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Machine Learning for Intelligent SystemsPat Langley�Intelligent Systems LaboratoryDaimler-Benz Research & Technology Center1510 Page Mill Road, Palo Alto, CA 94304(Langley@cs.stanford.edu)AbstractRecent research in machine learning has focused on su-pervised induction for simple classi�cation and rein-forcement learning for simple reactive behaviors. In theprocess, the �eld has become disconnected from AI'soriginal goal of creating complete intelligent agents. Inthis paper, I review recent work on machine learning forplanning, language, vision, and other topics that runscounter to this trend and thus holds interest for thebroader AI research community. I also suggest somesteps to encourage further research along these lines.IntroductionA central goal of arti�cial intelligence has long been toconstruct a complete intelligent agent that can perceiveits environment, generate plans, execute those plans,and communicate with other agents. The pursuit of thisdream naturally led many researchers to focus on thecomponent tasks of perception, planning, control, andnatural language, or on generic issues that cut acrossthese tasks, such as representation and search. Over theyears, the AI �eld has gradually fragmented into manydistinct communities, each concerned with a di�erentfacet of intelligent behavior.This separate-and-conquer strategy has some bene-�ts, since the researchers in each area can concentratetheir energies and make more rapid progress on theirown problems. But it has also led to di�erences in no-tation and terminology that make it di�cult to commu-nicate across paradigm boundaries. More important, ithas led each subcommunity to focus on problems thatare remote from the original goal of building a completeintelligent agent. Although there have been some ex-ceptions to this tendency, most AI research now bearslittle resemblance to the original vision for the �eld.In this paper, we focus on one area { machine learn-ing { that exempli�es this trend. Many have argued(e.g., Langley & Simon, 1981) that learning has a cen-tral role to play in intelligent behavior, and these are�Also a�liated with Institute for the Study of Learningand Expertise, 2164 Staunton Court, Palo Alto, CA 94306.

arguments are no less valid today than in AI's earlierdays. Yet research within the machine learning commu-nity has come to show little concern with the broaderissues of intelligent systems. We begin by characteriz-ing the form that this problem has taken in machinelearning, and then review some counterexamples to thetrend, showing that not all researchers have forgottenAI's original aims. We close by outlining some prob-lems that have yet to be addressed and suggest someactions that we can take to counter the fragmentationprocess, at least with respect to learning research.Developments in Machine LearningOver the past decade, machine learning has developedinto a well-de�ned discipline with clear goals that re-volve around improving performance with experience.The �eld has strong experimental, theoretical, and ap-plied arms, each with its own criteria for success. Mostimportant, machine learning has substantially broad-ened its vision to incorporate a wide range of methods,some having their origins in AI but others coming frompattern recognition and statistics.This developmental trend is certainly encouraging.In 1986, the journalMachine Learning 's �rst year, mostresearchers within the community acknowledged onlycertain methods, mainly those that learned logical rulesor decision trees, as their object of study. By 1996,this picture had changed drastically, with papers in thejournal and at the annual conference also dealing withmethods that learn weights in multilayer neural net-works, that store training cases in memory and gener-alize only at retrieval time, and that induce probabilis-tic descriptions rather than logical ones. Any methodsthat show evidence of improving performance with ex-perience are now considered fair game for the machinelearning researcher.This period has seen considerable advances in meth-ods for supervised learning for use on classi�cation andprediction tasks. For example, early induction methodstended to over�t noisy training data, but more recent



