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AbstractIn this paper, we review AI research on computational discovery and its recent application to thediscovery of new scienti�c knowledge. We characterize �ve historical stages of the scienti�c discoveryprocess, which we use as an organizational framework in describing applications. We also identify�ve distinct steps during which developers or users can in
uence the behavior of a computationaldiscovery system. Rather than criticizing such intervention, as done in the past, we recommendit as the preferred approach to using discovery software. As evidence for the advantages of suchhuman-computer cooperation, we report seven examples of novel, computer-aided discoveries thathave appeared in the scienti�c literature. We consider brie
y the role that humans played in eachcase, then examine one such interaction in more detail. We close by recommending that futuresystems provide more explicit support for human intervention in the discovery process.
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Computational Scientific Discovery Page 11. IntroductionThe process of scienti�c discovery has long been viewed as the pinnacle of creative thought. Thus, tomany people, including some scientists themselves, it seems an unlikely candidate for automation bycomputer. However, over the past two decades, researchers in arti�cial intelligence have repeatedlyquestioned this attitude and attempted to develop intelligent artifacts that replicate the act ofdiscovery. The computational study of scienti�c discovery has made important strides in its shorthistory, some of which we review in this paper.Arti�cial intelligence often gets its initial ideas from observing human behavior and attemptingto model these activities. Computational scienti�c discovery is no exception, as early researchfocused on replicating discoveries from the history of disciplines as diverse as mathematics (Lenat,1977), physics (Langley, 1981), chemistry ( _Zytkow & Simon, 1986), and biology (Kulkarni & Simon,1990). As the collection by Shrager and Langley (1990) reveals, these e�orts also had considerablebreadth in the range of scienti�c activities they attempted to model, though most work aimed toreplicate the historical record only at the most abstract level. Despite the explicit goals of this earlyresearch, some critics (e.g., Gillies, 1996) have questioned progress in the area because it dealt withscienti�c laws and theories already known to the developers.Although many researchers have continued their attempts to reproduce historical discoveries, oth-ers have turned their energies toward the computational discovery of new scienti�c knowledge. Aswith the historical research, this applied work covers a broad range of disciplines, including math-ematics, astronomy, metallurgy, physical chemistry, biochemistry, medicine, and ecology. Many ofthese e�orts have led to refereed publications in the relevant scienti�c literature, which seems aconvincing measure of their accomplishment.Our aim here is to examine some recent applications of computational scienti�c discovery andto analyze the reasons for their success. We set the background by reviewing the major forms thatdiscovery takes in scienti�c domains, giving a framework to organize the later discussion. Afterthis, we consider steps in the larger discovery process at which humans can in
uence the behavior ofa computational discovery system. We then turn to seven examples of computer-aided discoveriesthat have produced scienti�c publications. In each case, we examine brie
y the role played by thedeveloper or user, then discuss the interactions with one such system at greater length. In closing,we consider directions for future work, emphasizing the need for discovery aids that explicitlyencourage interaction with humans.2. Stages of the Discovery ProcessThe history of science reveals a variety of distinct types of discovery activity, ranging from the de-tection of empirical regularities to the formation of deeper theoretical accounts. Generally speaking,these activities tend to occur in a given order within a �eld, in that the products of one processin
uence or constrain the behavior of successors. Of course, science is not a strictly linear process,so that earlier stages may be revisited in the light of results from a later stage, but the logicalrelation provides a convenient framework for discussion.



Computational Scientific Discovery Page 2Perhaps the earliest discovery activity involves the formation of taxonomies. Before one canformulate laws or theories, one must �rst establish the basic concepts or categories one hopes torelate. An example comes from the early history of chemistry, when scientists agreed to classifysome chemicals as acids, some as alkalis, and still others as salts based on observable propertieslike taste. Similar groupings have emerged in other �elds like astronomy and physics, but the bestknown taxonomies come from biology, which groups living entities into categories and subcategoriesin a hierarchical manner.Once they have identi�ed a set of entities, scientists can begin to discover qualitative laws thatcharacterize their behavior or that relate them to each other. For example, early chemists foundthat acids tended to react with alkalis to form salts, along with similar connections among otherclasses of chemicals. Some qualitative laws describe static relations, whereas others summarizeevents like reactions that happen over time. Again, this process can occur only after a �eld hassettled on the basic classes of entities under consideration.A third scienti�c activity aims to discover quantitative laws that state mathematical relationsamong numeric variables. For instance, early chemists identi�ed the relative masses of hydrochloricacid and sodium