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AbstractFisher's Cobweb provided a well-de�ned framework for research on the unsupervised induction ofprobabilistic concept hierarchies. The system also sparked the development of many successors thatextended this framework along various dimensions. In this paper, we summarize the assumptionsthat Cobweb embodies about the representation, organization, use, and formation of probabilisticconcepts, along with experimental studies that examine its sources of power. After this, we considerthree systems { Arachne, Twilix, and Oxbow { that incorporate signi�cant extensions andpresent empirical evidence that these improve behavior. In closing, we discuss other paradigms forthe unsupervised learning of probabilistic knowledge and their relation to the Cobweb framework.
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Learning Probabilistic Concept Hierarchies Page 11. IntroductionSince the �eld's inception, most research in machine learning has focused on the problem of super-vised induction from labeled training cases. If anything, this trend has been strengthened by thecreation of data repositories that, typically, include class information. But this emphasis is mis-guided if we want to understand the nature of learning in intelligent agents like humans. Clearly,children acquire many concepts about the world before they learn names for them, and scientistsregularly discover patterns without any clear supervision from an outside source. Even the avail-ability of class labels in public data sets can be misleading; many such domains are medical innature, and medical researchers �rst had to discover a disease before they could diagnose it forparticular patients.Naturally, di�erent approaches to induction from unlabeled data are possible, each stemmingfrom di�erent research goals. In this paper, we report on a class of unsupervised methods designedto support learning in intelligent agents, whether human or arti�cial. This concern suggests somecriteria that such methods should satisfy; these include:� The aim of unsupervised learning should be to acquire concepts or categories;� Concept descriptions should represent the variability that occurs in the natural world;� These concepts should describe experience at di�erent levels of generality ;� The learning process should be incremental , since intelligent agents interact with the environ-ment over time.Taken together, these criteria place strong constraints on the representation and organization ofknowledge, and on the mechanisms that support performance and learning.Our research has explored a paradigm for unsupervised learning that meets these criteria. Theframework assumes that knowledge takes the form of probabilistic concept descriptions and thatthese concepts are organized into an `is-a' hierarchy that describes di�erent levels of generality.For this reason, we will often refer to the framework as one that assumes probabilistic concepthierarchies. However, we also assume that using this knowledge involves sorting new experiencesdownward through the hierarchy, and that this act of retrieval also produces changes in the conceptdescriptions and hierarchy structure, resulting in learning. In this paper, we report on a large bodyof work that falls within this paradigm.We begin by describing Cobweb, the system that played the founding role in this framework,and some experimental studies that reveal the importance of its various components. After this,we examine three systems that extend the basic approach; these include Arachne, which incorpo-rates restructuring operators designed to handle noise and minimize order e�ects, Twilix, whichconstructs more complex concept hierarchies that support overlapping categories, and Oxbow,which forms concepts about temporal phenomena. We also briey review a number of other sys-tems that incrementally construct hierarchies of probabilistic concepts. In closing, we examine theframework's relation to two more recent approaches to unsupervised induction, one based on theAutoclass family and the other involving Bayesian networks.



Learning Probabilistic Concept Hierarchies Page 22. Incremental formation of probabilistic concept hierarchiesAs noted above, our focus in this paper is a framework for unsupervised learning that grew outof Fisher's Cobweb (1987). We can describe the system's goals in terms of its performance andlearning tasks. For the former, Cobweb aims to infer the values of attributes missing from testcases, a task that Fisher called exible prediction. For learning, the system aims to carry outhierarchical clustering over unlabeled training cases that are presented in an online fashion andthus organize these instances in memory. Incidentally, this also lets it estimate the probabilitydensity function over the space of possible instances, which in recent years has become a morepopular way to describe unsupervised learning. Now let us consider the manner in which Cobwebachieves these goals.2.1 Representation and organization of knowledgeThe central representational notion in Cobweb is the concept or category . The system generatesan arbitrary name C for each such category and associates with C a descriptive summary. For eachattribute A, this summary speci�es a probability distribution over the values of A, conditioned onthe category C. For a nominal or discrete attribute, this takes the form of a discrete probabilitydistribution; for a numeric or continuous variable, the system uses a normal distribution, which canbe characterized by its mean and variance.1 Since it stores only marginal probability distributions,Cobweb makes the assumption that the observable attributes are independent given the category.The key organizational theme in Cobweb is that categories are placed in a concept hierarchy .Each node C in this `is-a' tree speci�es a set of children and the conditional probability of C givenits parent category. Moreover, the descriptive summaries between a parent and its children obeysan important relation: the probability distribution for each attribute of a parent is a weightedmixture of those for its children, so that each node constitutes a probabilistic summarization ofall its descendants. The terminal nodes or leaves in a Cobweb hierarchy correspond to speci�cinstances, typically training cases observed during learning. Thus, the root node corresponds to themost general category, which summarizes all instances the system has seen, and categories becomeincreasingly speci�c as one moves down the hierarchy.Figure 1 shows a small probabilistic concept hierarchy for the domain of household pets, withthe descriptive summaries for three nodes. The leaf node N8 describes a single animal (a Mexicanhairless dog) that is small, has four legs, barks, and has a body covered with skin. Since thiscategory involves only one example, all attribute probabilities are either 1 or 0, and the node'sconditional probability given the parent is 12 , as it has only one sibling. The parent node, N5, issomewhat more abstract, summarizing two instances (both dogs) that di�er on some dimensionsbut not others. Thus, the conditional probability of having four legs and barking is still 1, given aninstance of category N , but the probability distributions for size and body cover are more di�use.The node next higher in the hierarchy, N2, is even more abstract, since it also covers instances1. Most implementations of Cobweb store these internally using counts for the category, counts for nominal attributevalues, and the sums and sums of squares for numeric attributes.
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Figure 1. A small hierarchy of probabilistic concepts for the domain of household pets, illustrating COBWEB'srepresentation and organization of knowledge.(cats) that mew rather than bark, but still has little variation in the legs attribute, since all itschildren are quadrupeds. This node has a conditional probability of 49 given its parent, the root,because N2 subsumes that fraction of the leaves in the tree.2.2 Performance and learning mechanismsNaturally, Cobweb's representation and organization of knowledge �gure prominently in its use ofthat knowledge. Given a new test case, typically with only some attributes speci�ed, the systemsorts the experience downward through the concept hierarchy by recursively assigning the instanceto the best child category at each level. This process halts when the test case reaches a terminalnode or when it is not similar enough to any child to justify sorting downward further. At thispoint, Cobweb infers the values for attributes missing from the instance, using the modal valuesfrom the deepest (most speci�c) node through which it has passed.Cobweb integrates classi�cation and learning, so that the latter process takes place as thesystem sorts training cases through the hierarchy. As this occurs, the algorithm updates theconditional probability distributions for each node through which the instance passes, guaranteeingthe property mentioned earlier that each category summarizes all cases below it in the hierarchy.
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Figure 2. Learning operators used to modify the structure of a hierarchy of probabilistic concepts: (a) extendingthe hierarchy downward; (b) creating a new disjunct at an existing level; (c) merging two existing classes; and (d)splitting an existing category. Newly created nodes are shown in gray.However, Cobweb can also invoke four learning operators to alter the structure of its concepthierarchy. As illustrated in Figure 2, these include:� extending downward , which occurs when a training case reaches a terminal node in memory;under these circumstances, the learner creates a new node N that is a probabilistic summaryof the case and the terminal node, making both children of N ;� creating a disjunct , which occurs if a training case is su�ciently di�erent from all children ofa node N ; in this situation, the learner creates a new child of N based on the case;� merging two categories, which occurs if a case is similar enough to two children of node N thatthe learner judges all three should be combined into a single child;� splitting a concept , which occurs when a child C of node N no longer serves as a useful category;C is removed and its children are promoted to become direct children of N .The system considers the last three of these actions at each level of the hierarchy, as it sorts thenew training instance downward through memory. Merging and splitting are designed to reducesensitivity to training order, giving the e�ect of backtracking in the space of concept hierarchieswithout requiring the storage of previous hypotheses.We have not yet described how Cobweb decides which category to select at each level, whetherto halt at an internal node, and whether to merge or split categories. To this end, the system usesan evaluation function called category utility that measures the quality for a set of probabilisticcategories. Given a set of K categories with discrete attributes, category utility was originallyde�ned by Gluck and Corter (1985) as the increase in the expected number of attribute values thatcan be correctly guessed over the expected number of correct guesses without such knowledge. Themodi�cation introduced by Fisher (1987) and used by Cobweb is
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1K 24 KXk=1P (Ck)Xi Xj P (Ai = Vij jCk)2 �Xi Xj P (Ai = VijjC)235 ; (1)where k varies over categories, i over attributes, and j over values for each attribute. This functionevaluates a partition | de�ned as a parent node C and its immediate children Ck. The probabilityP (Ck) represents the base rate or the prior probability that an instance is a member of the childCk, whereas P (Ai = Vij jCk)2 is a measure of within-class similarity for an attribute Ai; that is,how well the instances summarized by Ck resemble one another. Subtracting the sum over theparent's within-class similarities, P (Ai = VijjC)2 for each attribute, lets category utility measurethe information gained by partitioning the parent class into the given set of children. Dividing byK, the number of C's children, biases the system against proliferation of singleton classes.For numeric domains, we must modify this evaluation function because the probability that acontinuous attribute will take on a particular number is zero. For such attributes, probabilities areestimated by assuming that values conform to a normal distribution with a particular mean andstandard deviation. Thus, for a domain with continuous attributes, Gennari, Langley, and Fisher(1989) de�ne category utility as1K " KXk P (Ck) IXi 1�ik � IXi 1�ip# ; (2)where P (Ck) is the probability of class Ck, K is the number of categories, �ik is the standarddeviation for an attribute i in class Ck, and �ip is the standard deviation for attribute i in theparent node.2 One can also combine continuous and discrete attributes in the category utilitycalculation simply by using the appropriate form of the equation for each attribute. That is, fornominal attributes, the inner summation over values uses Equation 1, and for numeric attributesit uses the inverse of the standard deviation.We should close our review of Cobweb with some remarks about its assumptions and repre-sentational power. At each level of the concept hierarchy, the system assumes that attributes areconditionally independent given the category. This condition, which Cobweb shares with the naiveBayesian classi�er (Langley, Iba, & Thompson, 1992), will clearly be violated in many domains. Butnote that the system seldom makes its predictions at the hierarchy's top level, and that categorieslower in the tree describe local portions of the instance space where approximate independencemay be satis�ed. Indeed, recall that the leaves in a probabilistic concept hierarchy correspond toindividual training cases, and that Cobweb sometimes bases its prediction on these nodes. In thesesituations, the system operates as a nearest neighbor classi�er that uses the concept hierarchy toweight attributes and bias retrieval. In summary, Cobweb's use of a hierarchical memory gives itthe ability to represent complex target concepts, at least in principle. But whether its approachworks in practice is an empirical issue, to which we now turn.2. As discussed by Gennari et al. (1989), the value of 1/� is unde�ned for any concept based on a single instance,so an acuity parameter is needed. Acuity corresponds to the notion of \just noticeable di�erence" in psychology.



