in a building. This knowledge can be augmented by geometricrelations among places, which would support navigation planning, but we will not address thataspect here. The retention of place descriptions in memory has much in common with the storageof a case library in work on case-based reasoning (Aamodt & Plaza, 1994; Kolodner, 1993). In bothframeworks, the stored items represent alternative situations in which the agent can �nd itself, andwhich suggest di�erent inferences.2.2 Lazy Recognition of PlacesNow that we have described the nature of evidence grids, we can examine their use in place recog-nition. Let us assume the agent has a stored place library, with each place described as an R� Cevidence grid with an associated place name. Our approach to place recognition relies on a three-step process that, like other lazy methods, carries out much of the induction at performance time.
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67 94 80                                                                                                                     Figure 2. Evidence grids generated from simulated sonar readings for (a) the top left room in Figure 1 and(b) the lower left room in the same �gure.First, the agent constructs a temporary or short-term evidence grid for its current position froma set of sensor readings. This involves transforming each sensor reading into a probability ofoccupancy for each cell. Following Moravec and Blackwell (1992), we assume a sensor model thatspeci�es this mapping. The result is a temporary evidence grid, based on the sensor reading, thatcharacterizes the region in the vicinity of the agent. The agent may repeat this process a numberof times, in each case incorporating the result into the temporary grid using a Bayesian updatingscheme. We will not describe this updating process in depth, but readers can �nd details in Elfes(1989) and in Moravec and Blackwell (1992).Next, the agent matches the short-term evidence grid against each of the grids stored in theplace library. The evaluation function used in this comparison process measures the degree ofmatch between two grids. Speci�cally, if Sr;c is the probability associated with the rth of R rowsand the cth of C columns for the short-term grid, and if Lr;c is the analogous probability for thestored, long-term grid, then M = RXr CXc F (Sr;c; Lr;c)computes the similarity between the short-term and stored grids. One can instantiate the functionF in many ways, provided they satisfy certain properties: two cells should be treated as similar ifthey are con�dent in the same direction, as dissimilar if they are con�dent in opposite directions,and generally ignored if either is uncertain.Moravec and Blackwell (1992) implement this cell-to-cell component of grid similarity as theexpression F (Sr;c; Lr;c) = log2 [Sr;cLr;c + (1� Sr;c)(1� Lr;c)] + 1 ;which varies from one (a perfect match) to negative in�nity (the worst possible match). Reectionsuggests that this scheme might give very low match scores to reasonably similar grids if even a few



Page 6 Acquisition of Place Knowledgecells are con�dent in opposite directions. For this reason, we decided to use an alternative metric:F (Sr;c; Lr;c) = 8>>>>>><>>>>>>: 1 if Sr;c > 23 and Lr;c > 231 if Sr;c < 13 and Lr;c < 13�1 if Sr;c > 23 and Lr;c < 13�1 if Sr;c < 13 and Lr;c > 230 otherwise .We felt this measure would be less sensitive to situations in which disagreements arise between cellshaving high certainty, thus eliminating the problem predicted for the Moravec/Blackwell measure.There is nothing special about the choice of 13 and 23 as thresholds, as few cells have probabilitiesnear them; the important point is to divide experience into three qualitative states.The above metrics assume that the stored and temporary grids are described in the same coordi-nate system. One can plausibly assume the presence of a reasonably accurate compass to determinethe relative rotations, but possible di�erences in translation requires some form of registration thatcoerces the temporary evidence grid into the same coordinate system as the stored place. To thisend, our system carries out an exhaustive search using operators that modify the position by onegrid row or column, evaluating each alternative using the metric M de�ned above.2 The systemselects the translation that gives the highest M score; the resulting registered grid localizes theagent with respect to that grid. If the compass is not accurate, one can extend this approach tocorrect for small o�sets in rotation.Finally, the agent compares the match scores for the various registered grids and selects thebest of these competitors. This strategy provides both the place name associated with the selectedevidence grid and the estimated position within that place description. Because adjacent evidencegrids may cover overlapping regions, this scheme has some potential for misclassifying a place basedon its outlying rather than its central cells. An alternative strategy would let the agent associatedistinct place names with di�erent cells in the same stored grid, then predict the name speci�edfor the cell nearest to the estimated position. However, this issue has not been a problem in ourstudies to date, so our current system relies on the simpler classi�cation strategy.As we noted earlier, this approach has much in common with other methods for lazy recognition.Here the evidence grids in the place library correspond to stored experiences, whereas the short-term grid maps on to a test case for which one wants to make a prediction. The match functioncorresponds to the similarity metric that determines the nearness of the test case to each storedcase in an R � C dimensional space, and the �nal classi�cation step is similar to that used in thenearest neighbor method, perhaps the simplest lazy technique. The fact that each evidence grid isa probabilistic summary, computed from a set of sensor readings, di�ers from the prototypical lazyapproach, but some systems partially generalize from experience at storage time. A more intrigu-ing di�erence concerns the registration process. Many lazy systems incorporate some adaptation2. When translation causes two grids to overlap on only R0 � C0 cells, the metric uses only these cells in itssummation. This creates a bias toward stored grids that share more cells with the temporary grid, which seemsreasonable, but it does not actively punish a stored grid for having only partial overlap. Although the currentregistration algorithm is exhaustive and thus computationally expensive, Alan Schultz (personal communication,1995) reports encouraging results using a more e�cient registration algorithm using genetic search with a similarmatch function.