hydrochloride that combine to form a unit mass of sodium chloride. This processcan also involve postulating the existence of an intrinsic property like density or speci�c heat, aswell as estimating the property's value for speci�c entities. Such numeric laws are typically statedin the context of some qualitative relationship that places constraints on their operation.Scientists in most �elds are not content with empirical summaries and so try to explain suchregularities, with the most typical �rst step involving the creation of structural models that incor-porate unobserved entities. Thus, nineteenth century chemists like Dalton and Avogadro postulatedatomic and molecular models of chemicals to account for the numeric proportions observed in re-actions. Initial models of this sort are typically qualitative in nature, stating only the componentsand their generic relations, but later models often incorporate numeric descriptions that providefurther constraints. Both types of models are closely tied to the empirical phenomena they aredesigned to explain.Eventually, most scienti�c disciplines move beyond structural models to process models, whichexplain phenomena in terms of hypothesized mechanisms that involve change over time. One well-known process account is the kinetic theory of gases, which explains the empirical relations amonggas volume, pressure, and temperature in terms of interactions among molecules. Again, someprocess models (like those in geology) are mainly qualitative, while others (like the kinetic theory)include numeric components, but both types make contact with empirical laws that one can derivefrom them.In the past two decades, research in automated scienti�c discovery has addressed each of these �vestages. Clustering systems like Cluster/2 (Michalski & Stepp, 1983), AutoClass (Cheesemanet al., 1988), and ReTAX (Alberdi & Sleeman, 1997) deal with the task of taxonomy formation,whereas systems like NGlauber (Jones, 1986) search for qualitative relations. Starting withBacon (Langley, 1981; Langley, Simon, Bradshaw, & _Zytkow, 1987), researchers have developed agreat variety of systems that discover numeric laws. Systems like Dalton (Langley et al., 1987),Stahlp (Rose & Langley, 1987), and Gell-Mann ( _Zytkow, 1996) formulate structural models,



Computational Scientific Discovery Page 3whereas a smaller group, like Mechem (Vald�es-P�erez, 1995) and Astra (Kocabas & Langley,1998), instead construct process models.A few systems, such as Lenat's (1977) AM, Nordhausen and Langley's IDS (1993), and Kulkarniand Simon's (1990) Kekada, deal with more than one of these facets, but most contributionshave focused on one stage to the exclusion of others. Although the work to date has emphasizedrediscovering laws and models from the history of science, we will see that a similar bias holds fore�orts at �nding new scienti�c knowledge. We suspect that integrated discovery applications willbe developed, but only once the focused e�orts that already exist have become more widely known.This framework is not the only way to categorize scienti�c activity, but it appears to have generalapplicability across di�erent �elds, so we will use it to organize our presentation of applied discoverywork. The scheme does favor methods that generate the types of formalisms reported in thescienti�c literature, and thus downplays the role of mainstream techniques from machine learning.For example, decision-tree induction, neural networks, and nearest neighbor have produced quiteaccurate predictors in scienti�c domains like molecular biology (Hunter, 1993), but they employquite di�erent notations from those used normally to characterize scienti�c laws and models. Forthis reason, we will not focus on their application to scienti�c problems here.3. The Developer's Role in Computational DiscoveryAlthough the term computational discovery suggests an automated process, close inspection ofthe literature reveals that the human developer or user plays an important role in any successfulproject. Early computational research on scienti�c discovery downplayed this fact and emphasizedthe automation aspect, in general keeping with the goals of arti�cial intelligence at the time.However, the new climate in AI favors systems that advise humans rather than replace them, andrecent analyses of machine learning applications (e.g., Langley & Simon, 1995) suggest an importantrole for the developer. Such analyses carry over directly to discovery in scienti�c domains, and herewe review the major ways in which developers can in
uence the behavior of discovery systems.As Figure 1 depicts, the �rst step in using computational discovery methods is to formulate thediscovery problem in terms that can be solved using existing techniques. The developer must �rstcast the task as one that involves forming taxonomies, �nding qualitative laws, detecting numericrelations, forming structural models, or constructing process accounts. For most methods, he mustalso specify the dependent variables that laws should predict or indicate the phenomena that modelsshould explain. Informed and careful problem formulation can greatly increase the chances of asuccessful discovery.The second step in applying discovery techniques is to settle on an e�ective representation.1 Thedeveloper must state the variables or predicates used to describe the data or phenomena to beexplained, along with the output representation used for taxonomies, laws, or models. The lattermust include the operations allowed when combining variables into laws and the component struc-tures or processes used in explanatory models. The developer may also need to encode background1. We are not referring here to the representational formalism, such as decision trees or neural networks, but ratherto the domain features encoded in a formalism.
