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In this paper we present a computational theory of human motor performance and learning. The theory is implemented as a 
running AI system called MAGGIE. Given a description of a desired movement as input, the system generates simulated 
motor behavior as output. The theory states that skills are encoded as moror s c h e m ,  which specify the positions and veloci- 
ties of a limb at selected points in time. Moreover, there exist two natural representations for such knowledge; viewer-centered 
schemas describe visually perceived behavior, and joint-centered schemas are used to generate behavior. When the model acts 
upon these two representational formats, they exhibit quite different behavioral chamcteristics. MAGGIE performs the desired 
movement within a feedback control paradigm. monitoring for errors and correcting them when it detects them. Learning 
involves improving the joint-centered schema over many practice trials; this reduces the need for monitoring. The model 
accounts for a number of well-documented motor phenomena, including the speed-accuracy trade-off and the gradual 
improvement in performance with practice. It also makes several testable predictions. We close with a discussion of the 
theory’s strengths and weaknesses, along with directions for future research. 

Key word:  machine learning, motor behavior, skill improvement, speed-accuracy trade-off, hill climbing, motor schemas, 
motor programs. 

Dans cet article, nous pdsentons une thtorie computationnelle de l’apprentissage et de la performance moteurs de I’homrne. 
La thtorie a i t6 mise en oeuvre sous fome d’un systtme d’extcution IA appelt MAGGIE. Selon cette thtorie, les aptitudes 
sont encodtes sous forme de schBmas moteurs, qui sptcifient les positions et vitesses d’un membre des points pdcis dans le 
temps. De plus, il existe deux repdsentations naturelles de ce type de connaissances : des schtmas fondts sur le spectateur 
dkrivant un comportement pequ visuellement, et des schkmas fond& sur le groupage, utilists pour produire un comporte- 
ment. Lorsque le mdele dagit B ces deux formes de repdsentation, leurs caracttristiques de comportement sont trks diff-5- 
rentes. MAGGIE execute le mouvement dtsid B I’inttrieur d’un paradigme de contfile de daction, dttectant et comgeant les 
erreurs le cas tchtant. L’apprentissage ntcessite I’amdlioration du schtma fond6 sur le groupage ap&s de multiples essais; cela 
rkduit le besoin de surveillance. Le modUe tient compte d’un certain nombre de phtnomtne moteurs bien documentts, notam- 
ment le cornpromis vitesse-exactitude et I’amtlioration graduelle de la performance avec la pratique. II peut tgalement faire 
plusieurs pdvisions vtrifiables. L’article se termine par une discussion sur les points forts et les points faibles de cette thtorie, 
ainsi que sur les domaines dans lesquels des recherches futures pounaient etre entreprises. 

Mofs clLs : apprentissage automatique, comportement moteur, amtlioration des aptitudes, cornpromis vitesse -exactitude, 
escalade, schtmas moteurs, programmes moteurs. 
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1. Introduction 
The ability to generate skilled movements is shared by 

experts in such diverse domains as professional basketball and 
concert music. Although skilled performance attracts one’s 
attention, the acquisition of such expertise is even more 
intriguing. Many years of practice go into such improvement, 
and motor learning never completely halts; the old saying that 
“practice makes perfect” oversimplifies the process greatly. 
Our long-term goal is to develop a computational theory of 
motor skills and their acquisition. This theory should account 
for known aspects of human motor behavior, and ideally it 
should predict unobserved phenomena as well. In this paper, 
we describe the progress we have made by limiting our atten- 
tion to one aspect of motor behavior - the task of refining an 
existing motor skill through practice. 

Most research on motor behavior has focused on either very 
high level or very low level aspects of motor control. High- 
level work (e.g., Fikes er al. 1972; Segre 1987) has addressed 
issues of planning: generating a sequence of abstract operators 
that produce complex motor behavior. The low-level work in 
robotics has addressed the generation of appropriate torques 
and voltages (e.g., S w a m  1984) and in the case of neuro- 
physiology has considered the excitation levels of various 
neurons (e.g., Arbib 1982; Davis 1976). Our main concern 
Pnntcd in Canada 1 lrnpnmf nu C h  

lies with neither of these levels. Instead, our work focuses on 
an intermediate level at which toques and voltages need not be 
specified, but where the operators are still rather primitive. 

There are two basic approaches to studying motor behavior 
that are orthogonal to these three levels of focus. The engi- 
neering approach, represented by robotics, has developed 
algorithms that control the movement of an arm. but these 
algorithms lack phychological plausibility. The “natural organ- 
ism” approach, represented by neurophysiology, physiology, 
and psychology, has devised theories that account for observed 
phenomena, but often these theories are not computational in 
nature.’ In our work on motor behavior, we have addressed 
both of these concerns: our theory is computational and also 
accounts for findings about human motor skills. In this respect, 
our results narrow the gap between robotics research and psy- 
chological work on motor control. 

In this paper we introduce MAGGIE, a computational model 
of human motor behavior. We begin by reviewing some results 
from research on human motor skills. In Sect. 3 we present a 
detailed description of MAGGIE’s performance system, along 

‘Some psychologists have presented “computational” models that 
consist of mathematical equations, but that are not implemented as a 
coherent computer simulation. 
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with experimental results on the system’s behavior. In Sect. 4 
we describe the learning mechanism together with results from 
experiments on learning motor skills. We conclude by dis- 
cussing the model’s successes and failures in explaining 
various psychological phenomena, and by outlining our plans 
for further research in this area. 

2. Background on human motor behavior 
We do not have the space to present a complete review of the 

relevant research in motor behavior. We have selected material 
that will help motivate and justify claims made later in the 
paper. We first consider thc basic structure of the human motor 
system at the level of the nervous system. After this, we 
review a number of motor phenomena that have been observed 
in both humans and animals. See Kelso (1982~) for a more 
comprehensive introduction. 

2.1. Results from neurophysiology 
The muscle structure in the higher mammals consists of two 

basic components. The muscle fiber constitutes the main part 
of the muscle; this includes the alpha neuron, which controls 
the degree to which the fiber contracts. This neuron is con- 
trolled by signals from higher centers of the nervous system via 
the spinal cord. Running through the center of the muscle fiber 
is the muscle spindle, a tiny sensory organ that sends afferent 
signals back to the spinal cord in proportion to its level of ten- 
sion. If a load is placed on a limb, stretching the muscle fiber, 
the muscle spindle is stretched as well, sending signals to the 
spinal cord. The spinal cord sends return signals, causing the 
alpha neuron to fire more rapidly and increasing the contrac- 
tion force in the main muscle so as to relieve the tension in the 
muscle spindle (Kelso 1982b). 

This local configuration of the alpha neurons and the muscle 
spindles may explain the low-level stability observed in natural 
organisms. Pairs of muscles work in opposition to form a 
servolike mechanism, which maintains the necessary forces of 
contraction in the respective muscles. For example, when a 
horse is sleeping standing up, this servomechanism cycle 
keeps the horse from falling over in a gust of wind. Note that 
this low-level feedback cycle does not involve higher-level 
processing, but instead operates directly through the spinal 
cord. This means that organisms are able to set their limbs in a 
desired position relatively independent of loads and without 
higher-level sensory feedback. This observation will play an 
important role in our theory of motor behavior. 