Machine Learning for Intelligent Systems 764techniques for decision-tree induction, neural networks,case-based learning, and probabilistic induction incor-porate schemes, such as pruning and weight decay, tocounter this e�ect. There has also been progress on ex-tending supervised methods to handle data with miss-ing values, to deal with domains having many classes,and to support relational descriptions (often called `in-ductive logic programming'). Other advances includemethods for improving predictive accuracy by takingdomain knowledge into account during induction, byreducing dimensionality through selecting useful fea-tures, and by combining classi�ers learned with di�er-ent methods or from di�erent training sets.There has also been considerable activity on `re-inforcement learning', which involves learning controlstrategies from delayed rewards. The typical formula-tion assumes a physical agent that makes reactive de-cisions about what action to take at each step, initiallyat random but with increasing selectivity as it gainsexperience. The agent can receive reward from the en-vironment on each step, but usually gets no informationuntil it has taken many actions. Most (though not all)work on this topic uses some form of temporal-di�erencemethod (Sutton, 1988), which propagates reward back-ward through time to better estimate the expected re-ward for taking a given action in a given state. Earlywork simply stored these scores in a large state-actiontable, but more recent studies have combined this ap-proach with induction techniques that generalize acrossstates to speed the learning process.Unfortunately, as the machine learning communityhas broadened on some dimensions, it has narrowed onothers. The present emphasis on supervised learningfor simple classi�cation and reinforcement learning forsimple reactive behaviors makes little contact with thewider goals of arti�cial intelligence. The distribution ofcurrent research in machine learning di�ers markedlyfrom that 15 years ago, when there was considerablework on learning for the core AI areas of natural lan-guage, planning, and perception. Concern with suchcomplex tasks has been replaced with emphases on in-creasing the accuracy of supervised learning methodsand making the learning rate in reinforcement learningmore practical.1However, this does not mean there has been less workon learning for natural language, planning, and percep-tion. There has actually been considerable growth inthe amount of research devoted to these topics, but this1Some reasons for these changes are clear: the UCI datarepository has made it very easy to run experiments with su-pervised methods, the corporate interest in data mining hasrewarded work on classi�cation learning, and the mathemat-ical elegance of temporal-di�erence methods has attractedmany adherents.

work has not been done by people who call themselvesmachine learning researchers. Rather, these e�orts aredue to researchers who specialize in natural language,computer vision, speech understanding, and planning.2Yet even within these problem-oriented communi-ties, there has been growing reliance on simple learningschemes. For example, within natural language, com-mon tasks include learning to determine (classify) thesense of a word from surrounding context and whereto attach a relative clause. Similar reformulations haveoccurred within the computer vision community, againleading to a focus on simple methods for supervisedlearning. Thus, both within the machine learning com-munity and elsewhere, we see increasing interest inlearning issues but a growing divide between the tasksaddressed and the traditional concerns of arti�cial in-telligence.Some Enlightened CounterexamplesFortunately, not all researchers have fallen prey to thistrend, and some continue to study learning within thecontext of the larger-scale tasks that seem necessaryfor intelligent agents. In this section we review someexemplary work along these lines, taking our examplesmostly from the machine learning community but or-ganizing them in terms of problem areas.Natural Language LearningOne important counterexample to the above trend isthe research program that Zelle and Mooney (1993,1996) have carried out on natural language. Whereasmost of the natural language community has embracedprobabilistic and statistical approaches that requirelarge corpora for learning, Mooney and Zelle have in-stead worked on learning condition-action rules usinginductive logic programming. Moreover, their Chillsystem relies not on N-grams or probabilistic grammarsfor their performance element, which make little con-tact with mainstream AI, but rather uses a shift-reduceparser. Such a parser operates like a production system,on each step selecting a rule that alters a parse tree ormodi�es a bu�er.At the outset, Chill's rules are overly general, al-lowing it to parse many ungrammatical sentences. Butthe system uses the parse trees associated with eachtraining sentence to distinguish between legal and il-legal applications of each rule, which become positiveand negative training cases. From these, Chill learnsmore speci�c variants of the original rules that, typi-cally, produce legal parses but not illegal ones. This ap-proach has much in common with early work on learn-2This trend has held less true in planning and problemsolving, where learning work has been about equally dividedbetween the planning and machine learning communities.