Acquisition of Place Knowledge Page 7method (Aamodt & Plaza, 1994; Leake, 1994), but usually this occurs after retrieval, whereas hereadaptation (registration) takes place during the evaluation (match) process itself.2.3 Lazy Learning of Place KnowledgeNow let us consider an approach to learning place knowledge that is stored as evidence grids.We would like an incremental process, since the agent encounters its environment sequentially.However, we are not concerned here with the task of e�ectively exploring an unknown world, sowe will assume that the agent is led to a position, given time to observe its surroundings, given aplace name, led to another position, and so forth.Given our commitment to a place library and to a method for place recognition described above,we naturally assume a lazy learning scheme. In particular, at each position to which it is led, theagent constructs a short-term evidence grid S using the method described above. The system thensimply adds the new grid to the place library, along with speci�ed place name. The same placename may be associated with multiple evidence grids, but this seems appropriate if they producedi�erent sensor readings.At �rst glance, this approach to place learning sounds guaranteed to work, in that one simplystores a description for each place, after which recognition will be perfect. However, this viewignores the central feature of the task { uncertainty. Even with noise-free sensors, the same placetypically looks di�erent from di�erent positions, if only because di�erent regions are occluded.Moreover, standard robotic sensors such as sonar are notoriously noisy, and will produce di�erentsensor readings, and thus di�erent evidence grids, even when repeated from the same position.In addition, the dimensionality of the resulting space is high, with one attribute for each cellin the R � C evidence grid. Among others, Aha (1990) and Langley and Sage (in press) haveshown that the learning rate of lazy methods like nearest neighbor can be drastically slowed by thepresence of irrelevant attributes. Since typical rooms contain large open areas, it seems plausiblethat the cells that describe such areas will make place learning di�cult. Thus, the adequacy of thisapproach remains an open question that is best answered by experiment.2.4 Lazy vs. Eager Approaches to Place LearningIn addition to the lazy approach to place learning we have described above, we also consideredeager methods that incorporated the evidence grid representation. However, the latter provedproblematic in that nearly all eager learning methods, including connectionist and decision-treetechniques, assume a �xed set of attributes or features,3 whereas evidence grids can have di�erentsizes and thus di�erent numbers of cells.We considered one response to this problem that would coerce the training grids into a single sizeby padding extra cells with 12 probabilities, thus ensuring a �xed feature set. However, this schemewould not guarantee that still larger grids would not occur in the test set, which would make it3. The main exceptions are methods for inductive logic programming (Lavrac & Dzeroski, 1993), but their �rst-orderrepresentations hardly seem suitable for dealing with evidence grids.



Page 8 Acquisition of Place Knowledgedi�cult to apply the learned knowledge. Moreover, this strategy would increase the number offeatures in an already high-dimensional space, exacerbating the e�ect of irrelevant attributes.The need to register evidence grids also poses di�culties for purely eager methods. Althoughone can imagine an eager learning scheme inducing higher-order, translation-invariant features, thiswould seem to require many more training grids than our lazy approach, since it would need to �ndregularities over many translated grids of the same places. An alternative approach would coerceall training grids for a given place into a single coordinate system, then use an eager method tolearn place descriptions in terms of those coordinates. However, the resulting system would stillhave a strong lazy component, in that test grids would still require registration.In summary, the evidence grid framework lends itself nicely to a lazy approach to place recognitionand learning, but raises signi�cant problems for eager techniques. Of course, this does not implythat eager approaches to place learning are impossible, as we will �nd in Section 4 when we discussrelated work on this task. But for now our focus will remain on the lazy framework outlined above.3. Experimental Studies of Place LearningIn Section 1 we formulated the place learning task in terms similar to those used to describe otherinduction problems. Thus, we can use the experimental methods developed for machine learningto evaluate the robustness of our framework. In this section we present a number of hypothesesabout the system's behavior, followed by experimental tests of those hypotheses, most of whichwe have reported previously (Langley & Peger, 1995). Our primary measure of performance wasrecognition accuracy for places in a test set of evidence grids that di�er from those in the trainingset.3.1 The Experimental SettingThe experiments we designed to evaluate the abilities of our approach relied on both a physicalrobot { a Nomad 200 with a 16-sensor sonar ring { and a high-�delity simulation of this machine.The physical environment was a suite of o�ces and common areas at Stanford University, and thesimulated environment was an idealized layout of a similar suite, depicted earlier in Figure 1. Weused the physical Nomad to ensure realism in our results, while the simulation gave us experimentalcontrol over device parameters not possible with the actual robot.We generated each training or test case by placing the physical or simulated robot in a position,collecting readings from the sonar ring to construct an initial evidence grid (Elfes, 1989), rotatingand/or moving the robot (as described below), collecting new sonar readings and updating theevidence grid, and repeating this process many times. For the simulated robot, we generated sixdi�erent grids for each of six distinct places,4 giving 36 total evidence grids. For the physical robot,we produced only three grids for each place (because the process took longer), giving 18 total grids.4. These places corresponded to the lower left, lower right, middle right, and upper left rooms in Figure 1, and tothe areas to the left and right of the octagonal table in the �gure.



