
Constraints on Theories of Open-World Learning

Pat Langley
Information Technology and Systems Division

Institute for Defense Analyses
730 East Glebe Road

Alexandria, VA 22305

Abstract

In this paper, I examine challenges that arise in developing
theories of open-world learning. After defining the problem,
I review some theories from the history of chemistry, biology,
geology, and AI, along with the importance of inductive bias
to constrain the learning process. Classic cognitive architec-
tures offer one source for such guidance, but their generality
provides little aid on this front. Instead, I propose that more
constrained architectures for embodied agents have greater
potential, as they make commitments about the form of do-
main knowledge used to describe environments, as well as
the processes that operate over them. In addition, I hypothe-
size that autonomous agents must include motivational struc-
tures that drive behavior and that changes to the environment
can lead to their revision as well. I argue that a full account
of open-world learning should make commitments about the
structures and processes that underlie these capabilities.

Autonomous Agency in Open Worlds
Advances in sensors, effectors, memories, and processors
have led to autonomous agents that are far more capable
and common than those from only a decade ago. These take
on many different forms, from self-driving cars and delivery
drones to military robots and planetary rovers. The develop-
ment of such systems typically relies on collection and pro-
cessing of very large training sets to create accurate pattern
recognizers and efficient controllers. This approach is viable
for some applications and certain contexts, but it depends on
two related assumptions: the environment will not change in
important ways; and the agent’s expertise will remain accu-
rate and appropriate. Unfortunately, these postulates will not
hold in many real-world settings.

We would like autonomous agents that are robust to such
shifts. For example, consider an unmanned aerial drone on
an exploratory mission in the Amazon rainforest. The sys-
tem’s expertise remains accurate and its behavior is accept-
able until an airborne spider’s web tangles one of its rotor
blades, a large predatory bird attacks it from above, a strong
updraft pulls it off course, a dense fog bank degrades its visi-
bility, or high humidity causes intermittent shorts in its cam-
era controller. A truly flexible autonomous agent would re-
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alize, in each case, that its expertise was outdated and adapt
rapidly enough to still achieve the mission goals.

Scenarios of this sort raise the challenge of open-world
learning, a class of problems introduced by DARPA’s SAIL-
ON program (Senator, 2019). We can state this problem as:

• Given: An agent architecture that operates in some class
of tasks and environments;

• Given: Expertise that supports acceptable performance
for these tasks and environments;

• Given: Limited experience after sudden, unannounced
changes to the environment degrade performance;

• Find: When the environmental change occurs and what
revised expertise will give acceptable performance.

This formulation applies to many agents, environments, and
tasks, regardless of whether their initial expertise is hand-
crafted or learned from experience.

The problem of open-world learning addresses the very
heart of what we mean by the term ‘autonomous agent’. We
say that an entity is an ‘agent’ if it carries out actions that
affect its environment over time. However, in this light, tele-
operated robots and remote-controlled drones would count
as agents. We say that an agent is ‘autonomous’ if it operates
independently and without supervision, but this can hold to
different degrees. Thermostats are autonomous but only in a
very narrow context. Robot vacuum cleaners have a broader
range of behaviors but have been programmed by humans.
Humans fall at the spectrum’s extreme end, because they can
not only adapt their model of the world but, in some cases,
alter their own motivations and value systems.

Some readers may question why open-world learning
poses a challenge, in that modern techniques for machine
learning have been widely advertised as the solution to
nearly any problem. However, remember that environmen-
tal shifts can be sudden and unannounced and that the agent
must detect them and repair its expertise rapidly. The most
widely adopted methods for classification learning, despite
their success in some settings, rely on batch processing and
require many labeled training cases, neither of which are suf-
ficient here. Reinforcement learning, a popular approach to
sequential action selection, typically requires many runs on
a simulator, which will not be available for unfamiliar phys-
ical environments. In summary, mainstream approaches to
machine learning are ill suited to such scenarios.