Learning Probabilistic Concept Hierarchies Page 63. Empirical studies of CobwebCobweb appeared on the scene during a period when machine learning researchers were �rst start-ing to carry out systematic experiments with their algorithms. As a result, the system has alwaysbeen under close empirical scrutiny, though some early studies occurred before clear standards de-veloped within the community. Here we review a number of experimental evaluations of Cobweb,concentrating on ones that have not appeared previously in the literature.3.1 Basic experimental resultsInitial experimental studies of Cobweb, as with all learning systems, aimed mainly to show thatits performance improved with experience. Fisher (1987) reported results on a number of naturaldomains for a task he called exible prediction. This involved testing on instances with someattribute omitted and letting the system predict the missing value for each case, then repeating thisprocess for each attribute and averaging the result. The technique extends naturally to continuousattributes, and Iba (1991a) adapted it to measure prediction errors about temporal phenomena.Another approach, taken by Gennari (1990), used labeled training data but held back the labelduring hierarchy construction. This scheme added the most likely class values to categories onlyafter the hierarchy was complete, then used them to predict the classes for test cases and producea standard measure of classi�cation accuracy. Figure 3 shows two learning curves that McKusickand Langley (1991) obtained in this manner for Cobweb and a related algorithm, Arachne, thatwe discuss later. One domain involved predicting the party of U.S. Congressmen from their votingrecords, whereas the other domain dealt with diagnosing disease in soybean plants. Although thelatter task is clearly more di�cult, Cobweb shows steady improvement in its ability to predictclass labels, even though it could not use them in constructing its concept hierarchy.Perhaps the most extensive experiments with Cobweb3 come from Gennari (1990), who wantedto understand the sources of power in the framework. His studies included variation of systemparameters and domain characteristics, using predictive accuracy and learning curves to measureCobweb's sensitivity to particular settings and domain features. In the remainder of this section,we consider three of Gennari's experiments that have not appeared in the literature. These includethe signi�cance of category utility as the evaluation metric used for clustering, the importance ofCobweb's algorithm for hierarchy formation, and the e�ect of missing attributes on behavior.3.2 E�ect of the evaluation functionLet us �rst consider the importance of category utility, the evaluation function that Cobweb useswhen sorting cases through memory and when restructuring its hierarchy. Although Fisher presentsconvincing arguments for using this metric, its behavior relative to other functions remains anempirical question. Gennari was interested in whether more traditional distance metrics, common3. Gennari's studies dealt with a rational reconstruction of Fisher's system, which he called Classit, that alsoincluded a number of extensions. Because most of these additions were later subsumed by Cobweb/3 (McKusick& Thompson, 1990), we will also refer to it as Cobweb.
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Figure 3. Learning curves for COBWEB and a similar system, ARACHNE, on (a) congressional voting records and(b) soybean diseases, using classi�cation accuracy as a performance measure.in the clustering literature, would produce similar results. However, to embed such a measurein Cobweb required modifying them to operate over entire partitions rather than between pairsclusters. To this end, he introduced the functiontrace(W) = KXk 1Nj NjXi (xi � �xjk)2 ; (3)which gives an overall measure of the di�erence among the probabilistic summaries for sibling nodes(i.e., a distance between probability distributions). He also notes that this function is similar toanother metric, which he calls category value, that is simply category utility without informationfrom the parent node subtracted out.Indeed, he notes that trace(W)=K and category value are isotonic, in that they produce thesame ordering over partitions and thus can be used interchangeably when making decisions. Infact, when the number of classes is held constant, category value is also isotonic to category utility.This means that the two functions di�er primarily in that the former prefers fewer children pernode than the latter. Because category value ignores the information at the parent node, Gennariexpected Cobweb to perform somewhat worse using this metric than it does when relying oncategory utility.An experiment with two natural data sets, one on a glass domain and another on heart disease,revealed almost identical learning curves for the two evaluation functions, violating predictions. Togain a better understanding of system behavior, Gennari designed two synthetic domains, each withnine attributes but one having three distinct classes and the other six. In this study, he measuredboth classi�cation error and hierarchy depth after the system had processed 150 training cases,which were presumably enough to master the concepts in these simple domains.Table 1 shows the predictive error and average tree depth for both evaluation functions on thethree-class and six-class domains. Note that the error rates for the two metrics are very similar,
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Table 1. The behavior of Cobweb with category utility vs. category value on two synthetic domains.three classes six classeserror depth error depthcategory utility 2.15 1.23 2.08 1.35category value 2.05 2.40 1.99 3.77replicating the result with natural domains. However, category value constructs a deeper concepthierarchy, as one would expect given its bias toward fewer children for each node, with categoryutility giving trees that more closely reected the target concepts. Since Cobweb's performanceelement often sorts instances to terminal nodes when making predictions, tree structure often haslittle e�ect on predictive accuracy. But structural di�erences in the hierarchy can play a role inother contexts, as we discuss later, and category utility seems to hold advantages in such situations.3.3 The e�ect of search controlAnother key factor in the Cobweb framework concerns the algorithm that controls search throughthe space of concept hierarchies. However, the literature on clustering abounds with unsupervisedalgorithms, suggesting that some of these approaches might give similar or even better results.Thus, Gennari carried out a second comparative study between Cobweb's incremental sortingmethod and two techniques that are widely used in clustering circles.The �rst method also constructs hierarchies, but does this in a nonincremental, agglomerativefashion. Starting with each training case as a separate category, this algorithm �nds the twocategories that are nearest to each other, creates a parent node that speci�es them as children,and replaces the original nodes with the new one in the set of candidates. This process continues,repeatedly combining the most similar pair of categories, until only one node (the root) remains.Because it must calculate all pairwise similarities on each iteration, this agglomerative method isconsiderably more expensive than Cobweb in computational terms.The second method, known as iterative optimization, clusters training cases into k categories ata single level, where the user speci�es the number of clusters. This process selects k instances atrandom as seeds to serve as initial category centroids, then assigns other cases to the cluster withthe nearest seed. Next, it computes a new centroid for each cluster based on the cases it containsand reassigns each instance based on its distance to the revised centroids. This process repeatsuntil no changes in the categories occur. This technique is sometimes know as k means clustering.To compare the behavior of these algorithms with Cobweb, Gennari transformed the taxonomyconstructed by the agglomerative scheme into a probabilistic concept hierarchy on which he couldrun Cobweb's performance element. In a similar manner, he transformed the clusters generatedthrough iterative optimization into a one-level probabilistic `hierarchy' on which Cobweb couldoperate. He studied the three methods' behavior on two domains. One involved a synthetic data
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Table 2. The behavior of di�erent clustering methods on a synthetic and natural domain.three classes glass domainerror depth error depthCobweb 2.40% 2.63 13.9% 2.93Agglomerative 1.71% 7.67 18.2% 11.73Iterative opt. (k = 6) 5.07% (1) 18.5% (1)Iterative opt. (k = 8) 2.82% (1)set with nine numeric attributes and four top-level classes, two of which had two subclasses (givingsix total leaf categories); the other consisted of the glass data set from the UCI repository.Table 2 shows the results for both domains. Note that, on the synthetic data, the agglomerativemethod outperforms the other algorithms in terms of classi�cation error, although it constructsa substantially deeper hierarchy than Cobweb. The latter di�erence comes as no surprise, sincethe agglomerative technique always generates binary trees. On the glass data set, Cobweb againcreates a relatively shallow tree, but also gives the lowest classi�cation error. Clearly, studies withmore domains seem in order, but these preliminary results suggest that Cobweb's incrementalsearch-control methods can hold their own with more traditional nonincremental schemes from theclustering literature.3.4 The e�ect of missing informationMany real-world data su�ers from the characteristic of missing information, in that instances haveno value for some attributes. Although Cobweb was designed to infer missing attributes in testcases, the omission of values during training is another matter entirely. Naturally, as the numberof missing attributes increases, we would expect the learning rate to degrade somewhat, but wewould also hope that Cobweb's reliance on probabilistic summaries would make this degradationa graceful one.Cobweb's treatment of missing information is extremely simple and straightforward. Givena training case with some attributes marked as \missing", the calculation of the scores whenincorporating the new instance into an existing concept uses only those attributes that are presentin the instance.4 For example, given a domain with seven attributes and a training case with twomissing attributes, the system calculates category utility over the �ve attributes present, ratherthan over all seven features.Gennari carried out an experimental study with a synthetic domain designed to evaluate Cob-web's tolerance to partial training data. In this domain, each instance is described by a class label4. More complex responses to missing attributes are necessary for other learning frameworks, such as decision-treeinduction (e.g., Quinlan, 1986) and Bayesian networks, but this simple scheme is appropriate given Cobweb'sassumption of conditional attribute independence given the category.