Machine Learning for Intelligent Systems 765ing search heuristics for problem solving (Sleeman, Lan-gley, & Mitchell, 1983), which used solution paths foundthrough search to generate positive and negative train-ing cases.Zelle and Mooney have tested this approach on cor-pora (sentences and hand labeled parse trees) used byresearchers in the statistical language community, pro-ducing comparable results. They have also adaptedChill to learn parsers that generate database queriesrather than syntactic parse trees. Finally, Thompson(1995) has developed another system, used in conjunc-tion with Chill, that acquires meanings for words usedin training sentences. Overall, their research programmakes stronger contact with core problems and con-cepts of AI than either the machine learning or thenatural language communities.Machine Learning for PlanningAnother core area of AI involves planning and problemsolving. The 1980's saw considerable work on this topicwithin the machine learning community, some of it col-lected in Minton (1993), but interest in the area hasdeclined in recent years. However, Veloso and her col-leagues (e.g., Veloso & Carbonell, 1993) have continuedan active research program on learning in planning, car-ried out within the Prodigy architecture. This workhas focused on derivational analogy, an approach tocase-based learning that indexes plan components bythe reasons they were selected and uses those reasonsto decide whether to reuse them on new problems.Unlike most research on the acquisition of planknowledge, Veloso has tested her ideas on large prob-lems from a di�cult logistics domain. The primarymeasure of performance has been the overall plan-ning time, but more recent work has also examinedability to improve the quality of the generated plans.Like most work on plan learning, Veloso's approachuses knowledge-guided means-ends analysis to producetotally-ordered plans. This stands in sharp contrastwith the wisdom of the AI planning community in fa-vor of partial-order planners. This di�erence has ledto experimental studies (Veloso & Blythe, 1994; Kamb-hampati, Ihrig, & Srivastava, 1996) that have clari�edthe strengths of these two approaches and their under-lying relationships.Machine Learning for Physical ControlAn intelligent agent must do more than perceive itssurroundings and plan its actions; it must also executethose actions in the world. Although there has beensome learning work within the robotics community, thishas focused mainly on constructing maps from sensordata (e.g., Pierce & Kuipers, 1994). Within machinelearning, some researchers have made progress on ac-

quiring models for robot actions, but often by trans-forming this task into a one-step regression problem(e.g., Moore, 1990). Reinforcement learning claims toaddress the acquisition of action strategies, but mostwork on that topic has dealt with learning discrete ac-tions in `grid worlds', with little evidence that it gener-alizes to more realistic domains (e.g., Sutton, 1988).However, work on reinforcement learning by Grefen-stette and his colleagues (Grefenstette, 1988; Grefen-stette, Ramsey, & Schultz, 1990; Grefenstette &Schultz, 1994) di�ers from this trend in some impor-tant respects. Rather than dealing with discrete do-mains, they have tested the ability of their Samuelsystem to learn control schemes in simulated contin-uous domains, using tasks like evading a heat-seekingmissile and navigating through a mine �eld. They havealso tested its methods on navigation tasks for phys-ical robots, such as obstacle avoidance and followingbehaviors. And they have examined the role of controllearning in both single-agent and multi-agent settings.Moreover, Grefenstette et al.'s approach di�ers frommainstream methods for reinforcement learning, whichestimate an expected reward for state-action pairs andthen generalize across di�erent states, thus treatingeach state as an independent classi�cation problem. Incontrast, Samuel searches through a space of controlstrategies, in which each strategy consists of condition-action rules that may interact in complex ways. Thesystem uses genetic algorithms to generate new can-didate strategies and directs search by evaluating thebehavior of each strategy on a set of training problems,measuring the overall behavior rather than focusing onindividual rules. This concern with explicit control pro-grams, and the domains on which it has been tested,makes this work more akin to traditional AI researchthan that on temporal-di�erence methods.Machine Learning for Computer VisionYet another example comes from the area of computervision, one of the earliest areas to consciously sepa-rate from mainstream AI. Learning research has be-come quite common within the vision community inthe past few years, as reported by Bowyer et al. (1994),but most work on this topic has more in common withpattern recognition than arti�cial intelligence. That is,the typical approach treats vision as a one-step clas-si�cation problem, a view that has gained increasingadherents, rather than as a multi-step process of imageunderstanding, which was the traditional AI stance.One researcher who has not abandoned the image-understanding paradigm, and who has studied learn-ing within this framework, is Draper (1993). Build-ing on a multi-level vision system developed by Han-son, Riseman, and colleagues, he viewed image under-