In the pages that follow, I discuss a number of issues re-
lated to theories of open-world learning. First, I review some
familiar examples from the history of science, including ar-
tificial intelligence, and their lessons for accounts of learn-
ing. After noting the need for some form of inductive bias to
make the search process tractable, I consider what cognitive
architectures can offer to this end. Upon concluding that they
offer only weak constraints, I turn to more specialized archi-
tectures for embodied agents that include theoretical com-
mitments about knowledge of the physical environment. Fi-
nally, I argue that a complete theory of open-world learning
must address not only how agents can alter their environ-
mental models, but how they can alter their own motivations
in response to such changes.

Theories of Open-World Learning
Given that we want the research community to develop the-
ories of open-world learning, we should consider the form
that such accounts might take. The history of science, in-
cluding the early phases of artificial intelligence, offer com-
pelling examples from which researchers can draw useful
lessons. In this section, I review three classic theories from
the disciplines of chemistry, biology, and geology, along
with three others cases from the study of intelligent systems.
In closing, I revisit some familiar ideas about the need for
constraints in machine learning.

Scientific theories aim to explain observed phenomena in
terms of a set of interconnected claims or assumptions. Here
are three well-known examples:

• Dalton’s (1808) atomic theory posited that macroscopic
objects are made from tiny molecules, each involving
atoms of nondecomposable elements. Moreover, chem-
ical reactions transform some types of molecules into
other types by rearranging their constituent atoms.

• Pasteur’s (1880) germ theory of disease proposed that
many illnesses are caused by small organisms that invade
the body and attack it. In addition, these germs spread
from one host to another through the process of infection.

• Hess’s (1962) theory of plate tectonics stated that inter-
locking plates make up the Earth’s surface, with moun-
tains and deep sea trenches at their interfaces. These
plates move very slowly under, over, and against each
other to produce large-scale geological formations.

There are many analogous examples from the history of sci-
ence, but we can draw some tentative conclusions from this
set about the character of theories.

Despite their many differences in form and content, sci-
entific theories nearly always include postulates that im-
pose qualitative constraints on the domain under study.
This holds even when the account also includes quantita-
tive elements, which are often introduced after a field has
agreed about their qualitative aspects. Moreover, theories
posit both structures (e.g., entities and their relations) and
processes that operate over and transform them. For in-
stance, molecules and atoms are structures in the atomic
theory, whereas chemical reactions are processes that affect
them. Also, theories are abstract enough that they cannot

be tested directly; this can only occur when one has added
enough assumptions to produce operational models. For ex-
ample, the atomic theory must be augmented by specific
claims about the constituents of particular molecules, while
germ theory requires associations between specific microor-
ganisms and diseases. Finally, scientific theories regularly
elaborate earlier ones with which they share assumptions, as
the immune theory builds on the more basic germ theory.

We should also consider examples from the early days
of artificial intelligence, which illustrate many of the same
characteristics. These include three classic theories:

• Physical symbol systems (Newell & Simon, 1976), which
posits that mental structures consist of symbols (persis-
tent physical patterns) and symbol structures (organized
sets of such symbols), which in turn can designate other
entities or activities. This theory also proposes mental
processes that create, modify, and interpret an evolving
sequence of these symbol structures.

• Production systems (Newell, 1966), which elaborates on
the first theory by postulating memories that contain sets
of modular elements encoded as symbol structures, in-
cluding a rapidly changing working memory and a more
stable long-term store with condition-action rules. Pro-
cessing involves repeatedly matching rules against ele-
ments in working memory and using them to alter its con-
tents, which in turn enables new matches.

• Heuristic search (Newell & Simon, 1976), which also ex-
tends the first framework by declaring that problem solv-
ing relies on symbol structures to denote candidate so-
lutions, generators of candidates, criteria for acceptance,
and heuristics. This theory assumes processes for gener-
ating candidate solutions, testing them for acceptability,
and using heuristics to guide choices.

These examples clarify that theories of intelligent behavior
specify both structures and processes that operate over them.
They also have the same abstract, qualitative character as the
cases from chemistry, biology, and geology.

These observations are relevant for researchers who de-
sire to develop theories of open-world learning. They sug-
gest that such accounts make statements about the mental
structures over which learning operates, especially how they
represent the agent’s experience and expertise. They also
indicate that these theories should make commitments not
only about the learning mechanisms that acquire the struc-
tures, but about the performance processes that use them to
generate behavior. Theories of learning are seldom stated in
isolation; they almost always incorporate assumptions about
representation and performance (Langley, 1987).