Acquisition of Place Knowledge Page 9The Nomad simulator incorporates a number parameters that a�ect the quality of sonar informa-tion. For example, the error parameter controls random variation in the distance returned by thesonar sensors, critical controls the angle of incidence at which specular reection occurs (givingdistances farther than the actual ones), and halfcone controls the angular width of each sonarsignal. Unless otherwise speci�ed, we set error to 0.15, which was our best estimate of the errorencountered by the physical robot, and we left all other parameters at their default values, whichproduce a 25 degree �eld of view for each sensor and specular reection at angles of incidence withthe sensed surface of 30 degrees or less.For each experimental condition with the simulated environment, we ran the learning system400 times with di�erent random partitions of the evidence grids into 33 training and three testcases, randomly ordering the storage of training cases. For the physical environment, we randomlypartitioned the grids into 17 training cases (with randomized orders) and one test case, againaveraging over 400 runs for each condition.3.2 Improving Place Recognition with ExperienceFollowing Kibler and Langley (1988), we can divide the factors that a�ect the learner's behaviorinto two broad types, those involving characteristics of the environment and those involving fea-tures of the learner. The most basic environmental characteristic is the number of training casesavailable. Naturally, we hypothesized that the accuracy of place recognition would improve as theagent encounters more positions. However, the literature sometimes reports actual decreases inperformance, so we needed to explicitly test this expectation.As we report elsewhere (Langley & Peger, 1995), our �rst study used the physical Nomad robotto generate 18 evidence grids was based on 45 sonar readings, taken from a single position butwith successive rotations incremented by one degree (though still merged into a stored grid with asingle orientation). As expected, the system's ability to recognize places gradually increases as itobserves and stores more training cases. However, the learning task is not trivial, in that multiplecases for each place are needed to achieve even 70% accuracy.Inspection of the inferred structures reveals that, from certain views, the registered evidence gridsfor two di�erent places occasionally appear more similar than the grids for two di�erent positionswithin the same place. This should not be surprising, given the noise inherent in sonar sensorsand given that objects can occlude portions of a place from some positions. Table 1 shows theactual confusions that occur, on average, for the physical robot after 17 training cases; becausewe included three grids for each place and used leave-one-out to estimate error rates, all entriesare divisible by three. The table reveals that most errors involve the misclassi�cation of place (e),which is confused with places (a) and (c), and the mislabeling of (d), which is classi�ed as (c).We also found that runs with the simulated robot produce a learning curve with a very similarshape to that for the physical device, but that the rate of learning is somewhat higher. Table 1 alsoshows the averaged confusion matrix for this experimental condition after the learner has seen 35training cases; here we used six grids for each place, so each entry is divisible by six. Although afew errors still occur, the performance component generally assigns the correct place name to the