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Figure 1. Steps in the computational discovery process at which the developer or user can in
uence system behavior.knowledge about the domain in terms of an initial theory or results from earlier stages of the dis-covery process. Such representational engineering plays an essential role in successful applicationsof computational scienti�c discovery.Another important activity of the developer concerns preparing the data or phenomena on whichthe discovery system will operate. Data collected by scientists may be quite sparse, lack certainvalues, be very noisy, or include outliers, and the system user can improve the quality of thesedata manually or using techniques for interpolation, inference, or smoothing. Similarly, scientists'statements of empirical phenomena may omit hidden assumptions that the user can make explicitor include irrelevant statements that he can remove. Such data manipulation can also improve theresults obtained through computational discovery.Research papers on machine discovery typically give the algorithm center stage, but they paylittle attention to the developer's e�orts to modulate the algorithm's behavior for given inputs. Thiscan involve activities like the manual setting of system parameters (e.g., for evidence thresholds,noise tolerance, and halting criteria) and the interactive control of heuristic search by rejectingbad candidates or attending to good ones. Some systems are designed with this interaction inmind, whereas others support the process more surreptitiously. But in either case, such algorithmmanipulation is another important way that developers and users can improve their chances forsuccessful discoveries.A �nal step in the application process involves transforming the discovery system's output intoresults that are meaningful to the scienti�c community. This stage can include manual �lteringof interesting results from the overall output, recasting these results in comprehensible terms ornotations, and interpreting the relevance of these results for the scienti�c �eld. Thus, such postpro-cessing subsumes both the human user's evaluation of scienti�c results and their communication to



Computational Scientific Discovery Page 5scientists who will �nd them interesting. Since evaluation and communication are central activitiesin science, they play a crucial role in computational discovery as well.The literature on computational scienti�c discovery reveals, though often between the lines, thatdevelopers' intervention plays an important role even in historical models of discovery. Indeed,early critiques of machine discovery research frowned on these activities, since both developers andcritics assumed the aim was to completely automate the discovery process. However, this viewhas changed in recent years, and the more common perspective is that discovery systems shouldaid scientists rather than replace them. In this light, human intervention is perfectly acceptable,especially if the goal is to discover new scienti�c knowledge and not to assign credit.4. Some Computer-Aided Scienti�c DiscoveriesNow that we have set the stage, we are ready to report some successful applications of AI methodsto the discovery of new scienti�c knowledge. We organize the presentation in terms of the basicscienti�c activities described earlier, starting with examples of taxonomy formation, then movingon to law discovery and �nally to model construction. In each case, we review the basic scienti�cproblem, describe the discovery system, and present the novel discovery that it has produced. Wealso examine the role that the developer played in each application, drawing on the �ve stepsoutlined in the previous section.Although we have not attempted to be exhaustive, we did select examples that meet certaincriteria. Vald�es-P�erez (1998) suggests that scienti�c discovery involves the \generation of novel,interesting, plausible, and intelligible knowledge about objects of scienti�c study", and reviews fourcomputer-aided discoveries that he argues meet this de�nition. Rather than repeating his analysis,we have chosen instead to use publication of the result in the relevant scienti�c literature as ourmain criterion for success, though we suspect that publication is highly correlated with his factors.4.1 Stellar Taxonomies from Infrared SpectraExisting taxonomies of stars are based primarily on characteristics from the visible spectrum.However, arti�cial satellites provide an opportunity to make measurements of types that are notpossible from the Earth's surface, and the resulting data could suggest new groupings of knownstellar objects. One such source of new data is the Infrared Astronomical Satellite, which hasproduced a database that describes the intensity of some 5425 stars at 94 wavelengths throughoutthe infrared spectrum.Cheeseman et al. (1988) applied their AutoClass system to these infrared data. They designedthis program to form one-level taxonomies, that is, to group objects into meaningful classes orclusters based on similar attribute values. For this domain, they chose to represent each clusterin terms of a mean and variance for each attribute, thus specifying a Gaussian distribution. Thesystem carries out a gradient descent search through the space of such descriptions, starting withrandom initial descriptions for a speci�ed number of clusters. On each step, the search process usesthe current descriptions to probabilistically assign each training object to each class, and then usesthe observed values for each object to update class descriptions, repeating this process until only



Computational Scientific Discovery Page 6minor changes occur. At a higher level, AutoClass iterates through di�erent numbers of clustersto determine the best taxonomy, starting with a user-speci�ed number of classes and increasingthis count until it produces classes with negligible probabilities.Application of AutoClass to the infrared data on stars produced 77 stellar classes, which thedevelopers organized into nine higher-level clusters by running the system on the cluster descriptionsthemselves. The resulting taxonomy di�ered signi�cantly from the one then used in astronomy,and the collaborating astronomers felt that it re
ected some important results. These includeda new class of blackbody stars with signi�cant infrared excess, presumably due to surroundingdust, and a very weak spectral `bump' at 13 microns in some classes that was undetectable inindividual spectra. Goebel et al. (1989) recount these and other discoveries, along with theirphysical interpretation; thus, the results were deemed important enough to justify their publicationin an refereed astrophysical journal.Although AutoClass clearly contributed greatly to these discoveries, the developers acknowl-edge that they also played an important role (Cheeseman & Stutz, 1996). Casting the basic problemin terms of clustering was straightforward, but the team quickly encountered problems with thebasic infrared spectra, which had been normalized to ensure that all had the same peak height.To obtain reasonable results, they renormalized the data so that all curves had the same area.They also had to correct for some negative spectral intensities, which earlier software used by theastronomers had caused by subtracting out a background value. The developers' decision to runAutoClass on its own output to produce a two-level taxonomy constituted another intervention.Finally, the collaborating astronomers did considerable interpretation of the system outputs beforepresenting them to the scienti�c community.4.2 Qualitative Factors in CarcinogenesisOver 80,000 chemicals are available commercially, yet the long-term health e�ects are known foronly about 15 percent of them. Even fewer de�nitive results are available about whether chemicalscause cancer, since the standard tests for carcinogens involve two-year animal bioassays that cost$2 million per chemical. As a result, there is great demand for predictive laws that would let onepredict carcinogenicity from more rapid and less expensive measurements.Lee, Buchanan, and Aronis (1998) have applied the rule-induction system RL to the problem ofdiscovering such qualitative laws. The program constructs a set of conjunctive rules, each of whichstates the conditions under which some result occurs. Like many other rule-induction methods,RL invokes a general-to-speci�c search to generate each rule, selecting conditions to add thatincrease the rule's ability to discriminate among classes and halting when there is no improvementin accuracy. The system also lets the user bias this search by specifying desirable properties of thelearned rules.The developers ran RL on three databases for which carcinogenicity results were available, in-cluding 301, 108, and 1300 chemical compounds, respectively. Chemicals were described in termsof physical properties, structural features, short-term e�ects, and values on potency measures pro-duced by another system. Experiments revealed that the induced rules were substantially moreaccurate than existing prediction schemes, which justi�ed publication in the scienti�c literature