However, such theories should also acknowledge a fact
that has been recognized since the early days of machine
induction: effective learning depends on some form of in-
ductive bias. Most research in this field views learning as
search through a space of hypotheses or models, but either
this space or the manner in which one traverses it must be
constrained in some manner. In some approaches, this bias
places limits on the form or structure of candidate models,
as occurs with naive Bayesian classifiers, support vector ma-



chines, and linear equations. Many techniques organize the
search process in some way, as with top-down construction
of decision trees and gradient descent through parametric
neural networks. Typically, stronger inductive biases mean
that fewer training cases are needed to acquire acceptable
models, which is crucial to effective open-world learning.
Of course, one advantage is that agents need not acquire
their models from scratch; they can adapt or revise existing
expertise, which itself provides a strong bias that is reliable
given that the environmental changes are piecemeal. How-
ever, other constraints appear necessary1 and the next two
sections consider two forms that they might take.

Cognitive Architectures
One natural place to turn for inductive bias is the literature
on cognitive architectures (Langley, Laird, & Rogers, 2009;
Langley, 2017), which are computational theories for intel-
ligent systems that operate over time. Not all open-world
agents need be instances of such a framework, but agents
that are stated in such terms would inherit their many as-
sumptions, which would in turn impose constraints on how
they adapt to environmental change. Classic research on
cognitive architectures had strong connections to psycho-
logical findings, but this is not a defining characteristic; the
important feature for our purposes is that they make strong
assumptions about the nature of the mind.

Briefly, a cognitive architecture is a theory about infras-
tructure for intelligent systems that specifies which facets of
cognition remain unchanged across different domains and
tasks. These typically include the memories that store do-
main content, the representation of such content, and the
processes that create, access, and modify these elements.
However, it does not specify the particular content, which
can change across domains and over time. A standard anal-
ogy is with architectures for buildings, which specify the
layout of floors, rooms, and passages between them, but not
the furniture or occupants, which may vary. A typical cogni-
tive architecture also provides a programming language with
a high-level syntax that reflects its theoretical assumptions
about representation and processing.

As noted earlier, most frameworks in this paradigm incor-
porate key ideas from cognitive psychology. These include
postulates that: short-term memories, which change rapidly,
are distinct from long-term ones, which change slowly; both
types of memories contain modular elements that are en-
coded as symbol structures; long-term elements are accessed
by matching them against structures in short-term memories;
cognition involves the dynamic composition of mental struc-
tures to create new ones; and learning is a monotonic pro-
cess that is interleaved with performance. Two well-known
examples are ACT-R (Anderson & Lebiere, 1998) and Soar
(Laird, 2012), but Langley et al. (2009) discuss others, some
with more distant connections to human cognition.

Given that cognitive architectures are intended as theo-
ries of intelligent systems, might they offer an inductive bias

1Unfortunately, the phrase ‘open-world learning’ has led some
researchers to conclude that the problem must be entirely uncon-
strained, but this does not follow and it is unrealistic.

that would aid effective open-world adaptation? They place
some constraints on the mechanisms of learning, namely
that it must involve the incremental, piecemeal acquisition of
knowledge elements and that it must be interleaved with the
performance that it improves. They also constrain the form
of acquired expertise, say as a collection of condition-action
rules. However, few cognitive architectures make strong
claims about the type of content that populates memories
and that learning mechanisms generate. Indeed, the Com-
mon Model of Cognition (Laird, Lebiere, & Rosenbloom,
2017) does not even include a theoretical distinction be-
tween beliefs and goals. This follows from researchers’ de-
sire to provide general accounts of intelligence that apply
in many settings, but I maintain that it goes too far in this
direction. To offer the inductive bias needed for open-world
learning, we must look to frameworks that focus on embod-
ied agents operating in physical environments.

Content-Laden Architectures
We have established that constraints are necessary to make
open-world learning effective and that traditional cog-
nitive architectures, despite making strong assumptions
about mental representations and processes, do not suffice.
Limiting attention to physical settings holds considerable
promise, but we must guard against being overly specific,
since we desire theories that are as general as possible. We
can achieve this aim by adopting constraints not about spe-
cific environments, but about their generic characteristics.