Page 10 Acquisition of Place KnowledgeTable 1. Confusion matrices with probabilities of labeling for the six places used in the experiments. Rowsindicate the correct place names, whereas columns show the predicted place after training.Physical Robot Simulated Robot(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)(a) 1 0 0 0 0 0 (a) 56 0 16 0 0 0(b) 0 1 0 0 0 0 (b) 0 1 0 0 0 0(c) 0 0 1 0 0 0 (c) 0 0 1 0 0 0(d) 0 0 23 13 0 0 (d) 0 0 16 56 0 0(e) 23 0 13 0 0 0 (e) 0 0 16 0 56 0(f) 0 0 0 0 0 1 (f) 0 0 0 0 0 1test cases. The same experiment revealed that the method's ability to identify the precise positionof the robot within a given place, based on the registration process, also improved with training.3.3 Sensor Noise and Grid QualityThe amount of sensor noise constitutes a more interesting environmental factor. We might expectincreased noise to reduce the asymptotic accuracy, as it can produce confusions between similarplaces, but it should have an even greater e�ect on the rate of place learning, in that it shouldincrease the number of training cases needed to reach a given accuracy level. Nevertheless, wehoped that the probabilistic nature of evidence grids would let our approach degrade gracefullywith increasing amounts of sensor noise.Figure 3 shows two evidence grids constructed from simulated sonar signals collected from thesame position and orientation within the lower left room in Figure 1. For grid (a), we set thesimulator's error parameter to zero, so that there was no sensor noise. For grid (b), we set thisparameter to 0.45, producing signi�cant noise. The resulting evidence grids are similar but containnoticeable di�erences, suggesting that the basic inference method is robust but that sensor noisealso has some e�ect.5Fortunately, our reliance on evidence grids suggests a natural response to noisy sense data.Because each stored grid can be based on multiple sensor signals, we can attempt to improve thequality of these grids by increasing the number, or altering the arrangement, of the signals usedto generate them. We hypothesized that place descriptions based on more sensor readings wouldbe less a�ected by increases in sensor noise. Thus, we predicted an interaction between these twoindependent variables, speci�cally one that a�ects both learning rate and asymptotic accuracy.
5. The inferred \arms" in (b) appear to be artifacts of the grid updating scheme; the more generic e�ect of sensornoise is to create more ragged boundaries along the edges of objects.
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67          94 94                                                                                                                                                                                                Figure 3. Evidence grids generated from 45 simulated sonar readings for the lower left room in Figure 1 using(a) zero sensor noise and (b) a 0.45 noise setting.To test this hypothesis, we used the Nomad simulator to produce four di�erent levels of sensornoise, in which the error parameter was set to 0.0, 0.15, 0.30, and 0.45, respectively. We alsoattempted to vary the quality of the stored grids by using two di�erent sensing strategies. In one,we based each evidence grid (both training and test cases) on 45 sonar readings collected from asingle position but produced at orientations one degree apart, as used to generate the earlier results.In the other, we based each grid on 90 readings, produced by repeating this strategy in two nearbypositions within the same room.Figure 4 (a) shows the learning curves that result for the zero and 0.45 noise levels using theone-position sensing strategy, whereas Figure 4 (b) presents analogous results for the two-positionstrategy. (The results for the 0.15 and 0.3 settings fell between these extremes; we have omittedthem for the sake of clarity.) The two-position scheme clearly fares better than the simpler strategy,and the curves generally agree with our predictions. The rate of learning for the two-positionmethod is much higher than for the one-position method, even when no sensor noise is present. Also,the introduction of sensor noise clearly a�ects both strategies, but it alters only the learning ratefor the more sophisticated scheme, while it actually appears to reduce the asymptotic recognitionaccuracy for the simpler one.The general superiority of the two-position strategy is hardly surprising, in that its evidencegrids are based on twice as many sonar readings. Ideally, we would prefer a sensing scheme that isrobust with respect to noise but that requires no more sensing than the initial strategy. To this end,we explored a third method that takes three sonar readings at an initial position, with rotationalincrements of 7.5 degrees, moves a �xed amount along a straight line and takes another threereadings in the same manner, then repeats this process until completing a total of 45 readings. Theresulting evidence grid is based on sensing over the entire path, reducing the chance of occlusionand hopefully reducing the e�ect of sensor noise.



Page 12 Acquisition of Place Knowledge

0 5 10 15 20 25 30 35

Number of training cases

(a)

0.
5

0.
6

0.
7

0.
8

0.
9

1

R
ec

og
ni

tio
n 

ac
cu

ra
cy

Sensor noise = 0.45

Sensor noise = 0.0

0 5 10 15 20 25 30 35

Number of training cases

(b)

