
From Working Notes of the AAAI-94 Workshop on Case-Based Reasoning (1994). Seattle, WA: AAAI Press.Oblivious Decision Trees and Abstract CasesPat Langley (Langley@flamingo.stanford.edu)Stephanie Sage (Sage@flamingo.stanford.edu)Institute for the Study of Learning and Expertise2451 High Street, Palo Alto, CA 94301AbstractIn this paper, we address the problem of case-basedlearning in the presence of irrelevant features. We re-view previous work on attribute selection and presenta new algorithm, Oblivion, that carries out greedypruning of oblivious decision trees, which e�ectivelystore a set of abstract cases in memory. We hypothe-size that this approach will e�ciently identify relevantfeatures even when they interact, as in parity concepts.We report experimental results on arti�cial domainsthat support this hypothesis, and experiments withnatural domains that show improvement in some casesbut not others. In closing, we discuss the implicationsof our experiments, consider additional work on irrel-evant features, and outline some directions for futureresearch.1. IntroductionE�ective case-based reasoning relies on the identi�ca-tion of a subset of features that are relevant to thelearning task. Most work on this topic assumes thedeveloper makes this decision, but application of case-based methods to complex new domainswould be aidedby automated methods for feature selection. Someresearchers (e.g., Barletta & Mark, 1988; Cain, Paz-zani, & Silverstein, 1991) have explored the use ofdomain-speci�c background knowledge to select usefulfeatures, but this approach will not work when littledomain knowledge is available. Domain-independentmethods for feature selection would augment the tech-niques available for developing case-based systems.Rather than selecting features, one might employall available features during case retrieval, giving themequal weight in this process. Cover and Hart (1967)have proven that a simple nearest neighbor algorithm,probably the simplest case-based method, has excellentasymptotic accuracy. However, more recent theoreti-cal analyses (Langley & Iba, 1993) and experimentalstudies (Aha, 1990) suggest that the empirical samplecomplexity of nearest neighbor methods is exponentialin the number of irrelevant features. This means thatthe presence of irrelevant attributes can slow the rateof case-based learning drastically.

A natural response is to draw on machine learn-ing techniques to identify those attributes relevant tothe task at hand. For example, Cardie (1993) used adecision-tree method (C4.5) to select features for useduring case retrieval. She passed on to a k nearestneighbor algorithm only the features occurring in theinduced decision tree. She reported good results ina natural language domain, with k nearest neighborin the reduced space outperforming both C4.5 and knearest neighbor using all the features.Unfortunately, although the greedy approach of C4.5works well for conjunctive and m of n concepts, it suf-fers when attribute interactions exist. In this case, arelevant feature in isolation may appear no more dis-criminating than an irrelevant one. Parity conceptsconstitute the most extreme example of this situation.Experimental studies (Almuallim & Dietterich, 1991;Kira & Rendell, 1992) con�rm that, for some targetconcepts, decision-tree methods deal poorly with irrel-evant features.Almuallim and Dietterich's Focus (1990) tried toaddress this di�culty by searching for combinations offeatures that discriminate the classes. The accuracyof this method is almost una�ected by the introduc-tion of irrelevant attributes, but its time complexity isquasi-polynomial in the number of attributes. Schlim-mer (1993) presented a related technique that usesknowledge about the partial ordering of the space toreduce the search, but still had to limit the complexityof learnable target concepts to keep the search withinbounds. Thus, there remains a need for more practi-cal algorithms that can handle domains with complexfeature interactions and irrelevant attributes.In the following pages, we present a new algorithm{ Oblivion { that should handle irrelevant featuresin a more e�cient manner than Almuallim and Diet-terich's or Schlimmer's techniques, and we show howthe method can be viewed as identifying and stor-ing abstract cases. We report experimental studies ofOblivion's behavior on both arti�cial and natural do-mains, and we draw some tentative conclusions aboutthe approach to feature selection it embodies. Finally,we consider some additional related work and suggestdirections for future research on this topic.