Computational Scientific Discovery Page 7(Lee et al., 1996). They also tested the rules' ability to classify 24 new chemicals for which the sta-tus was unknown at development time; these results were also positive and led to another scienti�cpublication (Lee et al., 1995).The authors recount a number of ways in which they intervened in the discovery process toobtain these results. For example, they reduced the 496 attributes for one database to only 75features by grouping values about lesions on various organs. The developers also constrained theinduction process by specifying that RL should favor some attributes over others when constructingrules and telling it to consider only certain values of a symbolic attribute for a given class, as wellas certain types of tests on numeric attributes. These constraints, which they developed throughinteraction with domain scientists, took precedence over accuracy-oriented measures in decidingwhat conditions to select, and it seems likely that they helped account for the e�ort's success.4.3 Chemical Predictors of MutagensAnother area of biochemistry with important social implications aims to understand the factorsthat determine whether a chemical will cause mutations in genetic material. One data set thatcontains results of this sort involves 230 aromatic and heteroaromatic nitro compounds, which canbe divided into 138 chemicals that have high mutagenicity and 92 chemicals that are low on thisdimension. Qualitative relations that characterize these two classes could prove useful in predictingwhether new compounds pose a danger of causing mutation.King, Muggleton, Srinivasan, and Sternberg (1996) report an application of their Progol systemto this problem. The program operates along lines similar to other rule-induction methods, in thatit carries out a general-to-speci�c search for a conjunctive rule that covers some of the data, thenrepeats this process to �nd additional rules that cover the rest. The system also lets the userspecify background knowledge, stated in the same form, which it takes into account in measuringthe quality of induced rules. Unlike most rule-induction techniques, Progol assumes a predicatelogic formalism that can represent relations among objects, rather than just attribute values.This support for relational descriptions led to revealing structural descriptions of mutation fac-tors. For example, for the data set mentioned above, the system found one rule predicting thata compound is mutagenic if it has \a highly aliphatic carbon atom attached by a single bond toa carbon atom that is in a six-membered aromatic ring". Combined with four similar rules, thischaracterization gave 81% correct predictions, which is comparable to the accuracy of other com-putational methods. However, alternative techniques do not produce a structural description thatone can use to visualize spatial relations and thus to posit the deeper causes of mutation, so thatthe results justi�ed publication in the chemistry literature (King et al., 1996).As in other applications, the developers aided the discovery process in a number of ways. Theychose to formulate the task in terms of �nding a classi�er that labels chemicals as causing mutationor not, rather than predicting levels of mutagenicity. King et al. also presented their systemwith background knowledge about methyl and nitro groups, the length and connectivity of rings,and other concepts. In addition, they manipulated the data by dividing into two groups withdi�erent characteristics, as done earlier by others working in the area. Although the inducedrules were understandable in that they made clear contact with chemical concepts, the authors



Computational Scientific Discovery Page 8aided their interpretation by presenting graphical depictions of their structural claims. Similarinterventions have been used by the developers on related scienti�c problems, including predictionof carcinogenicity (King & Srinivasan, 1996) and pharmacophore discovery (Finn, Muggleton, Page,& Srinivasan, 1998).4.4 Quantitative Laws of Metallic BehaviorA central process in the manufacture of iron and steel involves the removal of impurities frommolten slag. Qualitatively, the chemical reactions that are responsible this removal process increasein e�ectiveness when the slag contains more free oxide (O2�) ions. However, metallurgists haveonly imperfect quantitative laws that relate the oxide amount, known as the basicity of the slag, todependent variables of interest, such as the slag's sulfur capacity. Moreover, basicity cannot alwaysbe measured accurately, so there is a need for improved ways to estimate this intrinsic property.Mitchell, Sleeman, Du�y, Ingram, and Young (1997) applied computational discovery techniquesto these scienti�c problems. Their Daviccand system includes operations for selecting pairs ofnumeric variables to relate, specifying qualitative conditions that focus attention on some of thedata, and �nding numeric laws that relate variables within a given region. The program alsoincludes mechanisms for identifying outliers that violate these numeric laws and for using the lawsto infer the values of intrinsic properties when one cannot measure them more directly.The developers report two new discoveries in which Daviccand played a central role. The �rstinvolves the quantitative relation between basicity and sulfur capacity. Previous accounts modeledthis relation using a single polynomial that held across all temperature ranges. The new resultsinvolve three simpler, linear laws that relate these two variables under di�erent temperature ranges.The second contribution concerns improved estimates for the basicity of slags that contain T iO2 andFeO, which Daviccand inferred using the numeric laws it induced from data, and the conclusionthat FeO has quite di�erent basicity values for sulphur and phosphorus slags. These results weredeemed important enough to appear in a respected metallurgical journal (Mitchell et al., 1997).Unlike most discovery systems, Daviccand encourages users to take part in the search processand provides explicit control points where they can in
uence choices. Thus, they formulate theproblem by specifying what dependent variable the laws should predict and what region of the spaceto consider. Users also a�ect representational choices by selecting what independent variables touse when looking for numeric laws, and they can manipulate the data by selecting what pointsto treat as outliers. Daviccand presents its results in terms of graphical displays and functionalforms that are familiar to metallurgists, and, given the user's role in the discovery process, thereremains little need for postprocessing to �lter results.4.5 Quantitative Conjectures in Graph TheoryA recurring theme in graph theory involves proving theorems about relations among quantitativeproperties of graphs. However, before a mathematician can prove that such a relation alwaysholds, someone must �rst formulate it as a conjecture. Although mathematical publications tendto emphasize proofs of theorems, the process of �nding interesting conjectures is equally importantand has much in common with discovery in the natural sciences.



