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Abstract
In this paper, I pose a new research challenge – to develop in-
telligent agents that exhibit radical autonomy by responding
to sudden, long-term changes in their environments. I illus-
trate this idea with examples, identify abilities that support
it, and argue that, although each ability has been studied in
isolation, they have not been combined into integrated sys-
tems. In addition, I propose a framework for characterizing
environments in which goal-directed physical agents operate,
along with specifying the ways in which those environments
can change over time. In closing, I outline some approaches
to the empirical study of such open-world learning.

1 Background and Motivation
Our society is increasingly reliant on autonomous physical
agents, from self-driving vehicles to planetary robots to mil-
itary drones. These entities are capable of a broad range
of behaviors, from low-level perception and action to high-
level reasoning and planning. Despite many differences,
these autonomous systems share a dependence on accurate
models of the environment in which they operate. The AI
community has championed two paradigms for generating
such expertise – manual creation of knowledge bases (e.g.,
Waterman, 1986; Giarratano and Riley, 2018) and learning
from large training sets (e.g., Clark and Storkey, 2015). Both
approaches have been successful for certain classes of prob-
lems, but neither handles an inevitable hurdle for any fielded
system: encountering situations where available expertise is
incomplete or incorrect. The solution is to develop radically
autonomous systems that can revise their expertise in such
novel cases. In this paper, I describe this challenge of open-
world learning more fully and outline ways to address it.

Consider an unmanned underwater vehicle designed for
near-surface use in a coastal area. The autonomous agent
that controls the platform has reliable expertise for mis-
sions in this setting, but suppose it enters a new region with
different physical characteristics. Here, it may encounter
new types of rock formations, unfamiliar kelp that can foul
its propellers, and aggressive predators that may attack it.
The vehicle may enter an area where visibility is low and
where sonar reflections are distorted or where strong cur-
rents threaten to drag it off course. When it approaches a
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volcanic vent, the agent may find unexpected upward cur-
rents and new chemical reactions that degrade its batteries.
A fully autonomous system would realize these fall outside
its expertise and adapt rapidly enough to prevent disaster and
continue its mission. Such agents must respond to environ-
ments that change in ways unforseen by their designers.

In the next section, I define the task of open-world learn-
ing for radical autonomy and analyze some component abil-
ities that would support it. After this, I propose a framework
for characterizing both environments and transformations of
them that can make agent expertise inadequate. Next, I dis-
cuss experimental studies of open-world learning, includ-
ing promising testbeds, relevant variables, and candidate
hypotheses. The analysis draws ideas from the description
of DARPA’s SAIL-ON program (Senator, 2019), but it ap-
proaches the challenge from a complementary perspective.

2 Elements of Open-World Learning
The first step in any computational research effort is to de-
fine the problem in terms of inputs and outputs. We can spec-
ify the task of open-world learning as:

• Given: An agent architecture that uses expertise to oper-
ate in a class of environmental situations;

• Given: Expertise that supports acceptable agent perfor-
mance in this class of environments;

• Given: Limited experience with an environment in which
sudden, unannounced changes degrade performance;

• Find: When environmental changes occurred and what
revised expertise will support acceptable performance.

This formulation is abstract so it can apply to a wide range
of agents and situations; it does not commit to any partic-
ular performance task, but does assume that this involves
achieving goals or carrying out missions. Neither does the
statement indicate whether initial expertise is handcrafted or
learned, but does require that updates be more rapid than en-
vironmental change, and thus rely on limited observations.

If we assume that the environmental changes are reason-
ably stable, then they require some form of long-term learn-
ing rather than short-term adaptation. Because only some as-
pects of the environment will change and because expertise
is modular, induction from scratch would be inefficient and
would slow the process unacceptably. Moreover, changes



may occur repeatedly and relearning from the ground up
each time is undesirable. Clearly, open-world learning for
autonomous agents requires a more nuanced response.

This problem statement suggests a number of component
abilities that appear necessary for such radically autonomous
systems (Senator, 2019). These include:

• A performance element that uses known expertise to pur-
sue tasks and achieve goals (e.g., finding and collecting
underwater objects with desired features) through mech-
anisms for perception, inference, planning, and control;

• A monitoring element that compares observations with
expectations to detect anomalies in both the environment
(e.g., sonar unreliable, unfamiliar predators) and in the
agent’s own behavior (e.g., vehicle veering to right);

• A diagnostic element that localizes problems in expertise,
generates hypotheses about the causes (e.g., nonreflective
surfaces, cross currents, misaligned propeller), evaluates
alternative candidates, and selects among them; and

• A repair element that revises those facets of expertise
deemed to be responsible for the performance problems
and corrects them (e.g., updated sonar equations, current-
sensitive controller, new propeller model).