Decision Trees and Abstract Cases 1142. Induction of Oblivious Decision TreesOur research goal was to develop an algorithm thathandled both irrelevant features and attribute inter-actions without resorting to expensive, enumerativesearch. Our response draws upon the realization thatboth Almuallim and Dietterich's and Schlimmer's ap-proaches construct oblivious decision trees, in whichall nodes at the same level test the same attribute. Al-though these methods use forward selection (i.e., top-down search) to construct oblivious decision trees, onecan also start with a full oblivious decision tree thatincludes all the attributes, and then use pruning orbackward elimination to remove features that do notaid classi�cation accuracy. The advantage of the lat-ter approach is that accuracy decreases substantiallywhen one removes a single relevant attribute, even if itinteracts with other features, but remains una�ectedwhen one prunes an irrelevant or redundant feature.Oblivion is an algorithm that instantiates this idea.The method begins with a full oblivious tree that in-corporates all potentially relevant attributes and esti-mates this tree's accuracy on the entire training set,using a conservative technique like n-way cross valida-tion. Oblivion then removes each attribute in turn,estimates the accuracy of the resulting tree in eachcase, and selects the most accurate. If this tree makesno more errors than the initial one, Oblivion replacesthe initial tree with it and continues the process. Oneach step, the algorithm tentatively prunes each of theremaining features, selects the best, and generates anew tree with one fewer attribute. This continues un-til the accuracy of the best pruned tree is less thanthe accuracy of the current one. Unlike Focus andSchlimmer's method, Oblivion's time complexity ispolynomial in the number of features, growing withthe square of this factor.There remain a few problematic details, such as con-structing an initial tree that is exponential in the num-ber of initial attributes, determining the order of theretained attributes, and passing the results to somelearning method. However, none of these steps is actu-ally necessary. The key lies in realizing that an obliv-ious decision tree is equivalent to a nearest neighborscheme that ignores some features. In this view, eachpath through the tree corresponds to an abstract casethat summarizes an entire set of training instances.Because pruning can produce impure partitions of thetraining set, each such case speci�es a distribution ofclass values. When an instance matches a case's condi-tions, it simply predicts the most likely class. If train-ing data are sparse and a test instance fails to matchany stored abstract case, one �nds the nearest cases(i.e., with the mostmatched conditions), sums the classdistributions for each one, and predicts the most likelyclass. This insight into the relation between obliviousdecision trees and nearest neighbor algorithms was anunexpected bene�t of our work.

3. Experimental Studies of OblivionWe expected Oblivion to scale well to domains thatinvolve many irrelevant features. To test this predic-tion, we designed an experimental study with four ar-ti�cial Boolean domains that varied both the degree offeature interaction and the number of irrelevant fea-tures. We examined two target concepts { �ve-bit par-ity and a �ve-feature conjunction { in the presence ofboth zero and three irrelevant attributes. For each con-dition, we randomly generated 20 sets of 200 trainingcases and 100 test cases, and measured classi�cationaccuracy on the latter. In addition to varying the twodomain characteristics, we also examined three induc-tion algorithms { simple nearest neighbor (which doesnot carry out attribute selection), C4.5 (which employsa forward greedy selection), and Oblivion (i.e., near-est neighbor with backward greedy selection). Finally,we varied the number of training instances availablebefore testing, to obtain learning curves.We had a number of hypotheses about the outcomesof this study. First, we expected C4.5 to be una�ectedby irrelevant attributes in the conjunctive domain, butto su�er on the parity concept, because none of the�ve relevant features would appear diagnostic in isola-tion. In contrast, we predicted that nearest neighborwould su�er equally on both target concepts, but thatOblivion's ability to remove irrelevant features evenin the presence of feature interaction would let it scalewell on both concepts. Finally, we hypothesized thatOblivion's learning curve would closely follow thatfor nearest neighbor when no irrelevants were present,but that it would mimic C4.5 in the absence of featureinteractions.Figure 1 (a) shows the learning curves on the paritytarget concept when only the �ve relevant attributesand no irrelevant ones are present in the data. In thisexperimental condition, nearest neighbor and Obliv-ion increase their accuracy at the same rate, but sur-prisingly, C4.5 actually learns somewhat more rapidly.The situation changes drastically in Figure 1 (b), whichpresents the results when there are three irrelevant fea-tures. Here the learning curves for both nearest neigh-bor and C4.5 have 
attened considerably. In contrast,the learning rate for Oblivion is almost una�ected bytheir introduction. A di�erent situation holds for theconjunctive target concept (not shown). In this case,all three algorithms require about the same number ofinstances to reach perfect accuracy when no irrelevantsare present, with nearest neighbor taking a surpriselead in the early part of training. The introduction ofirrelevant attributes a�ects nearest neighbor the most,and C4.5's learning curve is somewhat less degradedthan that for Oblivion.These results support our hypothesis about Obliv-ion's ability to scale well to domains that have bothirrelevant features and interaction among relevant at-