Computational Scientific Discovery Page 9Fajtlowicz (1988) and colleagues have developed Graffiti, a system that generates conjecturesin graph theory and other areas of discrete mathematics. The system carries out search througha space of quantitative relations like Pxi � P yi, where each xi and yi is some numerical featureof a graph (e.g., its diameter or its largest eigenvalue), the product of such elementary features, ortheir ratio. Graffiti ensures that its conjectures are novel by maintaining a record of previoushypotheses, and �lters many uninteresting conjectures by noting that they seem to be implied byearlier, more general, candidates.Graffiti has generated hundreds of novel conjectures in graph theory, many of which havespurred mathematicians to attempt their proof or refutation, which in turn has produced numer-ous publications. One example involves a conjecture that the `average distance' of a graph is nogreater than its `independence number', which resulted in a proof that appeared in the refereedmathematical literature (Chung, 1988). Although Graffiti was designed as an automated discov-ery system, its developers have clearly constrained its behavior by specifying the primitive graphfeatures and the types of relations it should consider. Data manipulation occurs through a �le thatcontains qualitatively di�erent graphs, against which the system tests its conjectures empirically,and postprocessing occurs when mathematicians �lter the system output for interesting results.4.6 Temporal Laws of Ecological BehaviorOne major concern in ecology is the e�ect of pollution on the plant and animal populations. Ecol-ogists regularly develop quantitative models that are stated as sets of di�erential equations. Eachsuch equation describes changes in one variable (its derivative) as a function of other variables,typically ones that can be directly observed. For example, Lake Glumsoe is a shallow lake in Den-mark with high concentrations of nitrogen and phosphorus from waste water, and ecologists wouldlike to model the e�ect of these variables on the concentration of phytoplankton and zooplanktonin the lake.Todorovski, D�zeroski, and Kompare (1998) have applied techniques for numeric discovery to thisproblem. Their Lagramge system carries out search through a space of di�erential equations,looking for the equation set that gives the smallest error on the observed data. The system usestwo constraints to make this search process tractable. First, Lagramge incorporates backgroundknowledge about the domain in the form of a context-free grammar that it uses to generate plausibleequations. Second, it places a limit on the allowed depth of the derivations used to produceequations. For each candidate set of equations, the system uses numerical integration to estimatethe error and thus the quality of the proposed model.The developers report a new set of equations, discovered by Lagramge, that model accuratelythe relation between the pollution and plankton concentrations in Lake Glumsoe. This revealed thatphosphorus and temperature are the limiting factors on the growth of phytoplankton in the lake.We can infer Todorovski et al.'s role in the discovery process from their paper. They formulatedthe problem in terms of the variables to be predicted, and they engineered the representation bothby specifying the predictive variables and by providing the grammar used to generate candidateequations. Because the data were sparse (from only 14 time points over two months), they convinced



Computational Scientific Discovery Page 10three experts to draw curves that �lled in the gaps, used splines to smooth these curves, andsampled from these ten times per day. They also manipulated Lagramge by telling it to considerderivations that were no more than four levels deep. However, little postprocessing or interpretationwas needed, since the system produces output in a form familiar to ecologists.4.7 Structural Models of Organic MoleculesA central task in organic chemistry involves determining the molecular structure of a new substance.The chemist typically knows the substance's chemical formula, such as C18H24O2, and frequentlyknows its mass spectrum, which maps the masses of fragments (obtained by fracturing the chemicalin a mass spectrometer) against their frequency of occurrence. The goal is to infer the structureof the compound in terms of the molecular connections among its elementary constituents. Forreasonably complex compounds, there can be hundreds of millions of possible structures, suggestingthe need for computational aids to search this space e�ectively.In perhaps the earliest e�ort to use AI techniques for scienti�c reasoning, Feigenbaum, Buchanan,and Lederberg (1971) developedDendral to address this task. The system operates in three stages,�rst using the mass spectrum to infer likely substructures of the molecule that could explain majorpeaks in the data.2 Next, Dendral considers di�erent combinations of these substructures, plusthe residual atoms, that produce the known chemical formula, using knowledge of chemical stabilityto generate all (and only) chemical structure graphs consistent with these constraints. Finally, thesystem ranks these candidate structural models in terms of their abilities to predict the observedspectrum, using knowledge of mass spectrometry for this purpose.The Dendral e�ort led to a variety of chemical structures that were published in organic chem-istry journals. For instance, Cheer et al. (1976) report new structural models for terpenoids,that is, C15 and C20 compounds isolated from plants, as well as for sterol compounds that couldbe metabolic precursors of known sterols in marine organisms. Similarly, Varkony, Carhart, andSmith (1977) report system-generated models for compounds that result from chemical and pho-tochemical rearrangements of cyclic hydrocarbons, whereas Fitch, Anderson, Smith, and Djerassi(1979) describe models for chemicals found in the body 