2.2. Results from experimental psychology 
Experimental psychology provides an additional set of con- 

straints on theories of human motor performance and learning. 
Below we summarize a number of well-established motor phe- 
nomena that have influenced the development of our theory. 

One of the most robust findings is that performance im- 
proves with practice, and that this improvement occurs gradu- 
ally. We also know that motor learning follows the power law 
of practice. This principle states that, if a given amount of 
practice p leads to an increment i in the quality of performance, 
then another increment of improvement i will require an order 
of magnitude more practice p2. This phenomenon rules out 
models that learn too quickly or too slowly. 

The literature on motor behavior also distinguishes between 
closed-loop and open-loop modes of behavior. Movements 
performed in closed-loop mode can be altered while in pro- 
gress as a result of feedback. This feedback indicates when 
errors have occurred and need to be corrected. Closed-loop 

mode is commonly associated with relatively slow move- 
ments. Movements performed in open-loop mode can not be 
altered while in progress because feedback is either unavail- 
able or unincorporated. Such movements are generally of a 
much faster nature (on the order of 200 ms) and, once initiated, 
are carried out to completion without changes resulting from 
the detection of emrs.  Since there is evidence for both modes 
of performance (Stelmach 1982; Schmidt 1982a), a complete 
model of human motor behavior should account well for both. 

Another well-established motor phenomenon is the trade-off 
between speed and accuracy. In many cases, a subject can per- 
form a skill reasonably well at a relatively slow rate, but per- 
formance deteriorates if he carries out the skill at a rapid rate. 
Fitts’ law (Fitts and Peterson 1964) indicates a logarithmic 
relation between speed and accuracy, whereas Schmidt et al. 
(1979) and Meyer et al. (1982) report linear speed-accuracy 
trade-offs. Regardless of the quantitative results, any plausible 
model of human motor behavior must explain this deterioration 
of performance with increased speed. 

Yet another well-documented result is that humans have a 
required delay before they are able to incorporate sensory feed- 
back and initiate an alteration in their motor behavior. This 
delay has been found to be approximately 200 ms (Schmidt 
19820). For example, a subject might be told to perform a 
motor task but to watch for a signal indicating that he should 
perform a different task. On the average, it will take 200 ms 
from the onset of the signal to the initiation of the new motor 
task. This result places a clear restriction on the minimum 
cycle time for conscious modification of behavior in models of 
human motor behavior. 

A final phenomenon involves the transfer of skill between 
limbs or effectors. This is notably demonstrated by comparing 
handwriting generated with the dominant hand, the dominant 
hand on a blackboard, the opposite hand, a foot, and the 
mouth. The similarities between the resulting scripts are so 
strong that they can be easily recognized as being generated by 
the same person (see Hollerbach 1979). This indicates the 
presence of invariants in the human motor system, which any 
successful theory of motor behavior must explain. 

3. A model of motor performance 
Skill learning cannot occur in the absence of some perform- 

ance task, and in this section we describe MAGGIE, a running 
system that implements our theory of motor performance.2 
Moreover, any performance task requires some environment in 
which to perform. Thus our model operates within a simulated 
environment that mimics the movement of jointed limbs. We 
begin by describing the specific performance task we are 
addressing - to carry out a well-specified motor skill with as 
little error as possible. We then introduce the inputs that are 
given to the model: the environment, the simulated arm, the 
sensorimotor interface, and the desired behavior. Next we con- 
sider the abstract data types and operators used by the 
performance system. Finally, we describe the details of 
MAGGIE’s performance component, defemng discussion of 
learning issues until Sect. 4. 

3.1. The task of feedback control 
In a broad sense, our research goal is to develop a general 

*A more detailed description of MAGGIE’s performance 
mechanisms can be found in A performance model of human motor 
behavior by Iba and Langley (1987, unpublished manuscript). 
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computational model of human motor behavior. The perform- 
ance component addresses only a small part of this task; spe- 
cifically a simple form offeedback control (Wiener 1948). In 
this task, an agent is given some desired action sequence; it 
then manipulates its cffecton to cany out this sequence as 
accurately as possible, using its sensors to detect differences 
between the desired and actual m~vernent .~ The agent’s 
sensors measure certain variables in the environment, which 
are then compared with the desired behavior. This comparison 
produces an error signal, which the agent uses to determine 
future effector applications. These in turn lead to changes in 
the environment. 

For example, consider the task of painting the trim around a 
window. The desired behavior, or end result, is a coating of 
paint on the wood around the window but not on the glass 
itself. In this case, the brush can be viewed as the effector and 
the painter’s eyes are the sensors. Hem the significant variable 
measured in the environment is the gap between the edge of the 
paint and the glass window, measured at the point where the 
brush has most recently been applied. The error signal is 
obtained by observing this gap. If the paint is not reaching the 
edge of the window, commands are issued that move the brush 
closer to the glass as the stroke is in progress. Conversely, if 
paint begins to get on the glass, the brush is moved away from 
the window. 

3.2. Inputs to the model 
MAGGIE’s performance component incorporates only very 

general assumptions about the nature of the agent and its envi- 
ronment. This generality requires one to provide additional 
constraints in the form of four inputs: 

a simulated environment in which to operate, along with a 
set of objects existing in this en~ironment;~ 
an efectorfs) or arm, which can be manipulated by the 
agent and which has well-specified relations with other 
objects in the environment; 
a sensorimoror inregace, which handles communication 
between the agent and the environment; 
a desired behavior, against which to compare actual effec- 
tor movement. 

The simulated environment 
Rosenbaum (1985) has argued that motor behavior implies 

purposes and that purposes necessitate an agent. However, it 
makes no sense to refer to an agent in the absence of the envi- 
ronment in which it operates. One can conceive of alternative 
environments that obey different physical laws than operate in 
the real world, but since we are interested in human motor 
behavior we will consider a “standard” environment. 

A complete specification of an environment entails listing all 
the objects and their associated attributes. Interactions between 
objects must be defined, such as collisions. For the purposes of 
developing and testing our model, we have developed a simple 
environment that contains objects with position, length, and 
velocity, but that ignores mass, friction, and force. In the 

3Powers (1973) uses a somehwat different terminology. For 
instance, our “sensors” and “effectors” correspond to his “sensory 
functions” and “effector functions.” Similarly, our “desired action 
sequence” is the same as his “reference signal.’’ 

4Some of these objects will correspond to the agent’s efecrors, 
which it can use to manipulate the environment. 

experiments reported below, the only objects in the world are 
the components of the agent’s arm. 

’ Since we are interested in human motor behavior, we will 
only consider jointed effectors, which we will call a m .  
Although the components or links of the arm are specified as 
ordinary objects in the environment, the arm merits special 
treatment here because of additional attributes inherently 
necessary forjointed movement. A joint is a relation that exists 
between two objects that are attached to each other. 