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OblivionFigure 1. Learning curves for nearest neighbor, C4.5 without pruning, and Oblivion on the �ve-bit parity concept given (a)zero irrelevant attributes and (b) three irrelevant attributes. The error bars indicate 95% con�dence intervals.tributes. However, we also wanted to evaluate theimportance of this �nding on natural data. Holte's(1993) results with the UCI repository suggest thatthese domains contain many irrelevant features butfew interactions among relevant ones; in this case, wewould expect C4.5 and Oblivion to outperform near-est neighbor on them. But it is equally plausible thatthese domains contain many relevant but redundantattributes, in which case we would observe little di�er-ence in learning rate among the three algorithms.In four of the UCI domains { Congressional vot-ing, mushroom, DNA promoters, and breast cancer {we found little di�erence in the behavior of Obliv-ion, C4.5, and nearest-neighbor. All three algorithmslearn rapidly and the learning curves (not shown) arevery similar. Inspection of the decision trees learnedby C4.5 and Oblivion in two of these domains re-vealed only a few attributes. Combined with the factthat nearest neighbor performs at the same level as theother methods, this is consistent with the latter expla-nation for Holte's results, that these domains containlargely redundant features.1One domain in which Holte found major di�erenceswas king-rook vs. king-pawn chess endgames, a two-class data set that includes 36 nominal attributes. Thissuggested that it might contain signi�cant attribute in-teractions, and thus might give di�erent outcomes forthe three algorithms. Figure 2 (a) gives the result-ing learning curves, averaged over 20 runs, in whichOblivion's accuracy on the test set is consistentlyabout ten percent higher than that for nearest neigh-bor, though presumably the latter would eventually1. A forward-selection variant of Oblivion (basically agreedy version of the Focus algorithm) also producedvery similar curves on these domains, providing furtherevidence that they do not involve both feature interac-tions and irrelevant attributes.

catch up if given enough instances. However, C4.5reaches a high level of accuracy even more rapidly thanOblivion, suggesting that this domain contains manyirrelevant attributes, but that there is little interactionamong the relevant ones. Inspection of the decisiontrees that C4.5 generates after 500 instances is consis-tent with this account, as they contain about ten ofthe 35 attributes, but only a few more terminal nodesthan levels in the tree, making them nearly linear andthus in the same di�culty class as conjunctions.Figure 2 (b) shows encouraging results on anotherdomain, this time averaged over ten runs, that involvesprediction of a word's speci�c semantic class from thesurrounding context in the sentence. These data in-clude 35 nominal attributes (some with many possi-ble values) and some 40 word classes. Nearest neigh-bor does very poorly on this domain, suggesting thatmany of the attributes are irrelevant. Inspection ofC4.5's and Oblivion's output, which typically retainabout half of the attributes, is consistent with this ex-planation. In the latter part of the learning curves,Oblivion's accuracy pulls slightly ahead of that forC4.5, but not enough to suggest signi�cant interactionamong the relevant attributes. Indeed, Cardie (1993)reports that (on a larger training set) nearest neighboroutperforms C4.5 on this task when the former usesonly those features found in the latter's decision tree.This e�ect cannot be due to feature interaction, sinceit relies on C4.5's greedy forward search to identify fea-tures; instead, it may come from the di�erent represen-tational biases of decision trees and case-based meth-ods, which would a�ect behavior on test cases withimperfect matches.The above �ndings indicate that many of the avail-able data sets contain few truly irrelevant features, andnone of these appear to involve complex feature inter-actions. These observations may re
ect preprocessing
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OblivionFigure 2. Predictive accuracy as a function of training instances for nearest neighbor, C4.5 with pruning, and Oblivion on(a) classifying chess endgames and (b) predicting a word's semantic class.of many of the UCI databases by domain experts toremove irrelevant attributes and to replace interactingfeatures with better terms. The voting records, whichcontain only 16 key votes as identi�ed by the Congres-sional Quarterly , provide an extreme example of the�rst trend. As machine learning starts to encounternew domains in which few experts exist, such data setsmay prove less representative than arti�cial ones.The experiments with arti�cial domains, reportedearlier, revealed clear di�erences in the e�ect of irrele-vant attributes and feature interactions on the behav-ior of nearest neighbor, C4.5, and Oblivion. The rateof learning for the nearest neighbor method decreasedgreatly with the addition of irrelevant features, regard-less of the target concept. In contrast, irrelevant at-tributes hurt C4.5 for the �ve-bit parity concept butnot the �ve-feature