This suggests that we assume agents’ environmental mod-
els include certain types of mental structures. For instance,
we might postulate that long-term knowledge contains:

• Concepts, which define categories of objects based on
their observed features or generic relations among objects
based on their spatial configurations;

• Maps, which specify physical places in terms of objects
and their layouts, along with spatial relations among such
places (e.g., in topological networks);

• Skills, which describe the conditional effects of volitional
agent actions, along with skill complexes that combine
them into organized activities; and

• Processes, which specify natural mechanisms that alter
objects or places over time, as well as networks of pro-
cesses that make up causal chains.

Such mental structures would be descriptive in the sense
that they characterize the environment, whether accurately
or not.2 They make no prescriptive statements about whether
classes of situations or events are desirable.

An embodied agent also needs short-term structures to de-
scribe past, present, and current situations and events. One
common simplifying assumption is that each such dynamic
element is an instance of some long-term knowledge struc-
ture. For example, the agent might encode a belief that it

2As Langley (2020) has proposed, an agent might also encode
models of fields with attribute values that vary over a spatial region,
such as fluid flow or magnetic attraction, but such content might
also be stored with mental maps.



is located between a rock and a tree as instances of the re-
lational concept between and the object concepts rock and
tree. Similarly, it might represent its movement from place A
to place B along route R as an instance of a skill for travers-
ing that route. The long-term and short-term memories need
not use the same symbols to denote content, but this assump-
tion simplifies both performance and learning.

A content-laden architecture promises to impose substan-
tially greater constraints on the space of environment models
than classic frameworks, but it must still incorporate some
of their features. The most important characteristic is that
it should provide a programming language with an associ-
ated syntax for stating mental structures. A key difference
is that this language would have distinct constructs for con-
cepts, spatial knowledge, agent skills, and natural processes.
Together, the notation for these types of cognitive structures
would define a space of models for physical environments
while remaining very general. They would provide a form
of declarative bias (Ade, De Raedt, & Bruynooghe, 1995),
which specifies the forms that models can take and thus
would limit search during learning considerably.

However, it is important to note that declarative structures,
by themselves, remain ambiguous. They cannot drive intelli-
gent systems until they are joined with mental processes that
interpret them. Thus, a complete content-laden architecture
for physical agents would include mechanisms for:

• Categorization and conceptual inference, which matches
conceptual knowledge against percepts to create beliefs;

• Place recognition and localization, which compares spa-
tial knowledge with percepts to identify agent location;

• Mental simulation of process networks, which generates
trajectories of expected situations over time; and

• Physical execution of skill complexes, which carries out
volitional agent actions in the environment.

Competing content theories will propose different mecha-
nisms for interpreting cognitive structures. For example, one
architecture might posit that concepts match in an all-or-
none fashion, whereas another might support partial match-
ing to various degrees. Such choices will have implications
for how models align with observations.

Of course, the theory must also postulate structures and
processes that support learning. For instance, an open-world
learner must distinguish between short-term elements that
it infers from perceptions and ones that it predicts with its
environmental model. The agent must compare these struc-
tures to detect anomalies, say by using a mechanism similar
to those for monitoring plan execution (e.g., Langley et al.,
2016). If the agent deems an anomaly sufficiently different,
then it initiates a process of model revision that produces
one or more hypotheses about how to change the model. Fi-
nally, the theory must specify how the agent evaluates these
alternatives, chooses among them, and uses the selected can-
didates to generate an improved model. Neither anomalies
or hypotheses introduce any new declarative bias, as they
involve the same types of knowledge structures – concepts,
maps, processes, and skills – as does the performance sys-
tem that interacts with the environment.

Motivated Agency in Open Worlds
These observations take us part way toward the inductive
bias needed for effective open-world learning, but they omit
an important factor. We desire not only systems that form
accurate models to predict events, but agents that engage
in goal-directed volitional activities. Such behavior relies
not on descriptive knowledge structures but on prescriptive
ones that let agents decide not what will happen but what
they should do or seek. This indicates the need for another
form of mental content. Many AI planning systems are given
goals to achieve or tasks to carry out, but these are typically
concrete and problem specific. We require instead generic
structures that describe the conditional values or utilities of
situations and activities. Langley et al. (2016) refer to such
knowledge elements as motives, but other labels have also
appeared in the AI literature (e.g., Hanheide et al., 2010).