0.
5

0.
6

0.
7

0.
8

0.
9

1

R
ec

og
ni

tio
n 

ac
cu

ra
cy

Sensor noise = 0.45

Sensor noise = 0.0

Figure 4. Learning curves for the lazy place learning system for two levels of sensor noise when evidence gridsare based on (a) 45 readings from one position and (b) 90 readings from two nearby positions.Figure 5 (a) presents learning curves for this sensing strategy on two of the simulated noise levels.For the noise-free situation, the behavior is nearly identical to that for the 90-reading strategy, eventhough grids are based on half as many sonar signals. However, sensor noise signi�cantly degradesthis strategy's behavior, though its accuracies remain well above those for the one-position method.Clearly, basing evidence grids on a number of distinct positions within a given place gives betterresults than basing them on one position, but increasing the number of readings also has desirablee�ects. It seems likely that more sophisticated sensing strategies, which sample readings in a moreintelligent manner, would produce even better results.3.4 E�ect of the Similarity MetricIn Section 2.2 we described the similarity metric used to assign a short-term evidence grid to thestored grid that best matches it. This metric sums over the cells on which the two grids overlap,using a function F to measure the similarity of individual cells. We contrasted our implementationof F , which takes on the values 1, 0, and �1, with the implementation used by Moravec andBlackwell (1992), which ranges from one to negative in�nity. We presented some intuitive argumentsfor preferring our formulation, but the question of which measure behaves better in practice isultimately an empirical one.Figure 5 (b) presents experimental results for the two similarity metrics, using training and testcases from six places based on 45 simulated sonar readings from one position. The learning curvefor our version of the F function is similar to those we have seen earlier in the paper. In contrast,the curve for the Moravec and Blackwell metric reveals learning at a much slower rate, reachingonly 39% accuracy after 33 training cases, as compared with 87% for our measure. These resultsdo not imply that our approach is the only viable option, but they do show that the similaritymeasure can make a substantial di�erence in place recognition, and that our metric performs muchbetter than one proposed alternative, at least on this task.
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Figure 5. (a) Learning curves for two levels of sensor noise when evidence grids are based on 45 readingstaken at equal intervals along a line between two positions. (b) Learning curves using the Lang-ley/Peger/Sahami (LPS) similarity metric and the Moravec/Blackwell (MB) metric.3.5 Number of Distinct PlacesSome real-world environments contain many distinct places, making it desirable for a learningmethod to scale well as the number of places increases. We obtained preliminary results alongthese lines by examining our algorithm's behavior with di�erent subsets of the places available inour environment. Figure 6 (a) shows the learning curves that result for two through six places,with each grid based on 45 simulated sonar readings from one position. Each reported accuracy isaveraged over 400 runs for each possible subset of k out of six places, using 35 randomly selectedtraining cases and one test case. Thus, when k = 2 we carried out � 62 � � 400 = 6000 runs, andwhen k = 3 we carried out � 63 ��400 = 8000 runs. We have not reported con�dence intervals here,since the accuracies are averages of averages.Naturally, increasing the number of places decreases the speed of learning, but we can alsoexamine the rate of this decrease. Note that the �gure also shows where each learning curve crossesthe level of 90 percent accuracy. These crossover points produce the scaling curve in Figure 6 (b),which maps the number of distinct places against the number of training cases needed to reach thisaccuracy level. This higher-order curve seems to be either linear or quadratic, but the analogousscaling curves for the two-position and straight-line sensing strategies, also shown, de�nitely appearlinear. These results suggest that our approach requires, more or less, a �xed number of trainingcases per place, independent of the total number of places. This encourages us to believe that themethod will scale well to domains that involve many more di�erent places than the six we haveexamined, though ultimately we should test this prediction using larger environments.3.6 Summary of Experimental ResultsIn this section, we reported on a number experiments designed to evaluate our lazy approach tothe acquisition of place knowledge. We used a method common in research on machine learning,stating explicit hypotheses and running experiments designed to test them. In each case, we variedone or two independent variables and observed their e�ects on some performance measure.
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Figure 6. (a) Learning curves for di�erent numbers of distinct places, based on 45 sonar readings from oneposition. (b) Scaling curves that map, for di�erent sensing strategies, the number of training casesneeded to achieve 90% accuracy as a function of the number of places.The experiments revealed a number of encouraging behaviors. Our approach to place learninggenerally improves its recognition accuracy as it observes more training cases, with similar resultsoccurring for both the physical and simulated robot. The learning rate slows in the presence ofsensor noise, but one can mitigate this e�ect by increasing the quality of the inferred evidence grids.The rate of learning also slows with increasing numbers of places, but no more than expected in anymulticlass learning situation. In addition, we found that our similarity metric performs signi�cantlybetter than another metric proposed in the literature on this domain.Clearly, there exist many other factors that could inuence the behavior of our place-learningmethod. These include the resolution of the evidence grids and the distinctiveness of the places onemust learn to distinguish. However, we will reserve these issues for future studies, as the currentexperiments have been su�cient to show that our approach is a promising one.4. The Role of History in Place LearningThe above experiments dealt with place recognition in isolation, but this seems unrealistic for mostrobotics settings.6 More often, a physical agent will have strong expectations about its currentplace based on knowledge about the place it has just left. Such historical information about theconnections among places should be particularly useful for distinguishing between places that areotherwise similar.One can encode knowledge of this sort in a topological map that takes the form of a Markovmodel. Each node in the map corresponds to a distinct place, while links indicate adjacency relationsbetween pairs of places, along with the probability of moving from one place to a neighbor. Eachnode also speci�es the prior probability that the agent is located there, lacking other information.6. Such place recognition might occur when a robot is �rst turned on or when it reenters a known place duringexploration, but these hardly seem typical.



Acquisition of Place Knowledge Page 15In this section we provide an analysis of this framework, followed by initial experiments on thee�ects of previous place knowledge that moves beyond our earlier work.4.1 Analysis of Historical InformationSuppose a robot has constructed an evidence grid E based on sensor information, and we wouldlike to predict the current place C based not only on E but also on knowledge about the placeB in which the robot was previously. Mathematically, we would like to compute P (CjE;B), theprobability that the robot is in current place C given previous place B and evidence grid E. Aswe show in the Appendix, under simple assumptions this term can be rewritten asP (CjE;B) = P (CjE)P (BjC)XC [P (CjE)P (BjC)] :However, to make this expression operational, we must de�ne P (BjC) and P (CjE). We can expandthe former to P (BjC) = P (B)P (CjB)PB P (B)P (CjB) ;in which the terms P (B) and P (CjB) are known, provided we make Markov assumptions aboutthe environment. We can expand the latter toP (CjE) = Pgmatch(Cg; E)PDPhmatch(Dh; E) ;where the summation in the numerator is over all stored grids g for place C, where those in thedenominator are over all places D and all grids h for those places, and where match(Kj ; E) is thematch score between the stored evidence grid j for place K and the sensory grid E. This expansiononly approximates P (CjE), but the accuracy of the approximation should increase with the numberof grids stored for each place.The above method takes the \proper" Bayesian approach of using a weighted vote over allcandidate grids, but it di�ers from the best-match scheme we used in our earlier studies. We canobtain an analogous probabilistic version of the best-match method by de�ning the probability ofa place P (C) given a grid E, P (CjE), asP (CjE) = maxgmatch(Cg; E)PDmaxhmatch(Dh; E) :In the absence of information about previous places, this best-match expression should give thesame predictions as the method described in Section 2.We use a simple algorithm that incorporates these expressions to make predictions about thecurrent place C. First we initialize the distribution over previous places P (B); in the studiesreported below, we assumed a uniform distribution. Next, for each possible place C, we de�ne theterm R(C) =XB [P (CjE;B)P (B)]
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C