In a more realistic world, a joint’s attributes would include 
the type ofjoint, its friction coefficient, its maximum force and 
velocity, and its range of movement. However, we have 
restricted ourselves to a simplified type of ball-and-socket joint 
having only two attributes - the maximum velocity and rota- 
tional limits. Currently, we restrict each joint’s range of 
motion to a hemisphere. In addition, rotation about the axis of 
a link is prohibited. 

7he arm 

7he sensorimotor interface 
An agent will have difficulty interacting with its environ- 

ment unless it can perceive that environment and control its 
effectors. In our simulation, both of these are accomplished 
through a sensorimotor interface. The ‘‘motor” component of 
the interface lets the agent control the motiOn of its arm. The 
‘ ‘sensory” component relays sensory information to the agent 
about the location of objects, including the arm. 

The transfer of sensory information can be viewed as a filter- 
ing operation. Essentially, the sensory filter takes a complete 
description of the world and passes a subset of this information 
to the agent. MAGGIE accepts two forms of sensory input: 
visual information giving the absolute positions and velocities 
of objects; and proprioceptive information giving the relative 
positions and velocities of the arm’s joints (with respect to the 
previous joint5). Visual information is given in a viewer- 
centered representation, whereas propnoceptive information is 
provided in a joint-centered representation. We describe both 
of these coordinate systems in more detail later. 

The motor interface can also be viewed as a fdter, since not 
all possible motor commands are legal in the simulated world. 
For instance, if the agent specifies an arm movement that 
would take the arm outside the allowed ranges, the interface 
“clips” the movement so that the resulting movement is 
within the allowed limits. Except for such cases, motor control 
amounts to simply setting the relative positions of arm com- 
ponents to the values specified by the agent in the joint- 
centered representation. We believe this is a reasonable 
simplification in light of the motor behavior literature indicat- 
ing that humans can “set” the positions of limbs without feed- 
back (Kelso 19826). 

Desired behavior 
Finally, an agent must be able to determine how well it is 

performing. The sensorimotor interface provides the position 
of the arm during a motion, but this must still be compared 
against some desired behavior. This comparison can be made 
easily if both the sensory information and the desired behavior 
are in the same representation. In MAGGIE, desired behavior 
is given as a sequence of sensory-level descriptions specifying 

5We define the previous joinr of a particular joint to be the adjacent 
joint which is closer to the base of the a m  in the kinematic chain. 
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the positions and velocities of the joints in viewer-centered 
coordinates. Associated with each description is a time value 
indicating when, with respect to the start of the movement, the 
sensory-level description should match the sensory input from 
the environment. This approach lets MAGGIE directly com- 
pare the desired behavior to the descriptions generated by the 
sensory filter. 

3.3. Representations and data structures 
Any computational model of motor skills requires some 

representation, and we will use the term motor schema for the 
memory structure that encodes the information necessary to 
carry out a particular movement. This is similar in spirit to 
Schmidt's (19826) use of the term. Unlike Schmidt however, 
we use the term motor program not in reference to a stored 
memory structure, but for a sequence of motor commands gen- 
erated dynamically from the motor schema. We will return to 
the distinction between the motor schema and the motor pro- 
gram shortly. 

To be more specific, we will define a motor schema as a 
sequence of ordered pairs or data points (DPl, DP2, . . . , 
DP,), where each data point, DPi = (ti, { ( J k ,  p,  v), . . . } 1, 
contains a time value ti and a set of 3-tuples. The data points, 
DPi, are ordered such that the time values, ti, are in an increas- 
ing sequence: ri < $ for i < j. Each 3-tuple is a set that con- 
tains: a joint name Jk, which identifies the joint described by 
the 3-tuple; a position p ,  which is the expected position of the 
joint in three-space at time t i;  and a velocity vector v, which 
describes the desired velocity of the joint upon reaching the 
position p. Each data point contains a set of such 3-tuples; 
each describes a different one of the effector's joints, though 
not all joints need be specified. The exceptions are the first and 
last data point in the schema, which must specify a 3-tuple for 
every joint. We assume that for any pair of unique 3-tuples in 
this set, Jk f J,. Because a motor schema specifies ann posi- 
tions at only selected points in time over the course of a move- 
ment, we refer to a schema as a sparse representation over 
time. 

Let us fufier define two different types of motor schemas. 
The first type, a viewer-centered schema, represents the posi- 
tion and velocity vectors using Cartesian three-space coor- 
dinates with the origin centered at the agent. In contrast, a 
joint-centered schema represents all positions and velocities in 
local joint-centered coordinates, where each local coordinate 
system is defined in terms of the previous joint. 

In the viewer-centered representation, all joints are de- 
scribed in terms of a single Cartesian coordinate system. We 
assume this information is available as visual feedback during 
execution of a skill; it can also be used to describe another 
agent's actions. Thus, this framework can be used for both 
recognition and monitoring purposes. In this scheme, the com- 
mon coordinate system is defined by an origin, set at the base 
(the first joint) of the effector, and the x ,  y, and z axes. Given a 
more complete description of the agent, one can imagine other 
origins for a viewer-centered schema, such as the agent's eyes. 
We do not believe the choices of origin and axes will affect 
performance, assuming a linear translation from the chosen 
origin to the base of the effector. 

In a joint-centered representation, the rotation of each joint 
is described in terms of its own spherical coordinate system. 
We assume this form of information is available as propriocep- 
tive feedback during execution; this representation can also be 

used to actually generate motor behavior. MAGGIE uses a 
modified spherical coordinate scheme to represent joint rota- 
tions in each associated coordinate frame.6 That is, for each 
joint and its reference coordinate system, a triple (Ox, Or, 9 )  
consists of two angles of rotation, Ox and O,, from the z axis 
about the x and y axis respectively, and a distance p from the 
origin.' 

The coordinate system for a particular joint is defined in 
relation to the previous joint. For instance, the position and 
orientation of the coordinate system for an elbow would be 
described in the reference frame of its associated shoulder 
joint. Likewise, the wrist joint's coordinate system would be 
described in relation to the elbow joint. The convention we use 
to fix the coordinate system of joint Ji relative to that of joint 
J i - ]  is as follows: the origin is placed at the end of the Ji-]th 
link; the zi axis is made colinear with the Ji-]th link;* the 
placement of the zi axis determines the normal for the xyi 
plane; the xi axis is placed within this plane such that the xzi 
plane is perpendicular to the xyi- plane; and the yi axis is fully 
constrained by the placement of the other two. Initially, when 
all joint rotations are zero, the respective x and y axis for each 
joint are parallel while the respective z axis are all colinear. As 
any particular joint is rotated, an equivalent rotation (with 
respect to our convention) is applied to successive coordinate 
frames. Any set of rotations applied to the joints will always 
result in the Ji-]th link determining the normal to the xyi plane 
and the direction of the zi axis. 

TABLE 1 .  Two representations of motor schemas for the straight-line 
task 

Joint-centered 

loo), ( 0, 

, -0.856, 

( JI ,  ( 0; 

loo), (0, 

60ur convention for orienting a coordinate frame is noticeably dif- 
ferent from the Denavit -Hartenberg notational convention common- 
ly used in robotics work. We have developed our own convention to 
allow spherical joints, whereas the Denavit-Hartenberg system 
allows only revolute joints. 