These components must be embedded in an architecture that
specifies how they interact (Langley et al., 2009). The archi-
tecture must also interface with the environment and with
the agent’s expertise, both of which are subject to change.

Technically, one could approach open-world settings with
reinforcement learning methods, which have produced im-
pressive results in game playing (e.g., Clark and Storkey,
2015). However, their need for millions of runs is impracti-
cal for physical settings where simulations are unavailable.
The problem statement specified limited experience with the
altered environment and rapid repair of expertise. As Sena-
tor (2019) notes, a variety of other paradigms are relevant:

• Model-based diagnosis / repair (Hamscher et al., 1992),
although it focuses on specific cases, not generic models;

• Integrated generation, execution, and monitoring of plans
(Langley et al., 2017) to achieve an agent’s objectives;

• Metacognition (Cox, 2007), which inspects traces of ba-
sic cognition to find incorrect or incomplete knowledge;

• Problem reformulation (Riddle et al., 2013), which alters
state and operator representations to make tasks tractable;

• Change detection in mining data streams (Pears et al.,
2014), which typically addresses classification tasks;

• Theory revision (Bay et al., 2002), which uses training
cases to improve predictive accuracy of existing models;

• Scientific discovery (Džeroski et al., 2007), which finds
laws and models to describe or explain observations; and

• Transfer of learned expertise (Senator, 2011) to new sit-
uations when informed about a change.

Despite their relevance, none of these approaches are enough
by themselves to support open-world learning as defined.
However, some combination of these techniques, organized
into an agent architecture, holds promise for an integrated
solution, and more researchers should pursue this objective.

3 Characterizing Environments
Any theory of environmental change depends on some way
to characterize possible environments. I will not propose any
specific formalism here, but I will suggest some broad out-
lines. These draw on four widely accepted ideas: environ-
ments involve a space-time matrix, structures are situated in
this matrix, processes change these structures over time, and
the environment obeys certain constraints. This description
is distinct from the primary agent’s world model, which may
use the same format or adopt an entirely different notation.
However, the analysis assumes that an environment includes
the behavior of nonprimary agents which populate it.
A spatio-temporal matrix provides the physical setting in
which entities reside, events transpire, and agents operate.
We can describe this matrix with two elements:
• Spatial extent indicates the number of dimensions and

their range of values. An underwater vehicle would op-
erate in three dimensions, whereas an autonomous race
car might operate on a bounded two-dimensional track.

• Spatial-temporal fields describe attributes that vary over
location and time. Their values may be constant, piece-
wise constant, or a continuous function of location and
time. Classic examples are salinity, viscosity, and illumi-
nation in sea water, as well as traction and wind on roads.

Structures comprise the entities that populate the world and
their associated characteristics. The framework assumes that
an environment incorporates two varieties:
• Physical structures describe both particular objects and

the categories into which they fall. Categories specify
attributes, ranges and distributions on their values, and
equations or formulae that relate them. Some attribute
values are associated with a category (e.g., specific heat),
others are constant for a given object (e.g., mass), and still
others change over time (e.g., temperature). Composite
entities describe constituent elements and configurations.

• Mental structures describe the contents of agents’ memo-
ries. These include perceptions of objects in the external
world and inferred beliefs about them (including unob-
served entities) and knowledge used to generate them.
Perceptions and beliefs need not take the same form as
external structures. Agents may also encode beliefs about
relationships to others (e.g., enemy or commander).

Processes describe behavior in the environment over time.
Differential equations are one formalism for such behavior,
but one can also organize them into sets of changes to en-
tities’ attributes that co-occur (Arvay and Langley 2016).
Three types of processes arise in agent-oriented situations:

• Physical processes specify behavior that is independent
of any agent activities. They include various forms of mo-
tion (e.g., falling), energy transfer (e.g., temperature ex-
change), and chemical reactions. Physical processes can
occur at different rates that depend on fixed parameters
and the values of entity or spatial field attributes.

• Control processes describe the effects an agent’s actions
have on external objects’ attributes, including its own
body. They include activities like turning wheels, apply-
ing brakes, and lifting objects. Control processes specify



how derivatives depend on entities’ attributes (e.g., agent
strength, object mass) and field variables (e.g., road fric-
tion, ocean currents), but occur only when agents invoke
them (Fox and Long, 2006). In settings with multiple
agents, each may have different associated processes.1

• Perceptual processes translate information about objects
in the environment into an agent’s internal perceptions.
They are influenced by factors like object distance, size,
and transparency, occlusion by other objects, and field
variables like illumination. Agent characteristics like acu-
ity also influence results. Perceptual models may incor-
porate physical theories of light and sound transmission.

Constraints specify what situations or events can occur in
the environment, as well as structural or numeric conditions
on them. These divide into two broad categories:
• Physical constraints describe situations that may or may

not occur in the physical environment. These might spec-
ify that two solid objects cannot occupy the same loca-
tion, that a given reaction can only occur above a certain
temperature, or that a lift action only has an effect if the
agent’s strength exceeds an object’s weight. These corre-
spond to the environment’s physical laws.