Learning Probabilistic Concept Hierarchies Page 10

0 20 40 60 80 100 120 140 160 180 200

Number of training cases

(a)
0

10
20

30
40

50
60

70
80

P
er

ce
nt

ag
e 

pr
ed

ic
tiv

e 
er

ro
r

missing 30%

missing 20%

missing 10%

missing 0%

0 10 20 30 40 50

Number of training cases

(b)

0
10

20
30

40

P
er

ce
nt

ag
e 

pr
ed

ic
tiv

e 
er

ro
r

degraded 12%

missing 12%

missing 0%

Figure 4. Learning curves for several levels of missing information on (a) a synthetic domain and (b) Congressionalvoting records (from Gennari, 1990).and 12 attributes, six numeric and six nominal, with three attributes of each type being irrele-vant with respect to the class. For this study, a �lter removed attribute values from each trainingcase with a speci�ed probability p, replacing them with an identi�er for `missing'. Varying theparameter p produced a number of domains that were identical except for the number of omittedvalues. From each domain, Gennari ran the system on ten di�erent training sets and measuredclassi�cation error on a common separate test set.Figure 4 (a) shows Cobweb's learning curves for this domain with 0%, 10%, 20%, and 30% of theattributes omitted. As expected, error increases when fewer attributes are available in the trainingcases, and the learning curves for higher omission levels are slower, but this degradation occurs ina graceful manner. However, the overall e�ect is somewhat stronger than Gennari predicted. Ifone removes 20% of the attribute values from training data, we would expect that 20% additionaltraining would make up the di�erence. Instead, we see the curves generated with missing infor-mation needing several times the number of training cases to reach comparable levels of accuracy.Gennari attributes this e�ect to a higher chance that Cobweb will �nd local optima when enoughfeatures are absent. The fact that the learning curve for 5% (not shown) and 10% omissions arenearly identical to the curve for no omissions seems consistent with this interpretation.In a similar study with the congressional voting data, Gennari collected a subset of the instanceswith missing attributes that, on average, had 12% missing values. He also took a subset of com-pletely speci�ed instances and randomly �ltered values such that this \degraded" set also had 12%missing information. Figure 4 (b) shows the learning curves for this study. We see an interestingcontrast between training on instances with missing data and training on data that was degraded.The former performs signi�cantly worse than than Cobweb with no missing data, while the de-graded condition, with the same percentage of missing values, fares about as well as the no missingcondition. Certainly, the system is robust with respect to certain forms of data loss, but missinginformation remains an open question that merits additional attention.