'This modified spherical coordinate scheme should not be confused 
with the standard spherical coordinates using triples of (p, 8 ,  4). The 
details of this method would introduce unwanted complexity to the 
current discussion but can be found in A performance model of human 
motor behavior by Iba and LangIey (1987, unpublished manuscript). 

81n cases where one of the arm's link components is not straight, we 
use the endpoints of the link to determine the z axis. 
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FIG. 1. Traces of the behavior defined by a viewer-centered and joint-centered motor-schema. The arm is shown at the appropriate positions for 
the times specified by the data points in the schemas (Table 1). 

Table 1 shows an example of both types of schemas. The 
viewer-centered representation example is the specification for 
the desired behavior given to MAGGIE for the experiments 
reported later in the paper. The joint-centered example is a 
direct translation of the desired behavior into the alternate 
representation scheme. While these numbers may be incom- 
prehensible, the underlying differences become evident when 
considering the movements they each respectively describe. 
Figure 1 presents the paths traced by MAGGIE’s arm for the 
respective motor schemas shown in Table 1. Each picture 
shows the arm in the positions specified by the data points 
given in the schema. One can see that the joint-centered 
schema yields quite different results from the desired behavior, 
although it specifies the same data points as the other. 

Although at first glance this dual representation might seem 
unnecessary, it lends considerably to the model’s explanatory 
power. We propose that humans often acquire an initial motor 
skill in viewer-centered terms by observing another person per- 
forming that skill. The person then translates this description 
into a joint-centered schema when he attempts to execute the 
skill himself. It is important to note that these two representa- 
tions have quite different behavioral characteristics. Each 
framework is able to specify any point in three-space, but 
when used by MAGGIE during the generation of behavior, 
they can produce quite different results. There are two factors 
acting in conjunction to cause this effect: the sparse representa- 
tion used to represent motor schemas, and the method used by 
MAGGIE to generate the positions for the intervening times. 
As a result, some motions can be much more easily described 
in one scheme than the other. For instance, the viewer- 
centered framework can represent a straight line with only two 
points, whereas a joint-centered schema would require an in- 
finite number of points. This differential power of the two 
representations predicts that some tasks will be more difficult 
to perform than others. 

The sparse representation of a motor schema seems plausible 
for storing motor skills in long-term memory, but to actually 
generate motor behavior one must specify the missing points. 

We will use the term motor program to refer to such a dense 
representation for a skill. A motor program can be viewed as a 
mathematical function that takes a time value as an argument. 
As output, it returns a set of triples defining, in local joint 
coordinates, the position for each joint at the given time. It is 
important to distinguish motor programs from joint-centered 
schemas. The latter specify the rotations and velocities of 
joints only at selected times; in contrast, motor programs 
specify joint rotations at every point in time. Such information 
can be generated dynamically from a joint-centered schema, as 
we discuss in the next subsection. 

3.4. The performance component 
Given a viewer-centered schema that describes some desired 

behavior, MAGGIE’s performance system attempts to carry 
out this behavior using a specified limb. This involves a 
number of processes. First, the viewer-centered schema must 
be translated to a joint-centered representation. The resulting 
schema must then be “run” by generating an executable motor 
program and carrying out the specified actions. Simul- 
taneously, the agent must monitor the resulting states, com- 
paring actual positions with the intended positions as given in 
the viewercentered schema. Execution and monitoring pro- 
ceed in parallel until an error is detected. At this point, the 
system initiates an error correction process to return the limb to 
the desired path. Below we consider each of these processes in 
more detail. 

From viewer-centered to joint-centered schemas 
We assume that the agent begins with a viewer-centered 

description of a motor skill, presumably learned by observing 
another’s actions or through problem solving. The first step in 
carrying out a motor skill involves applying an inverse kine- 
matic transformg to the viewercentered schema resulting in a 
joint-centered representation that can be directly executed. 
This transformation must be done serially across the joints of a 

q h e  details of this transformation are not important to this discus- 
sion but can be found in Wylie (1975). 
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limb, starting with the base joint and considering each succes- 
sive joint in tum. This process can be time-consuming, and we 
believe it is one of the factors contributing to the slow and 
awkward nature of newly acquired skills. With practice, the 
joint-centered schema becomes fixed in long-term memory. At 
this point, one can execute the skill without invoking the trans- 
formation process; thus one could perform the skill more 
smoothly. MAGGIE does not currently model the acquisition 
stage for joint-centered schemas, but transforms a viewer- 
centered dcscription into a joint-centered one initially and 
saves it. 

Executing the joint-centered schema 
Joint-centered schemas only specify the positions and 

velocities of the joints at selected points in time. Within our 
framework, the simulation of actual motor behavior requires 
the specification of either the relative locations or velocities for 
every joint at every simulated time step. Our motor program, 
as described above, satisfies this requirement since it generates 
the respective joint positions for every time value. MAGGIE 
does not store motor programs in memory; the system creates 
them in real time as it executes the skill. In our theory, this is 
accomplished by generating a spline for each joint between 
successive pairs of the points specified in the joint-centered 
schema.I0 During a movement, when the limb reaches the end 
of the spline segment between two data points, DPi- I and DPi, 
the latter becomes the source and the next point in the 
sequence, DPi+ I ,  becomes the target for the next spline. This 
method yields a smooth, continuous curve throughout the 
execution of the schema. 

Monitoring 
As we have seen, there is no guarantee that behavior gener- 

ated by the joint-centered schema will correspond to that speci- 
fied in the viewer-centered description. Thus, MAGGIE must 
have some means of detecting divergences, and this is the role 
of the monitoring process. In order to make the necessary com- 
parisons, the monitoring component uses the viewer-centered 
schema to generate a “pseudo” motor program. This program 
cannot be executed by effectors, but it specifies the desired 
position at each time during execution. When the difference 
obtained from this comparison becomes noticeable (i.e., 
exceeds a parameterized threshold), the monitor interrupts 
execution and invokes the error correction process. MAGGIE 
monitors for errors at a constant rate; this limits the speed at 
which it can execute a skill accurately, as we shall see shortly. 

Error recovery 
Once MAGGIE detects a significant divergence, it must still 

recover from that error. When invoked by the monitoring pro- 
cess, the error recovery mechanism applies a “burst of force” 
in a direction that will reduce the sue  of the error.ll Error 
recovery involves generating a correction function12 that modi- 

’ W e  assume that low-level neud circuitry can take relatively 
sparse inputs from a schema and generate such a motor program in 
real time. 

“This pmcess models the type of corrections that result from error 
detection at the brain level of the nervous system, and not corrections 
resulting from servomechanisms at the spinal level. 

‘*We use an inverted U type correction function (sin, parabolic, or 
absolute value) causing a gmdual change in the limb’s actual move- 
ment over the lifetime of the correction process. Note that this intro- 
duces another parameter - the type of correction function. Along 
with this, MAGGIE also allows the duration of the correction process 
to be adjusted. 