Naturally, an architectural theory must also incorporate
processes that operate over such motivational content, say to
introduce concrete goals and calculate their values. Work on
goal reasoning (Aha, Cox, and Muñoz-Avila, 2013), which
builds on classic frameworks for plan generation, has pro-
posed mechanisms for this purpose. In this light, planning
techniques are also prescriptive processes, since they deter-
mine how an agent carries out search to achieve goals. Inter-
estingly, neither the introduction of motivational structures
or the processes that interpret them would seem to offer fur-
ther inductive bias beyond that provided by concepts, places,
processes, or skills. They are essential to a complete theory
because they are needed to drive behavior, but they do not
obviously constrain search during open-world learning.

Nevertheless, their central role in agent decision making
raises an important issue. Motives are prescriptive knowl-
edge elements that refer to a descriptive model of the en-
vironment, but they are internally defined. When the world
changes, updating this model will help the agent achieve
high-value goals, but such shifts can have other implications.
Let us return to the initial scenario of an aerial drone on
an exploratory mission. Some unexpected changes, such as
damage to rotors, might reduce the agent’s range or reaction
time, making it unable to achieve some mission objectives.
In such cases, should the agent alter its motives and thus the
values it assigns to situations and activities?

This certainly happens in humans, arguably the most au-
tonomous agents on the planet. If an Olympic runner hurts
a knee badly enough that he no longer has a realistic chance
of winning races, does he continue to compete in the same
circles? Or does he change his aspirations and learn to find
value in other activities, such as playing a sport like golf
that does not require running or mentoring young athletes
who might carry on his tradition? We maintain that a com-
plete theory of open-world learning should cover such in-
ternal changes to agent motivations and aspirations. Indeed,
they appear even more central to understanding the nature of
autonomous agency than revisions to environmental models.

This is unexplored territory, but we can outline some
mechanisms that might support such internal restructuring.
For instance, if an agent finds that it can no longer achieve
certain performance levels, then it might lower its expecta-
tions and become satisfied with lesser ones, but if changes let



it do better than before, then its aspirations might increase.
More substantially, an agent might revise the situations or
activities that motivate it. Such shifts might result from up-
dating values associated with existing motives or refining
their activation conditions. Acquisition of new concepts or
skills could enable novel motives that link to them, and this
process might be influenced by lateral transfer from motives
for similar structures. Another source might be the imitation
of motives inferred from the behavior of other agents.

Radically autonomous agents that can alter their own mo-
tives, and thus how they compute values, raise difficulties
for evaluation. In such cases, one cannot specify external
metrics for success, as the agent can determine its own cri-
teria, even if they were initialized by a human developer.
We can measure the trajectory for the agent’s values over
time, but there is some danger that it would simply assign
high values to all situations. One option is to require that
changes to the agent’s motives and aspirations be gradual,
with large arbitrary jumps being forbidden. This might be
enough to ensure ‘reasonable’ behavior provided the envi-
ronment changes slowly enough, but we might need other
constraints. Either way, a full theory of open-world learning
should address the potential for agents to alter their motiva-
tions, which could have major implications for behavior.

Concluding Remarks
In this essay, I defined the problem of open-world learning
and clarified why it poses a challenge for existing paradigms.
After this, I discussed the need for theories of this process
and the form they might take, drawing on analogies with ear-
lier scientific accounts, including ones from artificial intel-
ligence. I also reviewed the notion of inductive bias and its
central role in constraining the space of models considered
during learning. Next, I discussed cognitive architectures as
a possible source of such bias but concluded that their em-
phasis on generality makes them poorly suited for this end.

Instead, I argued that content-based architectures, which
make stronger commitments about types of knowledge and
processes that operate over them, hold much greater po-
tential to constrain learning. Finally, I suggested that open-
world agents should incorporate the ability to alter their mo-
tives in response to environmental change, which in turn
raises issues about how to evaluate them. Although the pa-
per introduced a number of important questions, it offered no
definitive answers. Nevertheless, its observations may help
guide future research on the task of open-world learning.
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