Learning Probabilistic Concept Hierarchies Page 114. Extensions to COBWEBWhen �rst developed, Cobweb appeared to o�er many advantages over other approaches to learn-ing available at the time. The system combined the hierarchical structure of decision trees witha clean probabilistic semantics, and it constructed its concept hierarchies in an incremental andunsupervised manner. However, experience with Cobweb suggested both representational andalgorithmic limitations, which led to many attempts to extend the basic approach. In this section,we report on three such e�orts in detail, then briey review other research within the framework.4.1 Minimizing e�ects of noise and training orderDespite its many attractions, our direct experience with Cobweb suggested that often it con-structed hierarchies that did not reect the underlying class structure of the domain. This be-havior was especially apparent with noisy data and with certain training orders. In response,we developed Arachne, an unsupervised system that seeks to construct well-formed hierarchiesof probabilistic concepts while maintaining high predictive accuracy. The algorithm bears manysimilarities to Cobweb, but employs di�erent criteria for tree formation and uses alternative re-structuring operators. In this section, we review Arachne and present some experimental resultson its behavior.4.1.1 The Arachne SystemArachne assumes the same representation and organization of knowledge as Cobweb, but di�erssomewhat in its learning algorithm, classi�cation mechanism, and evaluation function. Like itspredecessor, the system includes two operators for restructuring its probabilistic concept hierarchy,one that merges children and another that promotes a child to the same level as its parent. UnlikeCobweb, the system applies these operators according to local constraints that can be testede�ciently but that should produce better structured hierarchies of probabilistic concepts. Thebasic learning activity involves sorting a training case downward through memory, with its valuesbeing used to update the probability distributions for the node subsuming it. However, this sortingprocess occurs only as the byproduct of the system's merging operator, which can lead to otherrestructuring along the way.Each time such restructuring alters the children of some node N , the system checks two con-straints designed to ensure a well-formed hierarchy. Arachne �rst checks each child C of N inturn to make sure the child is `vertically well placed'; that is, it is more similar to its parent thanto its grandparent. If C violates this condition, Arachne promotes C , removing it as a child of Nand making it a child of N 's parent.5 This ensures that no children of N are more similar to theirgrandparent than to their parent. Thus, storing a new instance as a child of a concept can cause asibling instance or concept to `bubble up' to a higher location in memory.The system's next step involves checking each child of N to make sure it is `horizontally wellplaced', that is, it has equal or greater similarity to its parent than to any sibling. If the most5. Actually, the system must recheck each constraint after applying the promote operator, since this changes thedescription of the parent node N .



Learning Probabilistic Concept Hierarchies Page 12similar pair of children are more like each other than either is to N , the system merges this pair byreplacing these siblings with a new node that is their probabilistic average and taking the union oftheir children as its children. Arachne then recursively considers merging this new node's children.In some cases, this leads to recreation of the original siblings at a lower level in the hierarchy; inother cases, it produces further reorganizations in the subhierarchy. In particular, if the originalinstance is merged with an existing concept, recursive calls of the merge operator can e�ectivelysort it down through memory.Once it has merged two nodes at a given level, Arachne checks the remaining nodes for satis-faction of horizontal well placement. If it �nds another pair of nodes that violate this constraint,it merges them as well, then repeats this process until all nodes at this level satisfy the constraint.In this way, a single new instance can cause the system to merge successively many of the nodespreviously stored at a given level, including pairs of nodes dissimilar from it.For instance, suppose Arachne had stored four instances of cats under a common parent, anda dog instance is added (through merging from above). Here the system would �rst merge thetwo most similar cats, then merge a third into the resulting node, and �nally add the fourth. Theresult would be two concepts, one representing the abstraction of four cat instances and the otherbased on a single dog. This iterative merging process di�ers from that used in Cobweb, whichmerges nodes only when they are similar to a new instance. Thus, we expect Arachne will createwell-structured trees regardless of the order in which instances are presented.Arachne's evaluation function also di�ers somewhat from that used in Cobweb. The twoconstraints require some measure of similarity between pairs of nodes and/or instances, ratherthan a metric over an entire partition. To this end, the system calculates the shared area underthe probability distributions for each attribute, averaged over all attributes. This usage is akin tothat found in Hadzikadic and Yun's (1989) Inc system, which also uses a similarity function toguide the formation of probabilistic concept hierarchies. In addition, Arachne uses its similaritymeasure to determine the depth to which it should sort an instance, halting whenever the bestsimilarity score at the next level is no better than that at the current level.Arachne uses the same metric and essentially the same control structure for prediction that ituses in learning. The system sorts an instance down the hierarchy in accordance with its constraints,except that no promotion is allowed and only merges that involve the instance are executed. Thusan instance sorts to the class at which it would ordinarily become a disjunct, and a prediction ismade from the last node to which it sorted. Arachne also includes a simple `recognition' criterionto foster prediction from internal nodes and thus avoid over�tting. As it sorts an instance throughmemory, the system makes a prediction from an internal node if its modal values perfectly matchall the values of the instance.4.1.2 Experimental evaluation of ArachneOur initial experiments were designed to show that Arachne is competitive withCobweb in termsof predictive ability on natural domains. For this purpose, we followed Gennari's scheme of includingthe class attribute as an additional feature that the systems used for prediction but not in clustering.
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Figure 5. Learning curves for ARACHNE and COBWEB on an arti�cial domain with (a) low and (b) highattribute noise, using predictive accuracy as a performance measure.As shown in Figure 1, averaged results on the voting records and soybean domains revealed nearlyidentical learning curves, with the two systems improving at almost the same rate and reaching thesame asymptotic accuracy. Although such studies show relevance to real-world problems, arti�cialdomains provide better understanding of the reasons for an algorithm's behavior. For example, wepredicted that Arachne's performance and learning algorithms would be more robust on noisydata, in terms of both accuracy and tree structure, since its more powerful reorganization operatorsshould make it less subject to constructing overly deep concept hierarchies. We de�ned tree qualityas the number of well-placed instances, that is, singleton nodes that are descendents of a targetconcept and that match 50% or more of the modal attribute values of the target concept. A highpercentage of well-placed instances in a tree implies many accurate concepts.To test this hypothesis, we designed arti�cial data sets that contained instances with four at-tributes, each of which could take on ten discrete values, giving ten distinct categories. For eachconcept, each attribute had a prototypical value but could take on other `noise' values at somespeci�ed probability. In the low-noise data set, the modal value for each attribute occurred withprobability 0.7, while three `noise' values occurred with probability 0.1. In the noisier data set, themodal value for each attribute occurred with probability 0.5, while �ve noise values occurred withprobability 0.1. Because a noise value appearing in one class was the modal value of some otherclass, the class descriptions overlapped to some extent. About 24% of the low-noise instances andonly about 6% of the high-noise instances should conform perfectly to the modal class description,with the remainder being noisy variants.We carried out ten runs at both noise levels, presenting Cobweb andArachne with 100 trainingexamples in each case. Figure 5 shows the learning curves for predictive accuracy at each level.As expected, increasing noise produced larger di�erences between the two systems. For low noise,Arachne asymptoted at 90% accuracy and Cobweb reaches 80%, whereas for high noise theirasymptotes dropped to 76% and 56%, respectively. We observed a similar interaction regarding tree
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Figure 6. Improvement in predictive accuracy for ARACHNE and COBWEB on arti�cial data with (a) randominstance order and (b) misleading training sequences.quality, with the older system being more a�ected by increased noise levels. Suprisingly, Cobweb'stree quality in the low-noise condition (82% well-placed nodes) was higher than for Arachne (74%well-placed nodes), but this order reversed for the high-noise condition, with Cobweb (37% well-placed nodes) faring worse than Arachne (52% well-placed nodes). Di�erences in accuracy weresigni�cant at the .001 level, whereas those in tree quality were signi�cant only at the .025 level,but both measures were consistent with the predicted interaction e�ect.Another one of our concerns in designing Arachne was stability with respect to di�erent ordersof training instances. The system's operators for merging and promotion should enable recoveryfrom nonrepresentative training orders, leading to the prediction that Cobweb will su�er morefrom order e�ects than Arachne with respect to tree quality but not accuracy. Our experiencewithCobweb suggested it has di�culty when every member of a class is presented at once, followedby every member of a new class, and so forth. Thus, we tested our hypothesis by presenting bothsystems with ten random orderings and ten \bad" orderings of 200 training instances from the low-noise data set described earlier. The bad orderings were strictly ordered by class, so the systemssaw 20 examples of each class in turn.The results, shown in Figure 6, indicate that instance order did not a�ect asymptotic accuracyfor either system, although naturally learning was slower for the bad ordering, since they did not seea representative of the �nal class until the 181st instance. At this stage, random and bad orderingsproduce hierarchies capable of analogous predictive accuracy, approximately 90% for Arachne and80% for Cobweb. However, tree quality di�ers signi�cantly in the two situations. Both systemslocate most or all of the concepts at some level, but Cobweb is vulnerable to misplaced instanceswith the pathological ordering. Whereas Arachne arrives at 88% well-placed nodes with the badordering, and a similar 86% with random ordering, Cobweb averages only 74% well-placed nodeswhen learning from the bad ordering, compared to 84% for the random ordering. Di�erences inpredictive accuracy were signi�cant for both conditions at the .001 level. Di�erences in tree quality