A B

DFigure 7. Simulated o�ce environment with a four rooms, two of which (B and D) should be di�cult todistinguish without historical path information.using the expressions described above, which includes the match score for the current evidence gridand which marginalizes over all possible previous places. We then predict the place C with thehighest R(C) probability. Finally, we use the R(C) value for each place as the prior probability foreach previous place in the next round of reasoning, and we update P (BjC) using this new prior.This updating process makes the Markovian assumption that knowledge of previous places on thecurrent time step depends only on knowledge on the previous time step. This seems reasonable,as we are not concerned with how the agent has reached its current location, but only with thelocation itself.4.2 Experimental Studies with Historical InformationWe designed a simulated environment that would let us evaluate experimentally the inuence ofhistorical knowledge on place recognition and learning. Figure 7 shows the layout, which includestwo distinctive rooms, A and C, and two identical rooms, B and D. We hypothesized that both theaveraging and best-match schemes would fare better in this domain when historical informationwas available than when it was absent. To provide an upper bound on the e�ect of history, wedecided to include a condition in which the programmer told the classi�er the correct label for theprevious place, thus providing perfect knowledge of the previous path.7We used the Nomad simulator to generate six grids for each place in this environment, givinga total of 24 grids, which we split these into six disjoint sets, each containing one grid from eachplace. From these sets we generated six separate training/test splits by taking the union of �vesets for training and reserving the remaining set for testing. For each group of training grids, weran the learning system on ten distinct paths through the space; these were randomly selected fromthe possible paths of length seven or nine for the environment in Figure 7 in which each place wasvisited at least once, and excluding paths in which the robot remained in the same place acrossa time step. In addition to storing each training grid and its place name in memory, the learner7. We also included a condition in which we gave the system the correct label for only its starting place. Althoughwe do not report the precise results here, this condition always gave accuracies between those for probabilisticand certain historical knowledge.
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Table 2. Place recognition accuracies (with standard errors in parentheses) with and without knowledge ofprevious places, for both averaging and best-match strategies, in environments with rooms thathave open and closed doors. Open Doors Closed DoorsType of previousplace knowledge Averaging Best Match Averaging Best MatchNone 0.611 (0.003) 0.878 (0.001) 0.908 (0.000) 0.908 (0.000)Probabilistic 0.550 (0.002) 0.558 (0.007) 0.553 (0.004) 0.608 (0.004)Certain 0.847 (0.001) 0.969 (0.000) 1.000 (0.000) 0.969 (0.000)used the training paths to estimate P (CjB) for each combination of places. We measured theclassi�cation accuracy on the test set for each path and for each split, then averaged the scores.The leftmost columns of Table 2 show the results, a number of which are unexpected. First,in the absence of historical information, the best-match scheme is 27% more accurate than theBayesian averaging method. Even more surprising, the use of probabilistic historical knowledge,inferred from previous grids along the path, actually decreases the accuracy for both the best-matchand averaging strategies. The availability of certain knowledge about the previous place, providedby the programmer, helps for both the best-match and the averaging methods.Inspection of the evidence grids inferred for this environment gives a partial explanation of thebehavior. Because the sonar signals reach into adjacent rooms, the grids for B and D can appearquite di�erent, even though the rooms themselves are identical. In other words, sonar informationabout adjacent rooms provides context that o�sets the advantage of historical knowledge about pathtraversal. Moreover, this situation can lead to high variation in the grids generated for di�erentpositions within a given place, as the adjacent room will only be visible from some viewpoints.These observations explain why knowledge of previous places provides little aid in this environ-ment, but not why the probabilistic version actually hurts accuracy. Our hypothesis for this e�ectis that even occasional errors in place recognition early in the robot's path propagate to decisionslater in the path, causing errors that do not occur when using only sensory information. This ex-planation is supported by the fact that, when provided by the programmer, historical informationincreased rather than reduced accuracy.Because rooms were more distinguishable than we had expected, we decided to repeat the studywith a similar environment that had closed doors. This con�guration should remove any sensorycontext and thus make rooms B and D more di�cult to discriminate. Table 2 also shows the resultsof this experimental condition. The main di�erence from the previous world is that the averagingand best-match methods give identical results in the absence of historical knowledge, which can beexplained by the reduction in variability among the stored grids for each place. However, the use ofprobabilistic knowledge about previous places still reduces accuracy for both strategies over simpleuse of the current evidence grid.8 As before, programmer-provided historical knowledge improves8. Because places A and C occur more often than B and D in this environment, the expected accuracy is 82% for theclosed-door world in the absence of historical knowledge, but this is considerably lower than the 91% observed.



