
From Proceedings of the Thirteenth International Joint Conference onArti�cial Intelligence (1993). Chambery, France: Morgan KaufmannAverage-Case Analysis of a Nearest Neighbor AlgorithmPat LangleyLearning Systems DepartmentSiemens Corporate Research755 College Road EastPrinceton, NJ 08540 USA Wayne IbaAI Research BranchMail Stop 269-2NASA Ames Research CenterMo�ett Field, CA 94035 USAAbstractIn this paper we present an average-case analysis of thenearest neighbor algorithm, a simple induction methodthat has been studied by many researchers. Our analysisassumes a conjunctive target concept, noise-free Booleanattributes, and a uniform distribution over the instancespace. We calculate the probability that the algorithmwill encounter a test instance that is distance d from theprototype of the concept, along with the probability thatthe nearest stored training case is distance e from thistest instance. From this we compute the probability ofcorrect classi�cation as a function of the number of ob-served training cases, the number of relevant attributes,and the number of irrelevant attributes. We also explorethe behavioral implications of the analysis by presentingpredicted learning curves for arti�cial domains, and giveexperimental results on these domains as a check on ourreasoning.1. Nearest Neighbor AlgorithmsMost learning methods form some abstraction fromexperience and store this structure in memory. The �eldhas explored a wide range of such structures, includ-ing decision trees (Quinlan, 1986), multilayer networks(Rumelhart & McClelland, 1986), and probabilistic sum-maries (Fisher, 1987). However, in recent years there hasbeen growing interest in methods that store instances orcases in memory, and that apply this speci�c knowledgedirectly to new situations. This approach goes by manynames, including instance-based learning and case-basedreasoning , and one can apply it to many di�erent tasks.The simplest and most widely studied class of tech-niques, often called nearest neighbor algorithms, origi-nated in the �eld of pattern recognition (Cover & Hart,1967; Dasarathy, 1991) and applies to classi�cation tasks.In the basic method, learning appears almost trivial {one simply stores each training instance in memory. Thepower of the method comes from the retrieval process.Given a new test instance, one �nds the stored trainingcase that is nearest according to some distance measure,notes the class of the retrieved case, and predicts thenew instance will have the same class.Many variants exist on this basic algorithm. For in-stance, Stan�ll and Waltz (1986) have studied a versionthat retrieves the k closest instances and bases predic-

tions on a weighted vote, incorporating the distance ofeach stored instance from the test case; such techniquesare often referred to as k-nearest neighbor algorithms.Others (Cover & Hart, 1967; Aha, Kibler, & Albert,1991) have studied an alternative approach that storescases in memory only upon making an error, thus reduc-ing memory load and retrieval time with little reductionin accuracy.We would like to understand the learning behaviorof this intriguing class of methods under various condi-tions. Aha et al. present a PAC analysis of one suchalgorithm, but our aim is to obtain tighter bounds thatwe can directly relate to experimental results. To thisend, we decided to pursue an average-case analysis alongthe lines developed by Hirschberg and Pazzani (1991)for logical induction methods and by Langley, Iba, andThompson (1992) for probabilistic ones. For the sakeof tractability, we focused our e�orts on the most basicof the instance-based techniques, which stores all train-ing cases and bases its prediction on the single nearestneighbor.However, the simplicity of this method does not meanit lacks power. Aha et al. (1991) report the resultsof an experimental study that compared the algorithm(which they called IB1 ) to Quinlan's (1986) more so-phisticated C4 algorithm for inducing decision trees. Ta-ble 1 contains the results on four natural domains, twoof them (\Cleveland" and \Hungarian") involving pre-diction of heart disease from symptoms, another con-cerning the diagnosis of primary tumors, and a fourthinvolving prediction of party a�liations for members ofCongress from their voting records. For each domain,Aha et al. trained the algorithms on approximately 80%of the cases and tested them on the remaining instances,averaging over 50 di�erent partitions. On the Clevelanddata, the two algorithms' performance was indistinguish-able, and IB1's behavior on the tumor and voting recordsnearly reached C4's level. Although the basic nearestneighbor algorithm fared much worse on the Hungariandata set, simple modi�cations produce accuracy compa-rable to that for C4 (Aha, 1990), and its performance onthe other domains argues that it deserves closer inspec-tion in any case.In the remainder of this paper, we report the initialresults of our average-case analysis of the simple near-est neighbor method. We begin by presenting the as-