Learning Probabilistic Concept Hierarchies Page 15between the two systems were not signi�cant for random orderings of training cases, but weresigni�cant at the .001 level for bad instance orderings.In summary, we found thatArachne's alternative control structure produced the same predictiveaccuracy as Cobweb on two natural domains, but we observed signi�cant di�erences in bothaccuracy and tree quality using synthetic data. In particular, we found that Cobweb was moresensitive than Arachne to noisy training and test cases, and that the quality of Cobweb's treessu�ers from misleading orders of training instances, while new system's tree structure is relativelyuna�ected. We also saw additional evidence that predictive accuracy is poorly correlated with treequality. These results suggest that Arachne embodies a promising approach to the constructionof probabilistic concept hierarchies and deserves additional study.4.2 Learning overlapping conceptsAnother limitation of Cobweb lies in its assumption that regularities in a domain can be summa-rized by a single hierarchy of probabilistic concepts. One can easily imagine domains in which twoor more orthogonal organizations of instances, involving di�erent sets of attributes, are possible. IfCobweb uses one of these taxonomies to structure its experience for one attribute set, it cannotform generalizations and make useful predictions about the other attributes. Enough training casesshould let the system deal with such domains, but an excessive reliance on data is a drawback ofany inductive system. In response, Martin and Billman (1994) developed Twilix, a system thatextends Cobweb to deal with domains that have overlapping category structure.4.2.1 The Twilix systemLike the Arachne system, Twilix shares many features with its predecessor in terms of represen-tation, organization, performance, and learning. As in Cobweb, each concept C is encoded usinga conditional probability distribution for each attribute given C, along with a base rate P (C) forthe concept itself.6 The system also organizes these probabilistic categories in a concept hierarchy,with higher nodes subsuming those below them. However, the immediate children of each nodein the Twilix hierarchy are not individual categories, but rather sets of categories. Each such`conict set' represents a distinct way of partitioning instances, typically emphasizing di�erent at-tributes and thus supporting overlapping concepts. Each such set contains nodes for more speci�cprobabilistic categories, which can themselves have sets of children, and so forth.Naturally, Twilix uses this extended memory organization to process an instance I somewhatdi�erently than Cobweb. Within a conict set, the system always assigns I to exactly one ofthe mutually exclusive categories, just as in Cobweb, updating the probability distributions thatdescribe that concept. Across conict sets, Twilix �nds the best set by tentatively assigning Ito the concepts within each set, then repeats this process to �nd the next best set, and so forth.The result is that the system can assign the case to more than one conict set, but never to morethan one concept within each set. Moreover, just as Cobweb sometimes decides to create a new6. Twilix di�ers slightly from Cobweb in incorporating uniform prior probabilities for each distribution, ratherthan estimating distributions solely from the training data.



Learning Probabilistic Concept Hierarchies Page 16category at the current level based on a distinctive training case, so Twilix sometimes decidesto create an entirely new conict set. The system does not include Cobweb's split and mergeoperators, since it should be less sensitive to training order than its predecessor.Like the earlier system, Twilix relies on evaluation functions over instance partitions to directthe classi�cation and learning process. In fact, the function for assigning cases to a category withina conict set, which Martin and Billman call set utility , di�ers only in minor ways from Cobweb'scategory utility. However, the system also includes a function U that evaluates di�erent sets � ofconict sets. This can be stated as U(�) = "MYl=1SU(Sl)# 1M ; (4)where SU is the set utility for cluster Sl and M is the number of conict sets in �. Twilix appliesthis function to candidates sets of sets, selecting the one that gives the highest score. However,note that the exponent 1=M gives a strong bias against unnecessary conict sets, which should leadto a single hierarchy in domains where that is appropriate.4.2.2 Experimental studies of TwilixSince Twilix was speci�cally designed to learn overlapping concepts, Martin (1992) tested thesystem using a data set on Pittsburgh bridges that he felt had this characteristic. This domainincludes descriptions for 108 bridges that were built in the Pittsburgh area between 1818 and 1986.Each bridge is described by twelve nominal attributes, seven representing design speci�cations orrequirements, and the other �ve capturing the design descriptors. Martin also tested a version ofCobweb that omitted the merge and split operators to provide a closer basis for comparison.The experiment involved running each system �ve separate times, training on nine successivetraining blocks and testing on one test block. Each block consisted of ten instances, made up from100 instances selected randomly from the 108 total cases available. After each block of ten traininginstances, both systems were run without learning on the test block to obtain learning curves. Theperformance measure was the average accuracy on predicting each of the twelve attributes giventhe other eleven.Figure 7 (a) shows the resulting learning curves (averaged over �ve runs) for the two systems. Thegraphs reveal that Twilix has a signi�cant advantage over Cobweb in this condition (p < 0:001).However, Martin conducted a tandem experiment in which the performance task was to predictall �ve design descriptors given only the speci�cations. As Figure 7 (b) indicates, there was nodi�erence between the systems in this setting. Furthermore, for this performance task, Cobweb'soverall performance increased (i.e., generally higher accuracy overall), but the overall accuracy forTwilix was actually lower. Martin speculated that the seven speci�cation attributes in this domainmight be too impoverished to make accurate predictions, yet Cobweb fared better in this conditionthan when only predicting a single attribute. Evidence from other empirical studies using syntheticdomains generally indicates that Twilix is more robust than its ancestor, but there seems room foradditional work to identify the relative contributions of its extensions to the Cobweb framework.
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Figure 7. Average proportion of correct predictions (a) for one attribute given the other eleven, and (b) for the �vedesign descriptors given the seven requirement speci�cations (from Martin, 1992).4.3 Concept formation in temporal domainsMany concepts in the real world describe events that occur over time with certain indicative char-acteristics. We can contrast such temporal concepts with those addressed to this point, whichdescribe static objects or states of an environment. For example, motor skills correspond to atemporally structured domain in which it seems natural to use a sequence to characterize anddiscriminate among concepts. However, such domains introduce challenges for concept formationsystems like Cobweb, which have no direct representation of sequence. In response, Iba (1991a,1991b) developed Oxbow, an extension to Cobweb that forms concepts in temporal domains.Here we focus on the system's application to learning movement concepts, though the underlyingapproach is more general.4.3.1 Design of OxbowOxbow represents movements as sequences of descriptions with temporal relations among them.The system employs a movement parser, which takes a dense sequence of attribute-value descrip-tions as input, to create a sparse sequence based on zero crossings in velocity and acceleration. Atsuch events, the parser creates states containing the positions, angles, and velocities (e.g., for thejoints of a limb), as well as the time (relative to the start of the movement) associated with the zerocrossing. This sparse representation is su�cient to capture and summarize the original movementwith very low error.Two issues arise for representing movements in a Cobweb-like concept hierarchy. First, themovement is a sequence of states instead of single set of attribute values. But more signi�cantly,movements have variable numbers of states according to their complexity (number of zero crossings).In response, Oxbow represents a single movement concept using a probabilistic hierarchy of states.