Machine Learning for Intelligent Systems 766standing as problem-space search in which the oper-ators transformed a raw image into a structured de-scription. This suggested the adaptation of techniquesfrom learning search heuristics to determine the condi-tions under which to select each visual operator. As inZelle and Mooney's work, he used solution paths foundthrough search to generate positive and negative exam-ples for use in training. However, rather than aiming atlearning legal `parses', Draper's concern was improvingthe e�ciency of the image-understanding process.More recently, Draper (1996) has shifted to usingtemporal-di�erence methods for reinforcement learn-ing. The idea here is that a particular sequence ofvisual operators is not right or wrong, but only bet-ter or worse than some other sequence. Thus, in-stead of learning all-or-none conditions for each opera-tor, his new approach combines backpropagation withtemporal-di�erence calculations to induce an evaluationfunction from delayed rewards (the scores for parsed im-ages). His system, which he has tested on both ground-level imagery and aerial photographs, then uses thislearned metric to direct best-�rst search through thespace of processed images. This multi-level approachdi�ers sharply both from most work in visual learningand most work in the machine learning community.Adaptive Advisory SystemsAlthough the central dream of AI is to construct an au-tonomous intelligent agent, a more realistic near-termgoal is to create intelligent aids for humans. In fact,much of the 1980's excitement about `expert systems'has now been replaced by excitement about `advisorysystems', which seem especially appropriate for manytasks that arise on the World Wide Web. As we havenoted elsewhere (Langley & Simon, 1995), such advi-sory systems provide ideal environments for learning,since each decision by the user to accept or override asystem recommendation generates a training case thatit can use to improve future behavior.Of course, we can divide advisory systems into thosefor simple prediction and those for more complex tasks,just as we can for autonomous systems. Many ofthe adaptive Web `agents' under development, includ-ing most recommendation systems and information re-trieval systems, �t the former bill and need not concernus here. But some work in this area has dealt withmulti-step problems that, although giving humans ul-timate authority, must still deal with many of the coreissues in arti�cial intelligence.Perhaps the best example of such work comes fromSchlimmer and Hermen (1993, 1994), who have cham-pioned the idea of self-customizing software that altersitself through interaction with its users. Their adaptivesystem for form �lling learns rules that predict default

values for some �elds based on the values of earlier ones,and thus greatly reduce keystrokes. Their advisory sys-tem system for note taking learns a grammar that pre-dicts the order in which users will enter information,thus helping them organize their thoughts. Schlimmerand Hermen's research has focused on these and othermulti-step tasks that feel much more like AI problemsthan information retrieval or product recommendation.New Problems and New MethodsClearly, we feel that machine learning researchers wouldbene�t from focusing more e�ort on the core problemsof AI, but we have seen that some scientists in this com-munity have continued to work on natural language,planning, control, and computer vision. Yet the role oflearning in some other areas of AI has been ignored al-most entirely both by machine learning researchers andby scientists in those areas.Perhaps the most glaring omission of this sort con-cerns tasks that are typically formulated as constraint-satisfaction problems. For instance, scheduling has re-ceived increasing attention in both experimental andapplied AI circles, and there exists a clear role for learn-ing heuristics to constrain search on large problems.But there has been almost no research within either themachine learning or scheduling communities along theselines. One exception is the work by Eskey and Zweben(1990), which drew on ideas from earlier approaches tolearning symbolic heuristics for problem solving. Morerecently, Zhang and Dietterich (1995) have adaptedmethods from reinforcement learning to acquire eval-uation functions for directing search. Both tested theirmethods on complex problems from a NASA schedulingdomain with some success.Con�guration, which is also usually viewed in termsof constraint satisfaction, is another likely area for theuse of learning, but again there has been almost nowork on this topic by researchers in either community.The literature includes a few exceptions: Schlimmer(1991) has used rule-induction methods to learn con-straints for error checking in computer con�guration,Henessy and Hinkle (1992) have used case-based meth-ods to learn acceptable layouts for convection ovens,and Reich and Fenves (1991) have adapted concep-tual clustering to characterize workable bridge designs.But given the growing applied interest in con�gura-tion tasks, the omission seems almost incredible. Day(1992) and Minton (1996) have used learning in otherconstraint-satisfaction tasks, but again this work is theexception rather than the rule.A broader issue, that cuts across many areas, con-cerns the need for learning at multiple levels. Natu-ral language processing, image understanding, and plangeneration, at least in their full form, all require compu-