Analysis of a Nearest Neighbor Algorithm 890Table 1. Percentage accuracies for a nearest neighbor method(IB1) and a decision-tree algorithm (C4) on four classi�cationdomains, taken from Aha et al. (1991). Each column reportsboth average accuracy of classi�cation and standard error.Domain IB1 C4Cleveland 75.7 � 0.8 75.5 � 0.7Hungarian 58.7 � 1.5 78.2 � 0.9Primary tumor 34.7 � 0.8 37.8 � 0.9Voting records 91.8 � 0.4 95.5 � 0.3sumptions of the analysis, followed by our derivation ofthe equations for predicting accuracy as a function ofthree variables. After this, we examine the implicationsof the analysis for the algorithm's behavior, comparingpredicted learning curves for arti�cial domains of di�er-ing di�culty. Finally, we note some limitations of theanalysis and suggest directions for future research.2. An Average-Case AnalysisRecall that the algorithm under study stores all train-ing cases in memory. Upon encountering a test instance,it retrieves the nearest observed case and predicts thesame class as that for the stored instance. If a tie oc-curs, the version we will examine selects one of the near-est cases at random. We would like to compute An,the probability of correct classi�cation (i.e., the predic-tive accuracy) after n training instances as a function ofcharacteristics of the domain.Our analysis will assume that there exist two classes,C and �C, de�ned over r relevant Boolean attributes Ajand i irrelevant ones. We will also assume that the prob-ability of occurrence P (Aj) = 1=2 for each such attributeAj , generating a uniform distribution over the instancespace, and that the target concept is conjunctive, givingP (C) = P (A)r = 1=2r. Finally, we will measure thedistance between two cases as the number of attributeson which they di�er. Because there are r+ i attributes,there are exactly r+i+1 distinct distances, ranging fromzero to r + i, that can occur.We will use Id to denote an arbitrary test case that isdistance d from the prototype P for the positive class.We will also refer to Je as an arbitrary training case thatis distance e from test instance Id. We will often treatgroups of test cases as a class based on their distance dfrom the prototype; similarly, we will consider groups oftraining instances based on their distance e from a givenclass of test cases.Our strategy considers positive and negative test in-stances separately. We will use A(C)n to refer to theprobability of correct classi�cation given that the algo-rithm encounters a positive test case after n trainingcases, and we will use A( �C)n for the predictive accuracy

given a negative test instance. The overall accuracy ofthe nearest neighbor algorithm after n training cases isAn = P (C)A(C)n + P ( �C)A( �C)n ; (1)where P (C) is the probability of a positive test case andP ( �C) = 1� P (C) is the probability of a negative one.Let us deal with the accuracy on negative test cases�rst. We can view this term as a weighted sum of theaccuracies for di�erent types of test cases Id, where d isthe distance from the prototype.1 We must sum over allpossible distances from the prototype at which a test casecan occur (except for d = 0), multiplying the probabilityof each type d by its accuracy B( �C)d;n according to thepossible contents of memory after n training instances:A( �C)n = r+iXd=1 �r+id � � �id�2r+i � 2i B( �C)d;n ; (2)where the accuracy componentB( �C)d;n = N (Jd�i�1)n+T (Jd�i;d+i)�n +F (Jd+i+1)n (3)can be further divided into three terms, which are re-lated to the regions shown in Figure 1. These corre-spond, respectively, to situations in which the closeststored training case is near enough to Id to ensure cor-rect classi�cation, in which ties can occur because theclosest case may belong to either class, and in which theclosest instance is far enough from Id to ensure correctprediction.The initial term, N (Jd�i�1)n, represents the contribu-tion to the accuracy that results from the �rst of thesesituations, when the nearest stored training case Je iscloser to Id than the latter is to the nearest positiveinstance (i.e., 0 � e < d � i). When this occurs, thealgorithm will correctly classify Id as negative. To seethis, consider the innermost region in Figure 1, and notethat the algorithm must observe only one training casewithin the region for this to transpire. The probabil-ity that any given training instance will fall within e orfewer steps of the test case isW (Je) = 12r+i eXj=0�r + ij � ; (4)giving the probability 1�W (Je) that this will not occur.Thus, the probability that (after n training instances)the algorithm will have seen at least one such case isN (Je)n = 1� [1�W (Je)]n ; (5)which gives the �rst term in the de�nition of B( �C)d;n inequation (3).1. When some features are irrelevant, there are multiple pos-itive instances, any of which we can select as the proto-type without loss of generality.