Page 18 Acquisition of Place Knowledgeboth strategies, again suggesting that classi�cation errors early in the path are responsible for thedecrements with the probabilistic scheme.These results raise serious questions about the usefulness of topological knowledge to constrainthe process of place recognition. At least for the techniques and environments explored to date,the simple use of sensory information, transformed into an evidence grid and combined with a lazyclassi�cation method, appears to be the method of choice. Historical information can aid placerecognition, but only when this knowledge is accurate enough to keep from introducing new errors.5. Related Work on Learning Spatial KnowledgeOur research on the acquisition of spatial knowledge is certainly not the �rst in this area. Clearly,our work owes a strong intellectual debt to Elfes (1989), Moravec and Blackwell (1992), and otherdevelopers of the evidence grid framework. Our basic representation and our performance systemdirectly employ techniques developed by these researchers. However, most research in this frame-work has focused on the construction of a single global map, rather than a collection of evidencegrids for distinct places. Although such approaches clearly acquire spatial knowledge, they do notinvolve induction in the sense of using training instances to improve performance on novel testcases, whereas our work on place learning �ts easily into this paradigm. Thrun (1993) has usedreinforcement learning to improve sensor interpretation for evidence-grid construction, but his goalwas to construct a global map. Mahadevan (1992) describes a method that forms generalizationsexpressed as evidence grids, but his aim was to learn not places but action models.Nevertheless, some researchers outside the evidence grid formalism have studied place learning.For example, Yamauchi and Beer (1994) describe Elden, a system that represents places in termsof means and variances of direct sensor readings, rather than inferred grid occupancies. Their placedescriptions also include features for the robot's position as estimated through dead reckoning andconnections to recently visited places. Place recognition involves passing each attribute's valuethrough Gaussian functions associated with each place, then selecting the competitor with thehighest sum. Learning consists of updating the means and variances for recognized places, creatingnew places when no existing ones match well enough, and adding predictive connections betweenplaces. Yamauchi and Beer's reliance on a Gaussian distance metric makes their method similar toour approach, though Elden di�ers in the eager nature of its instance-averaging process, its useof raw sensor data, and the unsupervised nature of the learning processes.9Lin, Hanson, and Judd (1994) have taken a similar approach to representing and using spatialknowledge. Their system also describes places10 as means and variances of sonar readings and usesa Gaussian metric to determine the degree of match against the current sensor signals. However,their learning mechanisms, which are best described as eager rather than lazy, include not only theInspection of the confusion matrix shows that, as expected, place D was misclassi�ed half of the time, but thatB was always correctly classi�ed. This appeared to result from di�erences in the evidence grids due to specularreection, which occurred more in B than in D due to chance.9. Yamauchi and Beer's system also incorporates an evidence grid representation, but it constructs a global mapand uses this map for correcting errors in dead reckoning rather than for place recognition.10. Lin et al. refer to their descriptions as landmarks. However, this term usually indicates a feature of the environ-ment used to distinguish among di�erent places, rather than to places themselves.



Acquisition of Place Knowledge Page 19creation and updating of place descriptions, but also a reinforcement process designed to improveestimates of the robot's location. This latter technique can lead the learner to add a new place orremove an existing one if these actions reduce errors in location estimates.Kuipers and Byun's (1988) NX system also operates on direct sensory readings, but it storesonly places that are distinctive in terms of optimizing certain measures. For example, NX de�nesthe central point in a hallway corner as being symmetrical and being equidistant from the walls,in addition to containing information about the angles and distances to obstacles. The system alsodescribes edges, which connect distinctive places, in terms of length, width, and similar character-istics. Whenever NX encounters a local optimum L on one of its measures, it compares the sensorreadings to each known place P stored in memory; if the descriptions for L and P are similar, andif their locations are metrically or topologically close, the system classi�es L as the known place P .Otherwise, NX creates a new place based on L's description and stores this in memory, along withits edge connections to other places. This approach to place learning is lazy, like our own, in thatlittle processing takes place at storage time. Mataric (1991) describes a similar scheme, though thedetails of place creation are di�erent.In methodological terms, Kortencamp and Weymouth's (1994) work is perhaps the most similarto our own. Their approach emphasizes gateways such as doors that connect two regions, but theirsystem represents these locations using a grid structure and they evaluate its behavior in terms ofrecognition accuracy. However, their scheme uses hand-coded descriptions for a few gateway typesto recognize candidate places and create new ones, rather than actual supervised training data, andthey compare a number of di�erent recognition strategies, including one that combines evidencefrom sonar and visual sensors.On another dimension, our approach is most similar to Yeap's (1988) work on spatial reasoning.His framework also posits the storage of distinct places, the descriptions of which are not directsensory readings but inferred summaries. However, his \absolute space representation" does nottake the form of evidence grids but rather consists of a connected sequence of line segments that,except for occasional openings, enclose an area. Yeap does not describe a performance elementthat uses these descriptions in place recognition but, as in our own framework, learning involvesthe simple storage of the inferred place descriptions, which suggests the use of a lazy method.6. Concluding RemarksAlthough our experimental studies of place learning have revealed some insight into our approach,clearly more work remains to be done. The most immediate extension would replace the currentsupervised learning method with an unsupervised one. Such a system must identify distinctiveplaces on its own, as it cannot rely on a tutor for this information. To this end, we plan toemploy a technique similar to that used by Anderson and Matessa (1992) for classi�cation and byYamauchi and Beer (1994) for place recognition, but adapted to operate on evidence grids ratherthan direct sensor descriptions. As the agent moves through the environment, it would regularlystop and construct a short-term evidence grid, merging this with the previous place description if