Learning Probabilistic Concept Hierarchies Page 18The top-level partition of this hierarchy is organized with respect to time only, and the nodes atthis level are ordered by time to yield the state sequence of the movement.Movement concepts are organized in a traditional probabilistic `movement' hierarchy, each nodeof which points to an entire `state' hierarchy that describes the temporal structure of the movementcategory. Thus, a movement hierarchy of baseball pitches might have two top-level concepts cor-responding to sidearm and overhand throws, and the overhand concept might have three children:fast-ball, curve-ball, and fork-ball. Each of these concepts points to a state hierarchy in whichthe top level consists of an ordered AND tree that represents the sequence of states for the givenmovement. To continue our example, the sequence might include states for the wind-up, initialforward motion, wrist-snap, release, and follow-through.The recognition process for a newly observed movement is similar to Cobweb's classi�cationmechanism. The new motion is parsed into a sequence of states, which is sorted down through themovement hierarchy. At each level, Oxbow applies and evaluates the four Cobweb operators fromSection 2.2. On termination, the system returns, as the retrieved category, the most recent nodeinto which the new instance was incorporated. This category can be used to evaluate the goodnessor accuracy of the classi�cation process.On the surface, Oxbow's learning method is quite similar to Cobweb's, but it introduces asigni�cant variation to deal with structured objects having temporal components. Instead of simplyupdating attribute-value counts, the system must incorporate a new state sequence into an existingmovement concept. This involves sequentially incorporating each state from the movement intothe state hierarchy rooted at the movement concept. For each state, Oxbow employs the basiccategory utility function. However, time is the only attribute considered at the �rst level; in thisway, the partition structure is organized by the temporal aspects of the movement. At subsequentlevels, time is ignored and the state features are used in the category utility calculation.This scheme for incorporating movements carries out a partial match between the sequence ofstates that comprise the newly observed movement and the sequence in the concept (as de�nedby the time-ordered top level). Oxbow views the top level of the state hierarchy as a `part-of'structure. Not surprisingly, some modi�cations of category utility are necessary to accommodatethis structured representation.Since Oxbow works with continuous attributes, it uses the continuous version of category utilityfrom Equation 2. However, this expression assumes that every class consists of a simple set ofattributes, so we must extend this to consider classes with a set of components or, in this case,state descriptions. Because the number of states is not the same for all movement instances, theinformation in each component is weighted by the probability of that component. For Oxbow, theevaluation function over movements is1K 24 KXk P (Ck) JXj P (Skj) IXi 1�kji � MXm P (Spm) IXi 1�pmi35 ; (5)where P (Skj) is the probability of the jth state description in class Ck, which speci�es the proportionof all the state descriptions from schema instances of node Ck that have been classi�ed at state



Learning Probabilistic Concept Hierarchies Page 19description Skj. The probability P (Spm) is de�ned in a similar manner for themth state descriptionin the parent of the current partition.We have extensively tested this approach to unsupervised learning over movement categories hasbeen at both the movement and state levels (Iba, 1991) in both natural and arti�cial domains. Wehave also evaluated Oxbow on other temporal domains, including the recognition of cursive lettersand events in telemetry data from the space shuttle. Here we present one study that demonstratesthe temporal extension to Cobweb and highlights a variation on the performance task.4.3.2 Predicting unseen movementMost work in unsupervised learning has resorted to evaluating a method's utility in supervisedlearning contexts. We could do this with Oxbow, but we also have an opportunity to measurethe error between the prototype motion, which is stored at the indexed concept, and the observedmotion. We measure the error as the absolute di�erence in joint positions between the two move-ments at each corresponding point in time, which we then average over all time steps. An evenmore challenging performance measure requires Oxbow to predict the continuation of a partiallyobserved movement. That is, given an initial glimpse of a movement, predict its continuation overtime. If we ignore issues of learning, then varying the observed percentage of a test movementprovides a method for adjusting the di�culty of Oxbow's retrieval task, thereby allowing a moredirect assessment of its contribution to error.For a number of our empirical tests, we constructed an arti�cial movement domain that consistedof four movement types controlling a two-jointed arm. Instances of each movement type weregenerated by a distinct schema, the elements of which were perturbed according to a variability(noise) level. The four movement types were equally likely to occur. Oxbow learned from a seriesof observed movements and was then tested on a set of new movements (with learning turned o�).We conducted these tests in a simulated environment with an arm that had a maximum possibleerror of 300 units.To explore Oxbow's ability to predict future movement from partial observation, we ran a seriesof 20 sessions, each one consisting of 30 randomly generated training movements. The test setconsisted of the noise-free schemas, one for each movement type. When testing, we presented aninitial portion of the prototypical movement and then measured error over the remaining unobservedmovement. Note that complete movements were given during training and only when evaluatingsystem performance did we limit the extent of the observed prototype. We can compare errorsamong di�erent lengths of predicted movements because we average the total error by the number oftime slices compared during prediction. Any di�erences in errors can be attributed to classi�cationproblems during retrieval, because the knowledge base is the same for each level of observation ata given point in training.This formulation of the task suggests a prediction: as less of the movement is observed, classi-�cation should become more di�cult and mistakes should lead to greater measured error. Simplystated, the more the system sees of a movement, the more it should know about what will happen
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Figure 8. (a) Learning curves showing error for three levels of partial observation, and (b) asymptotic error rates forfour levels of domain variability and four levels of partial observation.next. Figure 8(a) shows the learning curves from an experiment in which we varied the portion ofthe movement to be predicted, with results averaged over ten runs of 30 training instances each.The �gure shows that the errors are consistently the highest when Oxbow must predict 80%of the movement, except very early in training, when it has not yet seen all the movement types.However, there is little di�erence between predicting 50% of the movement and only 20%. Thisresult suggests that the system is not severely a�ected by having less information available forclassi�cation, except in extreme cases. However, from previous experiments with Oxbow, we knowthat increased domain variability leads to higher asymptotic errors, presumably because greaternoise makes it harder to construct high-quality generalizations, which in turn hinder classi�cation.This idea suggests a predicted interaction: as training data becomes more variable, Oxbow shouldrequire larger portions of the test movement in order to prevent increased error.To test this prediction, we ran the system in partial prediction mode while training it on datawith di�erent levels of variability. In a single experimental run for a given level of noise, we trainedOxbow on 60 observed movements, then tested on four levels (20%, 40%, 60%, and 80%) that mustbe predicted. As before, the system used the initial segment of the movement for classi�cation.For each condition of noise and observation level, we averaged the results over 20 di�erent trainingorders, to guard against order e�ects.In this experiment, we were only interested in asymptotic error levels, having considered thea�ects of variability upon learning rate in an earlier study. Figure 8(b) shows the asymptotic errorrates for the four noise levels as a function of the portion of each test movement to be predicted.The graph indicates similar asymptote levels for the 0.25 variability condition but a wide rangeof asymptotes for the 1.0 level. Separate analyses of variance for these two conditions revealeda statistically signi�cant di�erence for variability equal to 1.0 (p < 0:001) but none for the 0.25condition (p > 0:1), which seems to support the predicted interaction. However, an analysis ofvariance over all the data shows a signi�cant main e�ect of the portion to be predicted, but no