uids of patients suspected of inheritedmetabolic disorders. Lindsay, Buchanan, Feigenbaum, and Lederberg (1980) give a fuller list ofscienti�c publications that resulted from the project, including results on gaseous ions, compoundsthat display pharmacological activity, and secretions used by insects for defense.Although the early Dendral work emphasized automating the structural-modeling process, thesystem's developers in
uenced its behavior by encoding considerable knowledge about chemicalstability into its search constraints. They presented spectrograms to Dendral without any specialpreprocessing, but they did select the structural-modeling tasks and thus the spectrograms that itencountered. Later versions of the system were more interactive, letting chemists impose additionalconstraints based on their own knowledge and data sources. Also, it seems likely that users �lteredthe structural inferences included in their publications, although the output itself required littleinterpretation, being cast in a formalism familiar to organic chemists.2. At this step, the system can also accept input from chemists about likely or unlikely substructures.



Computational Scientific Discovery Page 114.8 Reaction Pathways in Catalytic ChemistryFor a century, chemists have known that many reactions involve, not a single step, but rather asequence of primitive interactions. Thus, a recurring problem has been to formulate the sequence ofsteps, known as the reaction pathway , for a given chemical reaction. In addition to the reactants andproducts of the reaction, this inference may also be constrained by information about intermediateproducts, concentrations over time, relative quantities, and many other factors. Even so, the greatnumber of possible pathways makes it possible that scientists will overlook some viable alternatives,so there exists a need for computational assistance on this task.Vald�es-P�erez (1995) developed Mechem with this end in mind. The system accepts as inputthe reactants and products for a chemical reaction, along with other experimental evidence andconsiderable background knowledge about the domain of catalytic chemistry. Mechem lets theuser specify interactively which of these constraints to incorporate when generating pathways,giving him control over its global behavior. The system carries out a search through the space ofreaction pathways, generating the elementary steps from scratch using special graph algorithms.Search always proceeds from simpler pathways (fewer substances and steps) to more complex ones.Mechem uses its constraints to eliminate pathways that are not viable and also to identify anyintermediate products it hypothesizes in the process. The �nal output is a comprehensive set of thesimplest pathways that explain the evidence and that are consistent with the system's backgroundknowledge.This approach has produced a number of novel reaction pathways that have appeared in thechemical literature. For example, Vald�es-P�erez (1994) reports a new explanation for the catalyticreaction ethane+H2 ! 2 methane, which chemists had viewed as largely solved, whereas Zeigar-nik et al. (1997) present another novel result on acrylic acid. Bruk et al. (1998) describe a thirdapplication of Mechem that produced 41 novel pathways, which prompted experimental studiesthat reduced this to a small set consistent with the new data. The human's role in this processis explicit, with users formulating the problem through stating the reaction of interest and ma-nipulating the algorithm's behavior by invoking domain constraints. Because Mechem producespathways in a notation familiar to chemists, its outputs require little interpretation.4.9 Other Computational Aids for Scienti�c ResearchWe have focused on the examples above because they cover a broad range of scienti�c problemsand illustrate the importance of human interaction with the discovery system, but they do notexhaust the list of successful applications. For example, Pericliev and Vald�es-P�erez (1998) haveused theirKinship program to generate minimal sets of features that distinguish kinship terms, likeson and uncle, given genealogical and matrimonial relations that hold for each. They have appliedtheir system to characterize kinship terms in both English and Bulgarian, and the results havefound acceptance in anthropological linguistics because they are stated in that �eld's conventionalnotation.Another instance comes from Swanson and Smalheiser (1997), who have used theirArrowsmithprogram to discover unsuspected relations in the medical literature. The system searches through