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Figure 1. Regions of interest for computing the probabilityof correctly classifying a negative test case Id, distance dfrom prototype P , using the stored training case Je, which isdistance e from Id. The inner region depicts the probabilitythat e < d � i, the outer region shows the probability thate > d + i, and the central region indicates the probabilitythat d� i � e � d+ i.The second term from this equation, T (Jd�i;d+i)�n , isthe contribution to the accuracy when the distance tothe nearest stored training instance Je is between thedistances to the nearest possible positive instance andthe farthest one (i.e., d�i � e � d+i). This correspondsto the central region in the �gure. In this situation, con-icts can occur during the classi�cation process, in thatthe algorithm may retrieve both positive and negativetraining cases at distance e from the test case.Ties are possible in this region because, given i irrele-vant attributes, there are 2i positive instances that canbe located i steps or less away from the prototype. Forany given test case Id that is distance d from the pro-totype, the nearest stored positive case may be i stepsaway from the prototype in the direction toward Id, isteps away from the prototype in the direction away fromId, or somewhere between these two extremes. Negativeinstances can also occur anywhere within this region,making the entire middle band in the �gure open to thepossibility of ties.To handle all possible ties, we must sum over all dis-tances e between d � i and d + i, then sum over thepossible numbers k of nearest instances (positive or neg-ative) that have been stored at each such distance. Ineach case, we must multiply the probability M (Je)n;kof that number occurring by the accuracy E(Je)�k thatresults from such a tie. We can state this formally asT (Ja;b)�n = bXe=a nXk=1M (Je)n;kE(Je)�k : (6)

We can further decompose the �rst term in the productinto the probability that exactly k of the n training casesare distance e from the test case and that the remainingn� k are at some greater distance (since the k cases arethe nearest ones), givingM (Je)n;k = �nk�"�r+ie �2r+i #k [1�W (Je)]n�k (7)as the formal expression. To compute the accuracy givena tie among k stored cases, we must sum over the possiblenumbers j of negative instances, in each case multiplyingthe subaccuracy by the probability of that occurrence.This givesE(Je)�k = kXj=0 jk�kj�[1� V (C)�e;d]j[V (C)�e;d]k�j ; (8)where j=k is the expected accuracy when one selects atraining case at random from a set that contains j outof k negative instances. The term V (C)�e;d representsthe probability of a positive instance Je given that theinstance is e steps away from negative test case Id, whichis in turn d steps away from the prototype. We canexpand this term toV (C)�e;d = min(r;d)Xk=1 �rk�� id�k��r+id � � �id� � � ie�k��r+ie � ; (9)provided k � e, k � r, and d� k � i, and to zero other-wise. This expression sums over di�erent ways in whichdistance d can occur, with some steps along relevant at-tributes and others along irrelevant ones, multiplied bythe probability that an instance e steps away from theresulting test case will be positive.The �nal term from equation (3), F (Jd+i+1)n, spec-i�es the contribution to the accuracy when the nearesttraining instance Je has distance greater than d+ i fromtest case Id (i.e., d+ i < e � r+ i), and thus falls withinthe outermost region in Figure 1, which contains onlynegative instances. As with the N (Jd�i�1)n term, thealgorithm will correctly classify Id as negative wheneverthis occurs. The chance that this situation will arise isF (Ie)n = 24 12r+i r+iXj=e�r + ij �35n ; (10)which is the probability that any given training case willfall at distance e or greater from the test instance, takento power n to generate the probability that every train-ing instance seen so far satis�es this condition.Now we can turn to A(C)n, the accuracy on positivetest cases after n training instances. The situation here issimpler than for negative test cases, but still nontrivial.The algorithm is guaranteed to classify a positive testcase Id correctly only when the nearest stored traininginstance is itself the test case (i.e., e = 0). Ties can occuranywhere in the range 1 � e � i, giving the expression



Analysis of a Nearest Neighbor Algorithm 892A(C)n = N (J0)n + T (J1;i)+n : (11)Because one can treat any positive instance as the pro-totype, there is no need to sum over di�erent distances dhere. Moreover, since no positive instance can be morethan i steps away from any other, we can omit the thirdterm of equation (3), F (Ji+1)n, which is always zero.The term for handling ties is analogous to equation(6) for the negative situation, but we must revise thede�nition for E(Je)�k in equation (8) toE(Je)+k = kXj=0 k � jk �kj�[1� V (C)+e ]j[V (C)+e ]k�j : (12)Note that here we must use the numerator k � j ratherthan k, in that we are dealing with positive test cases.Moreover, we must take a di�erent approach to com-puting V (C)+e , the probability of a positive instance Jegiven that the instance is e steps away from positive testcase Id. In this case, we haveV (C)+e = �ie��r+ie � ; (13)when i � e, but zero in other situations. Taken together,the de�nitions for A(C)n, A( �C)n, and their componentterms let us predict the overall accuracy An for the near-est neighbor algorithm as a function of the number oftraining instances n, the number of relevant attributesr, and the number of irrelevant attributes i.3. Behavioral Implications of the AnalysisAlthough the equations in the previous sections pro-vide a formal characterization of the nearest neighboralgorithm's behavior, their implications are not