FIG. 2. Successive snapshots taken at regular intervals showing the 
movement of MAGGIE’s arm during the execution, monitoring, and 
error correction of the straight-line schema. 

fies the velocity of the arm for a short period of time. In the 
default condition, this function is generated such that the area 
under the curve is the same as the amount of error detected. 
This means that if the error remains constant, the path of the 
limb would return to the desired path after error correction has 
ended. The proportion of the area under the correction function 
to the size of the error can be adjusted by a compensation 
parameter. 

Depending on the circumstances, the adjustment of this 
parameter can produce undercorrections or overcorrections. 
The former occurs in cases where the uncorrected behavior 
was about to begin reconverging with the idealized path, but 
had barely exceeded the error detection threshold before this 
occurred. Since the original motor program would have 
returned to the desired path on its own, an overcorrection will 
result. In contrast, undercorrections will occur if the uncor- 
rected behavior is still diverging from the desired path. Such 
cases will require multiple calls to the error-recovery process. 

Figure 2 shows successive snapshots of MAGGIE’s arm 
during the execution of the straight-line schema. Each snap- 
shot was taken at constant intervals so that one can perceive the 
velocity of the arm at different stages of the movement. Notice 
that with the monitoring and error-recovery processes, per- 
formance approximated the desired behavior more closely than 
the joint-centered specification alone (right-hand side of 
Fig. 1). Further improvements can be achieved by learning but 
we will return to this after quantitatively testing the perfom- 
ance mechanism. 

3.5. Behavior of the performance system 
We have implemented our model of motor behavior as a run- 

ning FranzLisp program. Although the theory is independent 
of a particular arm instantiation, we have tested MAGGIE 
using a two-jointed arm with roughly human characteristics. 
Thus, the arm includes an upper arm and a foream, the former 
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FIG. 3. Increasing error as a function of increasing performance 
speed. 

rotating at a shoulder joint and the latter at an elbow joint. 
MAGGIE has been implemented to model motor behavior in 
three dimensions as described in the previous sections, but our 
tests to date have been run in two dimensions. 

Initial studies have focused on a skill that involves moving 
the hand through a straight line. We have already seen that 
such motions are easy to describe in viewer-centered coordin- 
ates, but that they are extremely difficult for a jointed arm to 
execute except in trivial cases (Hardy 1984). In a joint- 
centered representation, every joint must trace the path of an 
arc. Thus, MAGGIE can never completely achieve straight- 
line motion; it can only approximate such a path by stringing 
together a sequence of many small arcs, closely spaced in 
time. However, this requires learning, and in the current sec- 
tion we will limit our attention to performance phenomena. 

In Sect. 2, we noted that one of the most robust findings 
about human motor behavior involved a trade-off between 
speed and accuracy. Since MAGGIE can run motor schemas at 
different speeds, we can test the model’s ability to predict this 
trade-off. Figure 3 shows the results with the “straight-line” 
skill represented by the motor schemas of Table 1. Clearly, 
executing this schema at higher speeds leads to greater devia- 
tions from the desired motion, i.e., to lower accuracy.I3 The 
relation is approximately linear for the range examined, repli- 
cating the results reported by Schmidt et al. (1979). This effect 
emerges naturally from the constant rate of monitoring. The 
more quickly the system runs a joint-centered schema, the 
fewer times it is able to check for emrs  and the larger they 
grow before correction. 

We believe that this trade-off demonstrates the continuum 
between open- and closed-loop behavior. This continuum 
represents the amount of monitoring occurring during move- 
ments. When performing a skill slowly, one can make frequent 
adjustments, thus operating in a closed-loop mode. As the 
speed of the skill is increased, the performer can do fewer 
monitorings thereby moving the performance towards open- 

”We measure accuracy as the average deviation from the viewer- 
centered schema over the course of an execution. This score is com- 
puted by totaling the angular deviation at each joint and averaging 
over the total number of time steps simulated during that execution. 
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FIG. 4. Amount of error plotted for a range of compensation values. 

loop mode along this continuum. We address a number of 
other issues related to this in Iba and Langley (unpublished 
manuscript, see footnote 2). 

We have also noticed another intriguing regularity in 
MAGGIE’s behavior. Recall that the implementation contains 
a parameter for scaling the amount of correction applied to a 
given error. Different settings of this parameter lead to differ- 
ent responses to error. Frequently the model detects an error as 
the deviation is becoming progressively greater, and radical 
corrective action is in order. However, such a remedy can also 
result in overcompensation, leading the model to “overshoot” 
the desired position or trajectory. 

Figure 4 presents the effects on the model’s behavior as one 
alters the value of this parameter. When the scheme is run 
quickly (making monitoring infrequent), increasing the 
amount of correction may lead to a reduction in the average 
deviation from the desired path. However, even higher settings 
can actually produce worse performance at a given speed. For 
instance, when attempting to follow a straight line, the hand 
may instead follow a jagged line that cuts back and forth across 
the desired path. Although we did not plan the model to behave 
in this fashion, we believe it makes sense. When monitoring 
occurs frequently, the system makes only minor errors and 
needs only minor corrective action. A high setting for the 
correction parameter will cause the system to overcompensate, 
and this can lead to wild oscillations. 

MAGGIE also accounts for the transfer of motor skill 
between limbs. The model stores each joint-centered schema 
without reference to the particular limb involved. Thus, the 
system could take a schema designed for shoulder, elbow, and 
wrist joints and execute it on a different arm or even on a hip, 
knee, and ankle. However, to the extent that learning has fine 
tuned the schema for a given set of joints, performance will 
degrade drastically when it is run on limbs with different 
physical characteristics. We have not yet run tests to show the 
model predicts this behavior, but this is one of our priorities for 
future research. 

In summary, MAGGIE explains a number of well-known 
phenomena relating to motor performance. However, our main 
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concern is with learning. In the following section we describe 
the model’s learning components, along with its empirical 
behavior on this dimension and its relation to human motor 
learning. 

4. Improving joint-centered motor schemas 
Motor learning involves both the acquisition and the 

improvement of motor schemas. We envision a three-stage 
process: acquiring an initial viewer-centered schema through 
observation or problem solving; storing a joint-aentered 
schema by repeatedly transforming the viewer-centered repre- 
sentation; and improving the joint-centered schema through 
repeated practice. Although we ultimately plan to model each 
of these processes, our main results involve the final stage of 
improvement and we will focus on that process in the 
remainder of the paper. 

Let us reiterate the learning task we are attempting to model. 
Given an initial joint-centered schema that represents a motor 
skill, along with a viewer-centered schema for the same skill, 
modify the joint-centered schema so its behavior diverges from 
the viewer-centered description as little as possible. MAGGIE 
employs two interacting leaming mechanisms to improve its 
joint-centered schemas. In this section we describe these 
mechanisms, along with their behavior on the line-drawing 
task discussed earlier. 

4. I .  Motivations for learning 
Before describing the learning processes themselves, let us 

review the motivations for improving joint-centered schemas. 
Recall that MAGGIE’s mechanisms for monitoring and error 
recovery let it execute a joint-centered schema with a moderate 
level of accuracy. Given this ability, why should the system 
bother to alter its schemas? 

One obvious reason is that one prefers increased accuracy 
(with speed and attention held constant). That is, the ovedl  
error during the performance of a skill at a given speed should 
be smaller after learning has occurred. The error recovery pro- 
cess alone cannot accomplish this, but with sufficient learning, 
MAGGIE is able to mimic its viewer-centered schemas with 
arbitrary accuracy. 