Computational Scientific Discovery Page 12online papers, looking for an entry in which some relation B ) C occurs along with some otherrelation A ) B. Arrowsmith constrains its search by requiring that C be a physiological state(like a disease) and that A be a possible intervention (like a drug or dietary factor). For example,the system noted that magnesium can inhibit spreading depression, and that spreading depressionhas been implicated in migraine attacks. The resulting hypothesis, that magnesium could allevi-ate migraines, appeared in the medical literature (Swanson, 1988) and has since been supportedrepeatedly in clinical tests.We should also consider the relation between computational scienti�c discovery and the kindredtopic of data mining, which also aims to uncover novel, interesting, plausible, and intelligibleknowledge. One di�erence is that data mining typically focuses on commercial applications, thoughFayyad, Haussler, and Stolorz (1996) review some impressive examples of mining scienti�c data fromastronomy (for classifying stars and galaxies in sky photographs) and planetology (for recognizingvolcanoes on Venus). However, these e�orts and related ones invoke induction algorithms primarilyto automate tedious recognition tasks in support of cataloguing and statistical analysis, ratherthan to discover publishable scienti�c knowledge in its own right.3 Moreover, such work seldomproduces knowledge in any standard scienti�c notation, since they typically rely on representationsfrom supervised machine learning like decision trees or probabilistic summaries.A similar relation holds between computational scienti�c discovery and computational approachesto molecular biology. One major goal here, which Fayyad et al. also review, is to predict thequalitative structure of proteins from their nucleotide sequence. This paradigm has led to manypublications in the biology and biochemistry literature, but most studies emphasize predictive ac-curacy, with low priority given to expressing the predictors in some common scienti�c notation. Asimilar trend has occurred in work on learning structure-activity relations in biochemistry, thoughthe work by King, Muggleton, Srinivasan, and Sternberg (1996) constitutes an exception, in thatthey focus on presenting discovered relations in chemical notation. Within computational molec-ular biology, the main exceptions deal with the discovery of structural motifs, which are simpletaxonomies that describe con�gurations of nucleotides or other components that tend to recur inbiological sequences. However, most research in the area has been less concerned with discoveringnew knowledge than with showing that their predictors give slight improvements in accuracy overother methods, which has led us to discuss them here only in passing.5. An Illustration of Interactive DiscoverySince we have emphasized the interaction between humans and computational discovery methods,we should illustrate the nature of such interactions in more detail. Table 1 presents a sample trace ofDaviccand, a system that provides explicit support for such interaction. Recall that Daviccanddeals with the discovery of quantitative relations among variables that describe the behavior of theirons slags central to steelmaking. In this case, the metallurgist communicated verbally with oneof the program's developers, who in turn entered commands to the system.3. The classi�ers learned by such methods, when applied to images, can `discover' new stars or volcanoes, but wewould be unlikely to use that term if a human carried out the same task.



Computational Scientific Discovery Page 13Table 1. A trace interaction between a metallurgist (M) and system developer (S) jointly using Daviccand to analyzedata about the behavior of iron slags.M: Okay, can you bring up the Strathclyde data set?�S: [Loads and displays the data set.]M: Can you highlight all those points that contain less than 10% silicon [actually SiO2]?S: [Creates and displays the new group.]M: Can you draw a line through those points?S: Straight line or curve?M: A straight line.S: [Invokes module that �ts and dispays a line.]M: What about those points with more than 10% silicon?S: [Creates and displays the new group.]M: That doesn't look quite right. Can you change the value to 20%?S: [Removes old groups from display, then creates and displays the new groups and lines.]M: Still not quite right.S: Do you want to try a curve? Or we could try searching for the two lines.M: Let's try searching.S: Where abouts in the data set do you want to search for the lines?M: From 10% to 70% silicon?S:We're currently looking at log sulphur vs optical basicity. To do that I need to change the visualizationor, if you can say roughly where on the screen you want to search from, I can do that without changingthe visualization.M: [Points at screen, showing start and stop points.] From here to here.S: [Invokes the search process.]M: That looks interesting. Can you show me what the groups look like?S: [Displays the group de�nitions.]M: It looks like the bottom group [silicon less than 44%] is not a straight line. Can you draw a curvethrough that?S: What degree of polynomial?M: Two or three.S: [Invokes curve-�tting module.]� This data set has two slightly di�erent groups that more or less fall on a line, but the �ts are better if eachgroup is treated separately.The �rst step involves the user selecting a data set from those available in the online library, inthis case one known as the `Strathclyde data set'. The user can also focus the system's attentionon certain groups of data points, in this case those that contain less than 10% silicon dioxide. Thisprocess can rely on prede�ned groups or, as in this trace, the de�nition of entirely new groups basedon ranges of values. Daviccand also lets the user de�ne groups in terms of conjunctions of ranges,ratios of quantities, and distance from a speci�ed line, though here the de�nition is univariate.