obvious.To better understand the e�ects of domain characteris-tics, we systematically varied certain domain parametersand examined the predicted results. In addition to com-puting theoretical predictions, we also collected experi-mental learning curves that summarized the algorithm'sactual behavior. Each datum on these curves reports theclassi�cation accuracy averaged over 100 runs on ran-domly generated training sets, measured over the entirespace of uniformly distributed noise-free instances. Ineach case, we bound the mean accuracy with 95% con�-dence intervals to show the degree to which our predictedlearning curves �t the observed ones. These experimen-tal results provide an important check on our reasoning,and they identi�ed a number of problems during devel-opment of the analysis.Figure 2 shows the e�ects of the number of relevantattributes in the conjunctive target concept. For thisstudy, we held the number of irrelevant attributes i con-stant at one, and we varied both the number of traininginstances and the number of relevant attributes r. Astypical with learning curves, the accuracy starts low andgradually improves as the algorithm encounters moretraining instances. The e�ects of target complexity alsomake sense. Increasing the number of relevant features
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1 relevantFigure 2. Predictive accuracy of the nearest neighbor algo-rithm on a conjunctive concept, assuming the presence ofone irrelevant attribute, as a function of training instancesand the number of relevant attributes. The lines representtheoretical learning curves, whereas the error bars indicateexperimental results.should increase the overall number of negative instances,giving higher accuracy early in the induction process;however, this factor also increases the total number ofpossible instances, requiring more training cases to reachasymptote and producing a crossover e�ect. The learn-ing rate seems to degrade gracefully with increasing com-plexity, and the theoretical and actual learning curvesare in close agreement, which lends con�dence to theanalysis.The sensitivity of the nearest neighbor algorithm toirrelevant attributes is more dramatic, as shown in Fig-ure 3. This graph summarizes the results of a similarstudy of the interaction between the number of train-ing instances n and the number of irrelevant attributes.Here we held the number of relevant attributes constantat two, and we examined three levels of the i parameter.As with the previous study, the degradation in learningrate is graceful, but the e�ect is somewhat greater. Thedi�erence between the two results appears more signi�-cant when one realizes that increasing i does not reducethe proportion of positive instances, as does increasingthe number of relevant attributes. These observationsare consistent with Aha's (1990) reports on the sensitiv-ity of nearest neighbor methods to the number of irrele-vant attributes.We can also compare the behavior of the nearest neigh-bor algorithm to that of other induction methods forwhich average-case analyses exist. In particular, Pazzaniand Sarrett (1992) have studied theWholist algorithm,which initializes its concept description to the conjunc-tion of features in the �rst positive training instance,then removes any feature that fails to occur in later pos-itive instances. Similarly, Langley, Iba, and Thompson(1992) have analyzed the behavior of the Bayesian clas-si�er, a simple probabilistic method that stores observed
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1 irrelevantFigure 3. Predictive accuracy of the nearest neighbor algo-rithm on a conjunctive concept, assuming the presence oftwo relevant attributes, as a function of training instancesand the number of irrelevant attributes. The lines representtheoretical learning curves, whereas the error bars indicateexperimental results.base rates and conditional probabilities. As Pazzani andSarrett note, Wholist's learning rate is una�ected bythe number of relevant attributes, so their algorithmclearly scales up better on this dimension than does thenearest neighbor technique. Comparison to the Bayesianclassi�er on this factor is more di�cult, in that Lang-ley et al.'s study examined equal probabilities for thetwo classes, whereas the current analysis assumes thatthey di�er.In some domains, e�ective learning relies more on theability to handle many irrelevant features than many rel-evant ones. In this vein, we have shown analytically thatthe number of training instances required for Wholistto achieve a given level of accuracy increases only withthe logarithm of the number of irrelevant attributes. Al-though we have not yet derived similar analytic relationsfor the nearest neighbor or probabilistic methods, we canuse the existing analyses to estimate ability to scale onthis dimension.Figure 4 graphs the predicted number of training in-stances needed to achieve 90% accuracy for each algo-rithm as a function of the number of irrelevant attributes,assuming a target concept involving only one relevantfeature and a uniform distribution of instances. Theanalyses do not provide these quantities directly, butone can interpolate them from the theoretical learningcurves. The �gure reveals that the Bayesian classi�erscales well to increasing numbers of irrelevant attributes,with the dependent measure growing as an approximatelinear function of this factor. In contrast, the num-ber of training instances required by the nearest neigh-bor method grows much faster, although we cannot yetdetermine the precise superlinear relation. These re-sults are also consistent with Aha's (1990) conclusionsabout the response of standard instance-based methodsto many irrelevant features.