Machine Learning for Intelligent Systems 767tation at di�erent levels of aggregation, yet most learn-ing research on these topics deals with only one level.For example, AI approaches to vision posit levels for ex-tracting edges, surfaces, primitive objects, and complexobjects. We need to develop new frameworks that letknowledge acquired at one level of aggregation supportlearning at higher levels. One of the best-establishedresults in machine learning is that appropriate knowl-edge can aid the learning process, yet this knowledgemust itself be acquired in some fashion. Developingsuch multi-level learning systems will require identify-ing places where knowledge comes into play at eachlevel and �nding sources of training data that can drivelearning.3 This in turn will require a relatively com-plete framework for natural language, vision, or plan-ning, and enough familiarity with those frameworks toembed learning.These new tasks suggest the need for new types oflearning methods, since it seems unlikely that super-vised techniques or temporal-di�erence methods willbe able to handle them alone. The cognitive psychol-ogy literature suggests one key: expert performance al-most always shadows expert memory, which is typicallyexplained through the acquisition of chunks (Miller,1956). Theoretically, chunks are hierarchical struc-tures made up from other chunks that, ultimately, aregrounded in primitive percepts or actions. Withinmachine learning, the notion of macro-operators (e.g.,Iba, 1988) come closest to the psychological notion ofchunks, but work on this topic has nearly died out inrecent years.4However, some research on language learning employsmethods for creating more exible hierarchical struc-tures. Wol� (1980), and more recently Stolcke andOmohundro (1994) and Langley (1995, Chapter 9) re-port algorithms that construct and merge nonterminalsymbols for context-free grammars, giving rewrite rulesat increasing levels of aggregation. Although they havetested this idea only on language-learning tasks, thebasic idea should also prove useful in learning problem-reduction rules for planning and in acquiring complexmotor skills. Such techniques have a quite di�erentfeel from methods for supervised concept induction andtemporal-di�erence learning.Another issue is that nearly all research in machinelearning focuses on induction, in which multiple expe-riences lead to general rules or laws. Yet some forms of3Laird, Pearson, and Hu�man (1995) report a rare ex-ample of such work, in which they examine learning at thereactive, deliberate, and reective levels in a simulated phys-ical agent.4Research on chunk creation within the Soar framework(Laird, Rosenbloom, & Newell, 1986) is still active, but theiruse of `chunk' di�ers from the standard sense in psychology.

human learning and discovery instead involve increasedunderstanding of single observations or events. The aimhere is to construct a model that explains some ob-servation in terms of existing domain knowledge. Forexample, upon observing the �rst pulsar, astronomerscreated a model that drew on their knowledge of starsand physics to explain its anomalous but regular behav-ior. There has been some work along these lines, suchas that by Shrager (1987) on mechanical devices andValdes-Perez (1992) on chemical reactions, but theseare exceptions in a �eld obsessed with induction ratherthan learning in its broader senses.Prospects for the FutureThe goal seems clear: we must �nd ways to encourageresearch in machine learning that makes closer contactwith the central goals of AI and, more broadly, achievethe same e�ect in other subareas. The path to this goalis much less obvious, but we can consider some actionsthat should take us in the direction of a more uni�eddiscipline.The problem is partly technical in nature. The AIcommunity has divided itself for a good reason { intel-ligence is a complex phenomenon and the strategy ofdivide and conquer make eminent sense in such situa-tions. In this case, AI has split into sub�elds that studybasic components of intelligence, such as planning andlanguage, and basic issues that cut across these compo-nents, such as representation and learning.Yet we know from the planning literature that thereis often more than one way to decompose a di�cultproblem. A viable alternative would be for AI to par-tition itself into sub�elds that focus on constrained do-mains that require integration of the traditional areas.Recent progress on mobile robotics, believable agentsthat operate in simulated worlds, and intelligent ad-visory systems have involved such integration e�orts,and their grouping under the `agents' banner is no ac-cident. However limited in scope, these systems di�erfrom most AI systems and attract attention becausethey actually do something in nontrivial environments.Another aspect of the problem is sociological. Forvarious reasons, scienti�c �elds have a natural tendencyto fragment into more specialized areas, and only whenthere exist pressures against such division is the processslowed or reversed. In principle, we could alter thistrend by changing the reward structure for AI research.For instance, we might bias paper and speaker selectionagainst those who obtain quick results on simple tasksin favor of those who place their work in a broadercontext, even though their results are more preliminary.However, this would be di�cult to implement, as manyreviewers are recent PhDs trained to believe in theirnarrow paradigm.
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