A second reason is the desirability of executing a skill either 
more quickly or with less attention (i.e., in open-loop mode). 
As stated above, our theory assumes that there is an upper limit 
on the rate at which monitoring can occur. Similarly, our 
theory assumes that monitoring is a conscious process requir- 
ing scarce attentional resources. However, improving a given 
joint-centered schema should lessen reliance on monitoring 
and error correction. This should have two beneficial effects. 
Laming should let one cany out a skill more rapidly without 
losing accuracy. It should also let one execute a skill with less 
attention, freeing resources to cany out other tasks in parallel. 

Although monitoring and error correction give immediate 
aid in carrying out desired behaviors, leaming provides a 
longer-term solution. We have said that viewer-centered and 
joint-centered representations lead to different interpolated 
behavior, but leaming lets the latter approximate the former. 
For instance, one can simulate straight-line behavior with a 
joint-centered schema by adding a number of more densely 
spaced points to the schema, creating a sequence of very 
small arcs. 

Thus, our learning model relies heavily on the distinction 
between viewer-centered and joint-centered schemas and the 
different representational powers of these two frameworks. It 

also relies on the performance assumptions covered in the last 
section, specifically the mechanisms for monitoring and error 
recovery. This seems desirable; a learning system should not 
be independent of assumptions about representation and per- 
formance. 

4.2. Assumptions and learning operators 
The model makes a number of basic assumptions about the 

nature of the learning process. The main claims are: 

The model learns only when the errors are detected in the 
execution of a schema; MAGGIE is driven by failures rather 
than successes. 

Learning occurs after the trial during which errors 
occurred; this implies some memory for arm positions and 
velocities during the trial. We will call this the motor buffer. 

MAGGIE retains only one version of each joint-centered 
schema in its long-term memory; thus, it carries out a form of 
hill-climbing learning (Langley et al. 1987). 

With these constraints in mind, let us consider the model’s two 
operators for schema improvement. 

Recall that MAGGIE specifies a motor schema as a sequence 
of points, each describing the locations and velocities of a set 
of joints. This suggests two natural approaches to modifying 
joint-centered schemas: 

modifying one of the fields in an existing point for a par- 
ticular joint; or 

removing an existing point from the schema or adding an 
entirely new point. 

The first of these seems the less drastic action, since it leaves 
the basic structure of the schema unaltered. However, there 
may be limits to what can be accomplished by modifying 
numeric values; in such cases, one may need to revise the 
schema structure by adding or removing points. To review, 
each data point consists of a time value and a set of 3-tuples. 
Each 3-tuple consists of a joint identifier, a position vector, 
and a velocity vector. In principle, any of the values in a data 
point, except the joint identifier, may be modified; however, 
our experiments to date have only considered adjusting the 
velocities. Nor have we examined the deletion of points from 
schemas; in its current form, MAGGIE only adds points. 

TABLE 2. The learning algorithm 

1. Select the failure point in motor-STM with the largest emr. 
2. Find the best possible modification to the point values. 
3. Find the percentage improvement over the current fonn of the 

schema. 
4. If improvement > bias (should reflect density with respect to 

time), 
(a) Then alter the schema with best (velocity) alteration found in 

(b) Else add the selected failure point to the schema. 
step 2; 

4.3. MAGGIE’s learning algorithm 
We have seen that error detection invokes the e m r  recovery 

process, but it also triggers learning. Whenever the path of a 
joint diverges noticeably from the desired path, the monitor 
stores this “failure point” along with the currently desired 
point into the motor buffer. This lets MAGGIE delay learning 
until after the execution has been completed. 

Table 2 presents the model’s basic learning algorithm. Since 
a number of errors may occur in a given trial, the first step 
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involves selecting a failure point on which to base modifica- 
tion. In principle, one could use all errors noted in the trial to 
alter the schema. However, this would lead to much more 
rapid learning than observed in humans, so we limit the model 
to a single point. One explanation for this limit is that motor 
memory decays before additional points can be accessed. In 
any case, MAGGIE selects that failure point in the motor 
buffer with the largest error. We assume that larger errors 
require more processing than smaller ones and therefore are 
most easily available since they decay less rapidly. Thus, 
larger errors are reduced before smaller ones, giving a learning 
curve roughly similar to the power laws observed in human 
skill acquisition.14 

Once MAGGIE has selected a failure point, it must decide 
between its two basic learning operators. One could simply 
add a new point wherever an error was detected. Since points 
specified in the schema are generally guaranteed to be reached 
at their respective times, performance would improve. Further- 
more, the time between respective points would decrease, 
giving less occasion for deviating from the desired path. We 
have run experiments with this strategy and achieved good 
results (Langley ez al. 1987). However, adding a point to a 
schema is a more radical operation than modifying the values 
of an existing data point. Therefore, MAGGIE incorporates a 
bias factor that discourages the addition of new data points in 
favor of modifications to existing points. 

The current model only considers adjusting the values of 
velocity vectors. Furthermore, MAGGIE considers modifying 
only the two data points delimiting the segment of the schema 
containing the time of failure. That is, for the straight-line 
schema of Table 1, if the selected failure point was at time 11, 
then the second and third data points would be considered for 
modifications and would be said to “contain” the failure 
point. However, selecting among real-valued modifications 
still leads to an infinite branching factor, so we require some 
simplifying assumptions to help reduce the effective search 
space. We employ both an intelligent next state generator to 
propose a small number of possible alterations, and an evalua- 
tion function to select among the alternative modifications 
generated. 

For two data points, DP; and DP, containing the failure 
point, the amount of adjustment A applied to each is inversely 
proportional to their respective distances (in time) from the 
failure point. That is, the closer the failure point is to DPi, the 
larger the adjustment made to DP;’s velocity. Although this 
does not guarantee an optimal modification, it is a reasonable 
alteration based upon the limited information available from 
the motor buffer. The amounts of adjustment that are con- 
sidered are A; = Emi to DPi and Aj = Emj to DPj, where mi 
and mj are computed by the following: 

( 1 ~  - t i )  mi = - 
( t k  - 

and 

( f k  - f F )  

( f k  - 2; )  
m,, = - 

for failure point f F .  error vector E,  and the associated time 
values for DPi and DP,, zi and 2,. 

“This is certainly not the only explanation of power laws; we direct 
readers to Rosenbloom and Newell (1987) for an alternative computa- 
tional theory. 