• Mental constraints describe preferences on nonprimary
agents’ behavior. These include symbolic goals (e.g.,
reaching a target location or driving a specified route)
and associated value functions, as well as conditions un-
der which they are relevant. They may also include so-
cial norms (Malle et al., 2015), which specify prescribed
or proscribed situations and activities (e.g., staying un-
der the speed limit or halting at red lights). These are soft
constraints in that agents can decide to ignore them when
they conflict with higher-priority criteria.

Taken together, the spatio-temporal setting, structures, pro-
cesses, and constraints can describe both single-agent set-
tings and multi-agent scenarios involving social interactions.
They provide the ability to specify alternative environments,
which is a necessary foundation for open-world learning.

4 Characterizing Environmental Changes
Progress on open-world learning also requires a theory of
novelty (Senator, 2019). This will aid in the development of
methods for revising expertise in response to different types
of change and will suggest hypotheses about such methods’
effectiveness. If we view learning as search through a space
of models (Simon and Lea, 1974), then we need operators
that generate new candidates from existing ones. We can
state these as transformations on elements in an environment
description. Let us consider examples of such transitions.
Spatio-temporal transformations can increase or decrease
the spatial extent, giving larger or smaller volume. They can
also shift from a Euclidean (flat) environment to one that is
non-Euclidean (e.g., sphere or cylinder). Other changes can
alter the character of spatial fields by adding or removing at-
tributes like salinity or viscosity from locations. Still others
might alter the distribution of values for a field attribute, say

1Each agent may also include mental processes that control its
decision making, but I will not address this factor here.

from a setting with constant viscosity to one that varies with
location. Similarly, a transition might increase the speed of
water or air currents or even reverse their flows entirely.
Structural transformations can add or remove object cat-
egories (e.g., vehicle types or species), introduce new at-
tributes (e.g., texture), and shift the distribution of values for
categories’ attributes. Other transitions might alter the pos-
sible types of composite objects (e.g., chemical compounds)
or their parameters (e.g., bond strengths). Changes to agents’
mental structures can affect their perceptions (e.g., which
objects are detected) and beliefs (e.g., who is an ally).
Process transformations can introduce new physical, con-
trol, or perceptual mechanisms or eliminate existing ones
(e.g., adding hail storms, allowing jumping actions, creat-
ing blind spots). Alternatively, they might alter parameters
in an existing process (e.g., turning speed) or the associated
derivatives (e.g., rate expressions in chemical reactions).
Changes to control and perceptual processes can alter the
abilities of both the primary agent and others that interact
with it. Since processes refer to entities and field attributes,
shifts in the latter can indirectly influence dynamic behavior.
Constraint transformations can change the natural laws that
govern structures (possible categories or configurations) and
processes that affect them. The latter may revise the types of
entities to which a process applies (e.g., which categories are
digestable) and the conditions under which they are active
(e.g., temperature limits). They can also shift agents’ goals
and values (e.g., the priority of collecting samples) or, in so-
cial settings, revise the norms that influence group behavior
(e.g., changing the rules in a race). Constraint transforma-
tions can alter the situations that an agent encounters and
the ways that they evolve over time.
A full theory of environmental novelty would include a for-
malism for stating such transitions, which we can then use
to specify trajectories through the space of possible worlds.

5 Experiments with Open-World Learning
Machine learning has been an empirical discipline for over
three decades (Kibler and Langley, 1989), but open-world
learning raises special challenges for researchers and we
should consider the form experiments might take in this area.
Domains and testbeds. The objective is to develop radically
autonomous agents that pursue goal-oriented activities in
physical environments. Thus, natural domains for research
include underwater exploration, aerial reconnaissance, self-
driving vehicles, and planetary rovers. Open-world learning
is important for such systems because they will encounter
situations where their expertise is incomplete or incorrect.
However, real-world environments offer limited opportuni-
ties to inject novelty, which makes high-fidelity simulators
more suitable for controlled experiments (Langley et al.,
1981; Choi et al., 2007). These should support complex
scenarios with many objects of distinct categories, field at-
tributes whose values vary with location, and processes that
produce dynamic behavior. Most important, the simulation
engine should accept configuration files that specify types
of objects, distributions for their attributes, spatial functions



for field variables, and functions, parameters, and conditions
for processes. These will let researchers introduce environ-
mental novelty in straightforward and systematic ways.
Dependent measures. Scientific experiments examine one
or more dependent variables that reflect behaviors of inter-
est. For AI systems, these variables involve some aspect of
system performance, such as diagnostic accuracy or num-
ber of goals achieved. Similar metrics appear in most pa-
pers on batch induction, which report behavior after learning
has ended, but studies of online induction report learning
curves, borrowed from psychology, that plot performance
against number of training cases. Experiments on transfer
may report pairs of learning curves: one in the presence
of prior training and another without it. We can combine
these two ideas for open-world settings to produce novelty
response curves. These involve a single plot that maps per-
formance over time and marks time steps on which novelty
is introduced. Performance should degrade after the environ-
ment changes and recover as the learner detects and adapts
to the new situation. This will produce a scalloped curve that
alternates between increases and decreases in scores.