conjunction; top-down greedy in-duction of decision trees scales well only when the rel-evant features (individually) discriminate among theclasses. In contrast, the learning rate for Oblivionwas largely una�ected by irrelevant features for ei-ther the conjunctive or parity concepts, presumablybecause its greedy pruning method was not misled byinteractions among the relevant features.4. DiscussionWe have already reviewed the previous research thatled to our work on Oblivion, and we have drawn sometentative conclusions about the algorithm's behaviorfrom our experimental results. Here we consider someadditional related work on induction, along with direc-tions for future research.Kira and Rendell (1992) have followed a somewhatdi�erent approach to feature selection. For each at-tribute A, their Relief algorithm assigns a weightWA

that re
ects the relative e�ectiveness of that attributein distinguishing the classes. The system then selectsas relevant only those attributes with weights that ex-ceed a user-speci�ed threshold, and passes these fea-tures, along with the training data, to another induc-tion algorithm such as ID3. Comparative studies ontwo arti�cial domains with feature interactions showedthat, like Focus, the Relief algorithmwas una�ectedby the addition of irrelevant features on noise-free data,and that it was less a�ected than Focus (and muchmore e�cient) on noisy data.The above algorithms �lter attributes before passingthem to ID3, but John, Kohavi, and P
eger (in press)have explored a wrappermodel that embeds a decision-tree algorithmwithin the feature selection process, andCaruana and Freitag (in press) have described a similarscheme. Each examined greedy search through the at-tribute space in both the forward and backward direc-tions, including variants that supported bidirectionalsearch. John et al. found that backward elimina-tion produced more accurate trees than C4.5 in twodomains but no di�erences in others, whereas Caru-ana and Freitag reported that all of their attribute-selection methods produced improvements over (un-pruned) ID3 in a single domain.One can also combine the wrapper idea with nearest-neighbor methods, as in Oblivion. Skalak (in press)has recently examined a similar approach, using bothMonte Carlo sampling and randommutation hill climb-ing to select cases for storage, with accuracy on thetraining set as his evaluationmeasure. Both approachesled to reductions in storage costs on four domains andsome increases in accuracy, and the use of hill climbingto select features gave further improvements. Moore,Hill, and Johnson (in press) have also embedded near-est neighbor methods within a wrapper scheme. How-ever, their approach to induction searches not only the



Decision Trees and Abstract Cases 117space of features, but also the number of neighborsused in prediction and the space of combination func-tions. Using a leave-one-out scheme to estimate ac-curacy on the test set, they have achieved signi�cantresults on two control problems that involve the pre-diction of numeric values.Some researchers have extended the nearest neigh-bor approach to include weights on attributes thatmodulate their e�ect on the distance metric. For ex-ample, Cain et al. (1991) found that weights derivedfrom a domain theory increased the accuracy of theirnearest-neighbor algorithm. Aha (1990) presented analgorithm that learned the weights on attributes, andshowed that its empirical sample complexity grew onlylinearly with the number of irrelevant features, as com-pared to exponential growth for simple nearest neigh-bor. In principle, proper attribute weights should pro-duce more accurate classi�ers than variants that sim-ply omit features. However, search through the weightspace involves more degrees of freedom than Obliv-ion's search through the attribute space, making theirrelative accuracy an open question for future work.Clearly, our experimental results are somewhat mixedand call out for additional research. Future studiesshould examine other natural domains to determineif feature interactions arise in practice. Also, sinceOblivion uses the leave-one-out scheme to estimateaccuracy, we predict it should handle noise well, butwe should follow Kira and Rendell's lead in testingthis hypothesis experimentally. Oblivion's simplicityalso suggests that an average-case analysis would provetractable, letting us compare our experimental resultsto theoretical ones. We should also compare Obliv-ion's behavior to other methods for selecting relevantfeatures, such as those mentioned above.Despite the work that remains, we believe that ouranalysis has revealed an interesting relation betweenoblivious decision trees and abstract cases, and thatour experiments provide evidence that one such algo-rithm outperforms simpler case-based learning meth-ods in domains that involve irrelevant attributes. Weanticipate that further re�nements to Oblivion willproduce still better results, and that additional exper-iments will provide a deeper understanding of the con-ditions under which such an approach is useful.AcknowledgementsThanks to David Aha, George John, Karl P
eger, RussGreiner, Ronny Kohavi, Bharat Rao, and Je� Schlim-mer for useful discussions, to Ray Mooney, for makinghis modi�ed C4.5 code available, and to Claire Cardie,for providing her natural language data. Siemens Cor-porate Research and Stanford University provided re-sources that aided our research. This work was sup-ported in part by ONR Grant No. N00014-94-1-0505.
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