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Figure 4. Theoretical number of training instances (interpo-lated) required to reach 90% accuracy by a nearest neighboralgorithm and a simple Bayesian classi�er on a conjunctiveconcept, assuming the presence of one relevant attribute, asa function of the number of irrelevant attributes.However, the above comparisons are not entirely fair.Neither the Wholist algorithm nor the Bayesian clas-si�er are designed to handle disjunctive concepts, whichpresent no obstacles to even the simplest nearest neigh-bor algorithm. Our focus on conjunctive concepts in thecurrent analysis has obscured this strength. Also, Aha(1990) has developed a variant of the nearest neighboralgorithm that retains statistics on the usefulness of eachattribute, and he has shown that this approach fares bet-ter in domainswith many irrelevant terms. Nevertheless,the ability to make comparisons of the above type is oneadvantage of careful formal analyses, and they have pro-vided insights about the relative strengths of the di�er-ent learning algorithms.4. General DiscussionIn this paper we presented an average-case analysis ofthe most basic nearest neighbor algorithm. Our treat-ment assumes that the target concept is conjunctive,that instances are free of noise, that attributes are Bool-ean, and that instances are uniformly distributed. Giveninformation about the number of relevant and irrelevantattributes, our equations let us compute the expectedclassi�cation accuracy after a given number of traininginstances.To explore the implications of the analysis, we plottedthe predicted behavior of the algorithm as a function ofthese three factors, �nding graceful degradation as thenumber of relevants r and irrelevants i increased, but�nding a stronger e�ect for the second. As a check onour analysis, we ran the algorithm on arti�cial domainswith the same characteristics. The predicted behaviorclosely �t that found in the experiments, but only af-ter correcting several errors in our reasoning that theempirical studies revealed.



Analysis of a Nearest Neighbor Algorithm 894These results begin to account for the wide range ofperformance observed for the algorithm by Aha and oth-ers on natural domains. However, a full explanation willrequire several extensions to the analysis. In particular,we must incorporate the inuence of both class and at-tribute noise, as we have done in earlier analyses (Iba &Langley, 1992; Langley et al., 1992). We must also han-dle situations in which each attribute follows a separateprobability distribution, following the approach taken byHirschberg and Pazzani (1991).Even more important, we must extend the frameworkto handle broader classes of target concepts. Nearestneighbor methods are well suited for M of N concepts,in which any M of the N features in the prototype aresu�cient for membership in the class. Since distancefrom the prototype plays a central role in the currentanalysis, we believe extending it to handle such conceptswill be quite feasible. Similarly, because the algorithmstores many training instances in memory, it can easilyacquire disjunctive concepts that require multiple pro-totypes. Again, we hope that simple extensions to theexisting framework will handle this situation. We shouldalso generalize the analysis to include k-nearest neighbormethods, following the lead recently provided by Turney(in press).Another direction for future work would attempt tomap the extended analysis onto natural domains in whichthere already exist experimental results with the method.Given information about the distributions of attributes(which are available in the data), along with estimatesof the noise levels and target concepts (which requireinformed guesses), we can compare learning curves pre-dicted by the theory with those observed in experimen-tal runs. This approach would extend the applicabilityof our average-case model beyond the arti�cial domainsto which we have limited our tests to date.In summary, we believe that our initial analysis hasprovided some useful insights about the behavior of thebasic nearest neighbor algorithm. These begin to explainwhy the algorithm compares favorably with more com-plex induction methods on some domains but not oth-ers, and our results are consistent with intuitions aboutthe algorithm's sensitivity to irrelevant attributes. Wealso believe the existing theoretical framework can be ex-tended to handle more challenging target concepts andother factors that complicate the learning task, thus pro-viding a solid base on which to carry out further studiesof instance-based learning.AcknowledgementsWe would like to thank Stephanie Sage and David Ahafor discussions that helped clarify our ideas, David Ahaand three reviewers for useful comments, and Nils Nils-son for his support and encouragement. The �rst author
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