Ideally, experiments should not measure success in re-
sponding to novelty based on a single extended run, but in-
stead average over tens of trials to ensure reliable results.
However, if we introduce novelty at random intervals, as
seems desirable to avoid agent anticipation, then the times
at which it occurs will not be aligned across runs. One re-
sponse is to shrink or expand each segment to enforce align-
ment, but this would lose information about how rapidly the
agent adapts to changes. Another approach is to measure
both the time needed to detect each environmental change
and the rate of performance improvement after detection.
This would evaluate different elements of the architecture
separately and support credit assignment (Senator, 2019).
Independent variables. Scientific experiments vary one or
more controllable factors to determine their effects on de-
pendent measures. Traditional studies of computational in-
duction alter some aspect of the learning method (e.g., mod-
ules or parameters) or features of the domain (e.g., noise
level). These remain relevant to experiments on open-world
learning, but other factors are more intriguing. The most ob-
vious concerns the type of change introduced into the en-
vironment. The Proposers’ Day presentation for DARPA’s
SAIL-ON program (Senator, 2019) identifies nine varieties
of novelty relating to object classes, object attributes, repre-
sentations, relations, interactions, capabilities, environment,
goals, and context. Each level corresponds directly to some
facet of the current framework,2 so a simulation engine
that covers similar environments should support all forms
of SAIL-ON novelty. Two other independent variables also
seem highly relevant to open-world learning: the frequency
of novelty introduction and number of changes in each case.
The latter is analogous to distance between source and target
in studies of transfer (Könik et al., 2009; Senator, 2011).

2Object classes / attributes ⇒ physical structures, representa-
tions⇒ mental structures, interactions⇒ physical processes, ca-
pabilities⇒ control processes, environment⇒ spatial setting, re-
lations⇒ physical constraints, goals / context⇒ agent constraints

Hypotheses and experimental designs. Good AI experiments
are designed to answer scientific questions, with the least
informative being whether an entire system outperforms an-
other one on test problems. More interesting issues concern
which aspects of the system or domain exert the most in-
fluence on behavior. For open-world learning, we might ex-
amine what types of change are most difficult to handle and
how different elements of the agent architecture respond to
them. The SAIL-ON program description offers a tentative
ranking on nine types of novelty, suggesting hypotheses like:

• Agents will have less difficulty recovering from changes
to categories and attributes (structures) than to changes
involving interaction and capabilities (processes).

Before we can test such claims, we must make them op-
erational by specifying explicit performance tasks, such as
collecting desired objects while maintaining a given power
level. We must also introduce changes thoughtfully. For in-
stance, altering the landscape’s color may have no impact on
object collection, and changing the densities of objects may
indirectly affect the actions that manipulate them.

Other issues, such as whether changes are global or local,
may also be important. Consider a second hypothesis:

• Global changes will degrade performance more than lo-
cal ones, but agents will recover from them more rapidly.

Because global shifts (e.g., in ocean viscosity) impact many
behaviors, they will affect performance broadly but also gen-
erate more training data to support detection and repair. We
should also examine how other factors influence open-world
learning. For example, increasing perceptual noise may slow
an agent’s ability to detect that its world has altered, but
have no effect on diagnosis or repair. Researchers interested
in this arena should consider carefully what questions they
want to answer before designing their experimental studies.

6 Closing Remarks
This paper defined the new problem of open-world learn-
ing, which is essential for autonomous systems to overcome
outmoded expertise in changing environments. The analysis
identified four elements – performance, monitoring, diagno-
sis, and repair – that an agent architecture needs for timely
change detection and model revision. Although a number of
existing AI paradigms offer relevant technologies, we saw
that none of them, by themselves, will suffice. In addition,
the common view of learning as search suggests that we
adopt a representation for states (models of the environment)
and operators (changes to these models).

This led to a framework that describes states in terms of
spatial settings, structures, processes, and constraints, and
that characterizes operators in terms of transformations on
these elements. Finally, the paper discussed empirical stud-
ies in this area, including dependent measures, independent
variables, and hypotheses that experiments might test. Open-
world learning offers new challenges for the AI community
but also holds great promise. I encourage researchers to de-
velop systems that can identify when their expertise is inad-
equate, identify the flaws responsible, and overcome them
rapidly and effectively to support truly radical autonomy.
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