Based on this calculation, MAGGIE considers four possible 
ways of pairwise incrementing and decrementing the two data 
points discussed above by their respective amounts. I s  

(DPi + Ami, DP, + Amj) 
(DPi - Ami, DP, + Amj) 

(DPi + Ami, DP, - Am,) 
(DP, - Am,, DP, - Am,) 

It may seem more straightforward to select the appropriate 
combination of adjustments by inspection of the error vector 
alone, but this is much more complicated than it appears. This 
results from the nature of the interpolation process used by the 
performance component and is considered elsewhere. l6 

Once the four combinations an? generated, MAGGIE evalu- 
ates each alternative by generating a partial motor program for 
each case. The system examines the predicted performance of 
each program at the failure point, selecting the combination 
that minimizes error.” If MAGGIE would proceed to compare 
this new partial motor program with the result of adding a com- 
pletely new data point, it would always favor the creation of 
new points. This is because the comparison is made at the 
same point that the new data point would be added, therefore 
revealing no error. It is for this reason that we have included a 
bias against this response. As long as the best of the four pos- 
sible modifications results in a percentage improvement 
greater than the bias factor, the modification is preferred. Only 
when none of the modifications considered can sufficiently 
improve the schema (at the time of failure), will a new data 
point be added to the schema. This bias factor has the effect of 
knocking the system out of local minima. 

4.4. Behavior of zhe learning system 
MAGGIE’s learning methods are independent of a limb’s 

dimensions and rotational constraints, but we have tested the 
system with the same arm described in Sect. 3. We have exam- 
ined the system’s learning behavior by running a number of 
experiments, again in two dimensions. We describe the results 
below, along with their relation to data on human motor 
learning. 

Naturally, we would expect that as MAGGIE detects errors 
and modifies its joint-centered schema, its performance will 
improve on later executions. Figure 5 shows the model’s aver- 
age divergence from the desired path on eight successive trials 
with the “straight-line” schema. The figure indicates that 
the system’s performance gradually improves with practice, 
modeling the basic phenomenon in human motor learning. 

As we mentioned before, improvement over time is not 
sufficient for a psychologically plausible model of motor leam- 
ing. The nature of MAGGIE’s learning mechanism theoret- 
ically leads to a power law leaming curve. This should arise 
from attending to the largest errors first, causing the most 
dramatic improvements in performance during early stages of 
practice. However, our preliminary results are inconclusive. A 
problem we face is that the reported human learning curves 
have measured performance either as the number of units pro- 
duced per unit time, or as the average time to completion of 

I5Here we use + and - loosely for notational convenience. We 
assume that appropriate velocity Vectors in the data point Structure are 
accessed and updated according to the arithmetic operator indicated. 

‘%a, W., and Langley, P. 1987. A performance model of human 
motor behavior. Unpublished manuscript. 

I’Another method would involve executing all four revised schema 
in their entirety and comparing their resulting overall deviations. 
However, this would be very expensive computationally and we find 
it unlikely that humans carry out such computations unconsciously. 
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task. We must find new ways to test MAGGIE since our 
results are given as average error and therefore are not directly 
comparable. We also need to be able to run leaming sessions 
over many more trials than we have to date. While we are not 
able to make strong claims at this time, the results displayed in 
the figure are encouraging. 

Our model of performance accounted for another robust 
finding: the trade-off between speed and accuracy. However, 
it seems natural to expect learning to affect this relation, and 
Fig. 6 shows how MAGGIE’s speed-accuracy trade-off 
changes with practice on the straight-line schema. As the skill 
level improves, the trade-off curve becomes flatter and even- 
tually disappears entirely. That is, modifications to the schema 
allow the system’s behavior to approximate the desired behav- 
ior even without monitoring. This means that MAGGIE can 
execute the schema at a higher speed - even though there are 
fewer chances for monitoring - without seriously decreasing 
its accuracy. ‘8 

Another experiment considered the effect of MAGGIE’s 
practice speed upon its learning rate; Fig. 7 shows the results. 
When learning at a high speed, performance improves for 
several trials and then stabilizes, but at a high error level. In 
contrast, slower practice leads to almost immediate asymptotic 
behavior but at a much lower e m r  rate.19 The slope of the 
learning curves for all speeds tested are approximately the 
same; the difference between them are how quickly they stop 
improving and at what error level this occurs. This is a result of 
the practice speed on the number of possible monitorings. 
Since MAGGIE’s learning is triggered by the monitoring pro- 
cess, there are fewer opportunities for improvement. This sug- 

‘!‘This constitutes an untested second prediction of the learning 
theory: the speed-accuracy trade-off should disappear with practice. 
Actually, it implies a third prediction as well: learning should produce 
a transition in skills from closed-loop processing to open-loop mode, 
in which feedback is unnecessary and a motor skill can be camed out 
accurately with little attention. To our knowledge, neither of these 
behaviors have been reported in the psychological literature. 

‘?his constitutes a fourth interesting and testable prediction about 
human motor learning: the speed at which a skill is practiced influ- 
ences both the learning rate and the limit of possible impmvements. 

FIG. 7. Average e m r  plotted as a function of practice speed and 
leaming trial. 

gests both an upper and lower limit on the effect, determined 
by the maximum and minimum number of possible monitor- 
ings. The lower limit occurs when the movement is so slow 
that the arm barely moves at all between monitonngs; no learn- 
ing would occur here because performance is already at the 
threshold of detectable errors. The upper limit arises when the 
speed of execution is so fast that the agent never gets a chance 
to monitor during movement; no learning would occur here 
either, since no failures would be detected. 

We have already discussed MAGGIE’s two learning mech- 
anisms and the bias parameter that determines which one will 
be applied in a given situation. This parameter suggested a 
final experiment, in which we examined the model’s leaming 
behavior for different values of the parameter. Figure 8 shows 
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the set of learning curves that result on the straight-line task. 
At one extreme, we set the bias very small; this led MAGGIE 
to learn exclusively by altering velocities. At the other 
extreme, giving the bias a large value led the model to learn 
only by adding points. Intermediate biases led to mixed learn- 
ing strategies. 

Naturally, MAGGIE begins at the same level of e m r  
regardless of the bias factor. The figure also reveals that the 
system arrives at essentially the same performance level after 
eight learning trials, but that the learning rates vary according 
to the bias. However, the relation is definitely not monotonic. 
Note that a “medium” bias yields a trough or canyon in which 
the learning rates are greater than for either high or low 
biases.20 

This behavior can be explained by supposing that overly 
conservative and overly rash learning strategies each have 
drawbacks. When the system is too reluctant to add new 
points, velocity changes give only minor improvement; when 
the system adds points too eagerly, it has little chance to fine 
tune the altered structure. The medium bias level led MAGGIE 
to add a new point every two or three trials, causing change in 
structure when needed but.also giving the system time to fine 
tune the restructured schema. 

In Sect. 2.2, we discussed a number of phenomena in the 
psychological literature that constrain plausible models of 
human motor behavior. Here we have presented the results 
from a number of experiments used to test MAGGIE. These 
results support the psychological plausibility of our theory 
although not all are conclusive. We have also presented a 
number of predictions made by the theory. We are continuing 
to look for results in the literature that would confirm or falsify 
these predictions. We are encouraged to further develop and 
test our system in light of these results and predictions. 

*We do not see how this aspect of MAGGIE’s learning behavior 
leads to any testable predictions about human motor learning. How- 
ever, it does help us undemtand the workings of the model itself. 

5. Discussion 
Now that we have described our theory of motor behavior 

and its implementation in MAGGIE, let us turn to its evalua- 
tion. We begin on a positive note, considering the theory’s 
successes in terms of both explained and predicted phenom- 
ena. We then examine its limitations, along with directions for 
future work that these suggest. 