Page 20 Acquisition of Place Knowledgethe match is high enough and using the short-term grid as the basis for a new place otherwise.11Discontinuities caused by passage through doors and past obstacles should be enough to identifydistinguishable places.Most methods for place learning, including those discussed above, also construct topologicalmaps that connect di�erent places. Clearly, this is another important direction in which to extendour approach. We expect that storing rough estimates of the direction of movement between oneplace and its successor will be su�cient for many navigation tasks. Upon executing a navigationplan, the agent would still need to register its location upon entering each place along the path, butexpectations about the next place and its rough translation should greatly simplify the registrationprocess. Although our preliminary results with the use of historical information to reduce confusionamong similar places were not entirely positive, it seems likely that including additional information,such as direction of movement, would improve the situation. Such context should also reduce thecomputational complexity of place recognition by provided expected positions and orientations fromwhich to hill climb toward a good registration.In future work, we also hope to develop methods for detecting distinctive features in evidence gridsthat would simplify the place recognition process. We envision such features as being con�gurationsof grid cells with large di�erences in their probabilities, such as might occur along a wall or at adoor. The recognition mechanism would use the presence of these features as cues during retrievalof candidate places and during registration, and the learning process would use the features toindex places in memory. Such learned features could also play the role of landmarks, in the senseused by Levitt, Lawton, Chelberg, and Nelson (1987), that qualitatively distinguish places. Onesimple approach to detecting useful con�gurations of grid cells would draw on recent methodsfor feature selection with nearest neighbor methods (e.g., Langley & Sage, in press), which useestimates of accuracy obtained through cross validation to direct search through the space offeature combinations.In summary, we have presented a framework for representing, using, and learning knowledgeabout places in which evidence grids play a central role. Our approach draws on earlier work forupdating these probabilistic summaries, but diverges from previous schemes by storing a set of localgrids in a place library, then retrieving and matching them for use in place recognition. Experimen-tal studies adapted from the machine learning literature indicate that this lazy approach improvesrecognition accuracy with experience, that sensor noise degrades the learning process, and thatimproving the quality of stored cases can o�set this e�ect. The experiments also revealed that ourmethod scales well to increased numbers of places, and that some of its power comes from the par-ticular similarity metric used in the matching process. However, additional experiments suggestedthat using historical knowledge of the places just visited can reduce rather than increase accuracy.Many other environmental and system factors remain to be examined, but the basic approach tolazy learning of place knowledge appears promising and suggests many natural extensions.
11. This scheme is somewhat less lazy than the current version, but the reliance on a sophisticated retrieval mechanismwould remain.
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Acquisition of Place Knowledge Page 23Appendix: Derivation of Previous Place InuencesRecall that our goal is to compute P (CjE;B), the probability that the robot is in current placeC given that previous place B and evidence grid E. By applying Bayes Rule, we can rewrite theprobability in question as P (CjE;B) = P (E;BjC)P (C)P (E;B)Now we can expand the denominator by marginalizing over C, givingP (CjE;B) = P (E;BjC)P (C)XC [P (E;BjC)P (C)]If we are willing to assume that E and B are independent given C (as in the naive Bayesianclassi�er), we obtain P (E;BjC) = P (EjC)P (BjC)Substituting the above equation for P (E;BjC) in our original expression, we haveP (CjE;B) = P (EjC)P (BjC)P (C)XC [P (EjC)P (BjC)P (C)]and replacing P (EjC) with P (CjE)P (E)P (C) (by Bayes Rule) givesP (CjE;B) = P (CjE)P (E)P (C) P (BjC)P (C)XC [P (CjE)P (E)P (C) P (BjC)P (C)]Cancelling the P (C) terms in the numerator gives the simpli�ed expressionP (CjE;B) = P (CjE)P (E)P (BjC)XC [P (CjE)P (E)P (C) P (BjC)P (C)]whereas cancelling the P (C) terms in the denominator givesP (CjE;B) = P (CjE)P (E)P (BjC)XC [P (CjE)P (E)P (BjC)]Since P (E) is independent of C, we can move P (E) out of the sum in the denominator, producingP (CjE;B) = P (CjE)P (E)P (BjC)P (E)XC [P (CjE)P (BjC)]Finally, we can cancel the P (E) terms in the numerator and denominator to obtainP (CjE;B) = P (CjE)P (BjC)XC [P (CjE)P (BjC)]which can be expanded in a number of ways, as described in Section 4.