Learning Probabilistic Concept Hierarchies Page 21signi�cant interaction between the two factors.7 Although the results did not strongly support ourprediction, they indicate that Oxbow is somewhat robust with respect to noise; that is, the systemis no more adversely a�ected by incomplete observations when learning from noisy data than whenlearning from more regular data.Moreover, the above experiments held the learning system constant while varying the amount ofinformation in the test movement, thus indicating the sensitivity of the classi�cation process. Theresults suggest that Oxbow is not making misclassi�cations when given partial structures in theinput. This provides supporting evidence that the increase in error, in conjunction with increasedvariability in the domains, is due to problems in the generalization process during incorporation ofa new experience. Understanding and reducing these predictive errors remains an important topicfor future research.4.4 Other variations on the COBWEB frameworkIn addition to the extensions described above, a number of researchers have developed clusteringalgorithms that derive either directly from Cobweb or that bear a striking resemblance to it. Eachof these systems construct hierarchies of probabilistic concepts in an incremental manner, sortingtraining cases through memory and updating concept descriptions in the process. Many of thesemethods are covered in Fisher, Pazzani, and Langley (1991), but they deserve some comment here.Pazzani (personal communication, 1990) and colleagues developed an extension to Cobweb thattakes advantage of knowledge about which features one wants to predict. Their system retained thesame control structure but generalized the measure of category utility so that it weights featuresaccording to the importance of predicting them. They argued that this approach should lead tobetter predictive accuracy than methods like Cobweb, which weights all features equally. One canview both unsupervised and supervised learning as special cases of this framework. Martin (1994)has reported a similar technique that also learns the weights on features from sample queries.Another extension to Cobweb comes from Reich and Fenves (1991), who adapted the approachto problems in parametric design. Their Bridger system supports a variety of classi�cation andprediction methods, including the ability to halt when all attributes that encode the design speci-�cations have been met. The program also handles numeric attributes in a di�erent manner thanCobweb and incorporates a mechanism for grouping nominal values into new features. Finally,Bridger mitigates order e�ects with a procedure that removes any node (and its descendents) if itcontains `characteristic' values (ones with a su�ciently high probability) that di�er from those in itsancestors. Experiments using the system for synthesis of bridge designs, which involves predictingmany attributes, gave encouraging results.Anderson and Matessa (1991) describe a Cobweb-like algorithm that incrementally constructs abinary tree of probabilistic concepts. One di�erence lies in their performance element, which followsthe Bayesian philosophy of using a weighted average over all categories to makes predictions abouttest cases. Their system also invokes Dirichelet priors to initialize the probabilistic descriptions7. If we consider only the high and low variability (i.e., remove the 0.5 and 0.75 noise levels), an analysis of varianceindicates a signi�cant interaction with p < 0:05.



Learning Probabilistic Concept Hierarchies Page 22for each category. Moreover, when deciding whether to incorporate a training case into existingchildren or to create a new category, it computes the probability that the case belongs to eachchild and that it belongs to a new category, rather than using an evaluation metric like categoryutility that operates over an entire partition. Their algorithm qualitatively �ts numerous resultson category learning from the psychological literature.Thompson and Langley (1991) report on an explicit extension to Cobweb designed to carry outconcept formation over structured representations, in which the values of attributes can themselvesbe component objects with relations among them. Their Labyrinth algorithm calls on Cobwebrecursively, in that acquired component concepts are used to describe and inuence the acquisitionof composite concepts. The system also introduced a new operator for `attribute generalization'that replaced sets of values in a composite node's description with a single value that resides abovethem in the component hierarchy. This required a new evaluation metric, related to category utility,that determined when to take such a restructuring step. Handa (1990) has extended this approachto take context into account during the classi�cation of component objects.Langley and Allen (1991, 1993) describe D�dalus, another extension to Cobweb that organizesplan knowledge in an e�ort to improve the e�ciency of problem solving. Each node in the concepthierarchy contains a probabilistic summary of problems the system has solved previously, describedin terms of the relational di�erences involved and the operators used in their solution. D�dalusincludes a means-ends problem solver that sorts each new subproblem through memory, using arelational variant on category utility, to retrieve an appropriate operator. After solving a prob-lem, the system stores each subproblem and its operator in the hierarchy, updating probabilitiesand changing retrieval on future problems. Experimental studies of D�dalus's learning behaviorshowed reduction in search on both navigation and blocks-world tasks.Yoo and Fisher (1991) take a di�erent approach to concept formation over problem-solvingexperience. Their Exor system associates with each conceptual node the abstract solution (statedas an AND tree) for a class of problems, rather than a single operator, with nodes lower in thehierarchy specifying more detailed solutions. Exor uses a version of category utility to sort anew problem, based on its surface features, downward through memory. The system falls back onproblem-reduction search to complete the solution if this process �nds only a partial solution. Thelearning mechanism incorporates an explanation-based component that generalizes the solutionstored at each node. Experiments with Exor showed that its learning method improves searche�ciency on algebra story problems.Nor does this exhaust the variations and extensions on the Cobweb framework. Hadzikadic andYun (1989) report a very similar algorithm for the incremental formation of concept hierarchiesthat di�ers in details like its evaluation metric. Kilander and Jansson (1993) describe a varianton Cobweb designed explicitly to deal with environments that change over time. Day (1992) hasadapted the basic approach to learn constraints that produce more e�cient search on complexscheduling tasks. Taken together, these intellectual descendants indicate that Fisher's originalapproach to constructing hierarchies of probabilistic concepts lends itself naturally to a wide andinteresting range of problems.