5.1. Successes of the theory 
MAGGIE and the theory it implements make up a coherent 

computational theory of human motor skills. To our knowl- 
edge, it constitutes the only such theory in existence that 
accounts for observed phenomena. Roboticists have proposed 
a variety of computational methods for motor control, but 
these were never intended as models of human behavior. Simi- 
larly , psychologists have developed theories of motor behav- 
ior, but for the most part, these have not been instantiated in 
computational terms. The theory provides the first computa- 
tional explanation of motor performance and learning; this is 
its most basic contribution to cognitive science and artificial 
intelligence. 

Let us briefly review the phenomena that MAGGIE success- 
fully models. These are: 

the trade-off between speed and accuracy; 
the distinction between closed-loop and open-loop 
behavior; 
the transfer of motor skills across limbs; and 
the gradual improvement of motor performance with 
practice. 

In the model, these behaviors emerge from representational 
differences between the two types of motor schemas combined 
with the limited rate at which monitoring can occur. Learning 
improves the joint-centered descriptions and thus reduces 
reliance on monitoring and error correction. 

The same mechanisms lead to several predictions about 
human motor behavior. These include: 

a reduction in the speed-accuracy trade-off with practice; 
a gradual transition from closed-loop behavior to open- 

an effect of practice speed on learning rate and asymptotic 

Each of these predictions should be simple to test, and we look 
forward to feedback from experimentalists along these lines. If 
the predictions are accurate, this will be convincing evidence 
in favor of the theory. If not, then the manner in which they are 
disconfirmed will suggest directions in which to modify the 
model. 

We evaluate the relative worth of a theory based upon both 
the phenomena that it explains as well as the predictions that it 
makes. The predictions should not be a part of the phenomena 
to be explained. That is, one should take a set of phenomena 
and develop a theory to account for these. Then the designers 
should step back and ask “what other predictions of phenom- 
ena does the theory make?” Additionally, the complexity of a 
theory in terms of constraining parameters helps determine its 
value or promise. While our theory will not be the last word on 
motor behavior, it rates highly with respect to all three of these 
criteria. 

5.2. Limitations of the theory 

loop behavior; 

performance. 

Whether or not the above predictions are borne out, the 
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existing theory has a number of limitations that requirz exten- 
sions. For instance, there is mounting evidence for a prepara- 
tion stage prior to the onset of movement (Kelso 19826). This 
suggests that motor programs are generated before motion is 
initiated, whereas our current theory assumes it is generated 
dynamically. Another problem involves the componential 
transfer of motor skills, which suggests that such skills are 
organized hierarchically. The current theory only handles 
ski!ls at a single level and makes no proposal for their integra- 
tion into larger structures. 

We have also focused on motor skills that involve no objects 
other than the agent. This includes a wide class of skills, but 
much of human motor behavior involves interactions with 
other objects. In some cases, the agent has direct influence 
over the object during only part of the schema. For instance, in 
the first stages of throwing a ball one has immediate control 
over the ball’s location. However, once the ball is released, its 
trajectory is almost entirely a function of the arm’s earlier 
motion. In such cases, improvement requires taking into 
account knowledge of results (e.g., the quality of the ball’s 
flight), and the current theory makes no statement about this 
aspect of learning. 

Nor must all motor learning involve modification of joint- 
centered schemas; there are undoubtedly cases in which the 
initial viewercentered schema can be improved as well. For 
example, suppose the agent acquires a viewer-centered 
description by observing another agent perform some task. 
There are a number of ways such learning by imitation can 
lead to inaccurate schemas: attentional limitations may cause 
important details to be omitted from the learned schema; the 
imitated agent’s limbs may differ in important ways from the 
learner’s limbs; or the imitated agent may simply execute the 
skill poorly itself. In each of these cases, the learner would 
need to improve its viewer-centered description, either by 
observing the other agent many times or by reasoning from 
knowledge of results. 

Even in terms ofjoint-centered learning, we have limited our 
treatment to the transfer of skill from viewer-centered descrip- 
tions, but other approaches are possible. One might also create 
joint-centered schemas from proprioceptive sense data. For 
instance, one might use problem-solving methods to generate a 
sequence of motor schemas for achieving some goal. Informa- 
tion in the motor buffer (Sect. 4.2) resulting from the execution 
of this sequence could then be used as the basis for a new joint- 
centered description. Initially, this schema might not even 
have an associated viewer-centered schema, so the improve- 
ment techniques currently implemented in MAGGIE would 
not find much use. 

We mentioned earlier the process of translation between 
viewer-centered and joint-centered schemas, and that 
MAGGIE did not model this process in a satisfactory fashion. 
Nor have we explained h e  manner in which “mental practice” 
can improve performance without explicit practice. Finally, 
conscious experimentation may also play a role in human 
motor learning. We have seen that adding new points can 
knock a schema out of a local maximum, and extreme pertur- 
bations on locations or velocities might have a similar effect. 
These all seem fruitful directions for further research, and we 
plan to address them in future versions of MAGGIE. 

Most important, we must test the model’s behavior on addi- 
tional motor skills so we can evaluate its generality. The com- 
putational results described earlier in the paper were obtained 
with runs on the straight-line schema. We anticipate analogous 

results on other schemas, but we must test this prediction and 
carefully examine any differences that arise. Such differences 
need not invalidate the theory, since they may also arise in 
human behavior. But we must clearly run MAGGIE on a wide 
variety of motor skills and attempt to understand the full range 
of its behavior. 

5.3. Summary 
In this paper we have presented a computational theory of 

human motor behavior and its implementation in MAGGIE. 
The model assumes that two distinct representations underly 
motor skills, one based on viewercentered coordinates and the 
other using joint-centered descriptions. Each type of schema 
consists of a sequence of “points” that describe the locations 
and velocities of relevant joints at successive points in time. 
Motor behavior involves translating from the viewercentered 
scheme to the joint-centered scheme, and then interpolating 
intermediate points to produce actual behavior. 

We found that these two frameworks have different repre- 
sentational capabilities, each describing some motions better 
than the other. For this reason, the translation process is inher- 
ently imperfect and MAGGIE must continually monitor its 
behavior for deviations from the desired path. When errors 
become noticeable, the system invokes an error-recovery pro- 
cess that attempts to put the movement back on track. The 
model assumes a lower limit on the frequency of monitoring, 
and this limitation led naturally to the speed -accuracy trade- 
off and the distinction between closed-loop and open-loop 
behavior. 

MAGGIE learns only in response to a detected error. In 
some cases, the system alters the velocity of a point in the 
schema; in others, it actually adds a new point. Both learning 
methods ultimately lead to improvements in performance, 
letting the joint-centered schema more closely approximate the 
viewer-centered description. This learning process accounted 
for a number of observed behaviors and predicted additional 
phenomena that have not been reported in the literature. 

Our initial tests of the model have been encouraging, but 
more work remains to be done. We need to study MAGGIE’s 
behavior on a variety of motor skills, and we need to extend 
the system along a number of dimensions. We feel that 
MAGGIE is a good initial model, but we have far to go before 
achieving a truly general and robust theory of human motor 
performance and learning. 
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