Computational Scientific Discovery Page 14In this trace, having speci�ed a group, the scientist asks the system to display a straight linethrough the data contained in that group. Since this appears to give a close �t, he redirectsattention to another group of cases that contain more than 10% silicon dioxide, then changes hismind and displays instead those with more than 20% silicon. Because neither group seems easy tocharacterize, the user asks Daviccand to search for group de�nitions in terms of silicon dioxidepercentages, specifying the region within which to search. The system displays the resulting groupsand transition between them, which the user deems interesting. He focuses especially on onecluster, de�ned as having less than 44% silicon, that he thinks requires more analysis. The scientistnotes that a straight line does not describe these data, and so asks the system to �t and display ahigher-order curve for his inspection.Later interactions with the same scientist led Daviccand to de�ne new groups based on tem-perature ranges and percentage of titanium dioxide. These in turn led him to focus on regions inwhich values for optical basicity were uncertain, and �nally to invoke a module that estimated newvalues from experimental data. Interactions with this user ignored some of Daviccand's features,such as the ability to label some observations as outliers. However, this fact supports our view thatboth humans and machines have an important role to play in computational scienti�c discovery.6. Progress and ProspectsAs the above examples show, work in computational scienti�c discovery no longer focuses solelyon historical models, but also contributes novel knowledge to a range of scienti�c disciplines. Todate, such applications remain the exception rather than the rule, but the breadth of successfulcomputer-aided discoveries provides convincing evidence that these methods have great potentialfor aiding the scienti�c process. The clear in
uence of humans in each of these applications doesnot diminish the equally important contribution of the discovery system; each has a role to play ina complex and challenging endeavor.One recurring theme in applied discovery work has been the di�culty in �nding collaboratorsfrom the relevant scienti�c �eld. Presumably, scientists in many disciplines are satis�ed with theirexisting methods and see little advantage to moving beyond the statistical aids they currently use.This attitude seems less common in �elds like molecular biology, which have taken the computa-tional metaphor to heart, but often there are social obstacles to overcome. The obvious responseis to emphasize that we do not intend our computational tools to replace scientists but rather toaid them, just as simpler software already aids them in carrying out statistical analyses.However, making this argument convincing will require some changes in our systems to betterre
ect the position. As noted, existing discovery software already supports intervention by humansin a variety of ways, from initial problem formulation to �nal interpretation. But in most casesthis activity happens in spite of the software design rather than because the developer intended it.If we want to encourage synergy between human and arti�cial scientists, then we must modify ourdiscovery systems to support their interaction more directly. This means we must install interfaceswith explicit hooks that let users state or revise their problem formulation and representationalchoices, manipulate the data and system parameters, and recast outputs in understandable terms.



Computational Scientific Discovery Page 15The Mechem and Daviccand systems already include such facilities and thus constitute goodrole models, but we need more e�orts along these lines.Naturally, explicit inclusion of users in the computational discovery process raises a host of is-sues that are absent from the autonomous approach. These include questions about which decisionsshould be automated and which placed under human control, the granularity at which interactionshould occur, and the type of interface that is best suited to a particular scienti�c domain. Thediscipline of human-computer interaction regularly addresses such matters, and though its lessonsand design criteria have not yet been applied to computer-aided discovery, many of them shouldcarry over directly from other domains. Interactive discovery systems also pose challenges in evalu-ation, since human variability makes experimentation more di�cult than for autonomous systems.Yet experimental studies are not essential if one's main goal is to develop computational tools thataid users in discovering new scienti�c knowledge.Clearly, we are only beginning to develop e�ective ways to combine the strengths of humancognition with those of computational discovery systems. But even our initial e�orts have producedsome convincing examples of computer-aided discovery that have led to publications in the scienti�cliterature. We predict that, as more developers realize the need to provide explicit support forhuman intervention, we will see even more productive systems and even more impressive discoveriesthat advance the state of scienti�c knowledge.AcknowledgementsThanks to Bruce Buchanan, Saso D�zeroski, Fraser Mitchell, Steve Muggleton, Derek Sleeman, JohnStutz, and Raul Vald�es-P�erez for providing information about both their discovery systems andtheir use. An earlier version of this paper appeared in the Proceedings of the First InternationalConference on Discovery Science, Springer.ReferencesAlberdi, E., & Sleeman, D. (1997). ReTAX: A step in the automation of taxonomic revision. Arti�cialIntelligence, 91 , 257{279.Bruk, L. G., Gorodskii, S. N., Zeigarnik, A. V., Vald�es-P�erez, R. E., & Temkin, O. N. (1998). Oxidativecarbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer-generated mechanistic hypotheses. Journal of Molecular Catalysis A: Chemical , 130 , 29{40.Cheer, C., Smith, D. H., Djerassi, C., Tursch, B., Braekman, J. C., & Daloze, D. (1976). Applications ofarti�cial intelligence for chemical inference, XXI: The computer-assisted identi�cation of [+]- palustrol inthe marine organism cespitularia ap., a�. subvirdis. Tetrahedron, 32 , 1807.Cheeseman, P., Freeman, D., Kelly, J., Self, M., Stutz, J., & Taylor, W. (1988). Autoclass: A Bayesianclassi�ciation system. Proceedings of the Fifth International Conference on Machine Learning (pp. 54{64).Ann Arbor, MI: Morgan Kaufmann.Cheeseman, P., Goebel, J., Self, M., Stutz, M., Volk, K., Taylor, W., & Walker, H. (1989). Automaticclassi�cation of the spectra from the infrared astronomical satellite (IRAS) (Reference Publication 1217).Washington, DC: National Aeronautics and Space Administration.
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