Learning Probabilistic Concept Hierarchies Page 235. Relation to other research on unsupervised learningBefore closing, we should clarify the relation between the Cobweb framework and two other fam-ilies of algorithms that learn probabilistic descriptions from unsupervised training data. We beginwith another paradigm that also constructs probabilistic concept hierarchies, but in a quite di�er-ent manner, then examine work within another representational formalism that relies on di�erentassumptions than our own.5.1 The AUTOCLASS familySoon after the initial publication on Cobweb, Cheeseman et al. (1988) introduced Autoclass,another clustering algorithm that has led to its own distinct family of systems. The two frameworksshare some key assumptions, including the notion of describing each category in terms of probabilitydistributions over its component attributes. Although the �rst system constructed only a one-level clustering, later versions like AutoClass/3 (Cheeseman et al., 1991) generated multi-leveldescriptions, with more general categories summarizing their more speci�c children. Thus, in termsof its representation and organization, the Autoclass family constitutes an approach to creatingand using a probabilistic concept hierarchy.Despite this clear similarity between the two frameworks, there are also some signi�cant di�er-ences. Unlike Cobweb and its relatives, Autoclass does not store training cases as terminalnodes it its concept hierarchies or, indeed, even assign cases de�nitively to one category or another.Rather, the system assigns each training case to every category with some probability, which inturn means that its values contribute only partially to each category description. Another repre-sentational di�erence is that Autoclass stores not only the conditional probability distributionfor each attribute given the category, but also the conditional covariance matrices. For numericattributes, this means that decision regions are not limited to ellipsoids with axes parallel to thoseof the instance space, as in Cobweb. More generally, the system can represent relations thatviolate independence at a given level of the hierarchy, albeit at the price of more parameters.The Autoclass systems also di�er from Cobweb and its kin in their performance and learningmechanisms. Cheeseman et al. take a strong Bayesian position on the classi�cation of new instances,so their algorithms assign a test case to each category at each level with a certain probability, ratherthan to the most probable one. Predictions about missing attributes are then based on a weightedvote that takes into account each category's prediction and its probability given the instance. In thisframework, the hierarchical organization of knowledge provides no computational bene�ts duringthe prediction process, but it retains advantages in understandability.The clustering process in Autoclass also has a quite di�erent avor. Rather than relyingincremental sorting, as in Cobweb, it incorporates a probabilistic variant of the nonincrementalk means algorithm known as expectation maximization. This method initializes the probabilisticdescriptions for each of k clusters randomly and uses these descriptions to compute the probabilityof each training case belonging to each cluster. It then uses these partial assignments to updatethe descriptions, reassigns each instance using the new descriptions, and continues the process until



Learning Probabilistic Concept Hierarchies Page 24no changes occur. After clustering is complete, Autoclass removes those clusters that have onlyimprobable assignments.8 Despite their clear relationship, there exist no systematic experimentalcomparisons of Cobweb and Autoclass or their close relatives.5.2 Induction of Bayesian networksAnother probabilistic approach to unsupervised learning, one that has become quite popular inthe years since Cobweb �rst appeared, involves Bayesian networks (e.g., Heckerman, 1995). Thisframework also organizes memory using nodes and links, but their meanings are quite di�erentfrom those in a probabilistic concept hierarchy. Rather than corresponding to concepts, each noderepresents an observable or unobservable attribute, and a link from one node to another meansthe values of the former inuence those of the latter. Like a probabilistic concept hierarchy, aBayesian network speci�es a probability density function over the instance space, but it achievesthis through very di�erent assumptions. Information about probability distributions reside notin category descriptions but in `conditional probability tables' stored with each attribute. Thesespecify the probability for each value of that attribute under each possible combination of valuesthat inuence it.Research on learning in Bayesian networks has focused on two distinct issues. The �rst involvesestimating the conditional probability tables from training data when the structure of the networkis already known. When no attribute values are missing, this simply involves counting the numberof times each combination of values occurs in the training set, so e�ort here has focused on the issueof learning from data with omitted values (e.g., Binder et al., 1997). A second body of work dealswith learning a network's structure from training data (e.g., Cooper & Herskovitz, 1992; Provan &Singh, 1995). Most algorithms carry out a greedy search through the space of Bayes net structures,starting with no links and adding the most probable link, given the data, on each step, then haltingwhen reaching a local optimum.A few researchers have also examined methods that introduce hidden attributes into learnedBayesian networks. One special form of this process introduces a single unobservable node thatinuences each observable attribute, which are themselves independent given this attribute. In fact,this task is equivalent to creating a set of probabilistic clusters, and the most common approachinvokes the expectation maximization algorithm that is called at each level in Autoclass. At �rstglance, this mapping suggests a close relationship between the induction of Bayesian networks andthe formation of probabilistic concept hierarchies that has been our focus in this paper.However, closer inspection reveals deep di�erences between the two frameworks. Granted, bothparadigms have a clear probabilistic semantics that supports unsupervised induction for the pre-diction of missing attribute values. But Bayesian networks assume that their graphical structureand associated probability tables hold across the entire instance space, whereas probabilistic hier-archies explicitly partition this space into regions. Bayes nets can create such a partition by usinga hidden attribute, but they cannot introduce partitions at di�erent levels of abstraction, which8. This clustering scheme requires the user to specify the number of clusters, but the ability to remove low-probabilitycategories mitigates this reliance.



Learning Probabilistic Concept Hierarchies Page 25happens regularly in the hierarchical framework. On the other hand, each category in a probabilis-tic concept hierarchy assumes that attributes are conditionally independent, whereas Bayes netscan easily represent more complex situations.Thus, the key di�erence between probabilistic concept hierarchies and Bayesian networks lies notin their learning algorithms. Indeed, we have seen that Autoclass uses expectation maximizationin a recursive manner to construct a probabilistic hierarchy, and one can imagine more gradual,incremental methods for creating Bayes nets. Rather, they di�er mainly in their representationalbias. Both frameworks can represent arbitrary target concepts, at least for discrete attributes, buteach one �nds it easier to describe some target functions than it does others. This means onecan design synthetic domains on which either framework will learn more rapidly, achieving higheraccuracy from fewer training cases, than the other. Of course, natural domains may or may nothave similar characters, so it remains unclear which approach will fare best in practice. However, weanticipate that many real-world induction tasks will have hierarchical structure, and that methodsfor learning probabilistic concept hierarchies will prove useful on such problems.6. Closing remarksIn this paper, we set out to address issues related to unsupervised learning in support of intelligentagents. This emphasis constrained the space of solutions in several ways and led us to focusattention on systems that represent concepts probabilistically and incorporate them incrementallyinto generalization hierarchies. Fisher's (1987) Cobweb, which satis�es these constraints, servedas our prototype system.We reviewed the Cobweb framework as it exists after several rational reconstructions, char-acterizing the system's representation and organization of knowledge, as well as its processes forrecognition and learning. We summarized a selected sample of empirical studies that have estab-lished the framework's robustness along several dimensions, including variations in the evaluationfunction, search strategy, and domain characteristics. Although these studies were generally en-couraging, they also suggested some limitations and directions for improvement.In response, we examined three extensions to the framework in some detail. One system,Arachne, incorporated new restructuring operators designed to improve the quality of the learnedconcept hierarchy, whereas another extension, Twilix, introduced a more sophisticated memory or-ganization to improve prediction in domains with overlapping categories. A third system, Oxbow,extended the basic framework to handle domains with temporal structure. We also briey describeda variety of other systems that build on Cobweb in some fashion. In closing, we noted links toother approaches to unsupervised learning within a probabilistic framework.In summary, the formation of probabilistic concept hierarchies has proven a fertile paradigmfor the study of unsupervised learning. Although early work on the topic made many simplifyingassumptions, researchers have since extended the framework in many directions, producing methodsthat are both more robust and that apply to a broader class of domains. Nevertheless, eachextension has raised intriguing issues that deserve attention, pointing the way for additional researchin this promising paradigm.
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