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ien
e and ObservationMa
hine learning is often 
hara
terized as a s
ienti�
 dis
ipline, and this suggests thatwe in
orporate knowledge of s
ien
e and its methods into the goals and te
hniquesof the �eld. Resear
h in AI and 
ognitive s
ien
e further suggests that one 
an views
ien
e as a sear
h through a spa
e of theories that requires two a
tive 
omponents {a generator and a test . The generator produ
es new theories or variants on existingtheories, whereas the test yields information 
on
erning the quality of theories. S
i-en
e in
orporates a variety of tests that guide the theory-generation pro
ess. Thesein
lude evaluation metri
s like elegan
e and internal 
onsisten
y, whi
h it shares withother intelle
tual endeavors su
h as mathemati
s and philosophy.However, s
ien
e diverges from philosophy in its emphasis on observation. Nomatter how elegant or 
onsistent, a theory that disagrees with the data must bereje
ted or improved. Observation a
ts as the most important fa
tor in the evaluationfun
tion that dire
ts s
ientists' sear
h through the spa
e of theories. Hawking (1988)holds a similar view on the evaluation of s
ienti�
 knowledge:A theory is a good theory if it satis�es two requirements: It must a

uratelydes
ribe a large 
lass of observations . . . , and it must make de�nite predi
tionsabout the results of future observations.Thus, he distinguishes between two sorts of observations: those made before thetheory is forwarded (whi
h it must 
over) and those made after its generation (whi
hit must predi
t). This distin
tion re
e
ts the two roles played by empiri
al results:the suggestion of new 
andidate theories and the evaluation of existing ones.The su

ess of physi
s, perhaps the most well-developed s
ienti�
 dis
ipline, should
larify the importan
e of observation. This �eld is primarily 
on
erned with under-standing the nature of the physi
al world { the stru
ture and pro
esses that governmatter and energy. This shared goal holds physi
s together as a �eld, but its progressderives primarily from its 
ontinued, repeated testing of theories against observation.Data play a 
entral role in sele
ting among 
ompeting theories, and anomalies suggestimprovements on in
orre
t theories. Over time, old theories are reje
ted and new onesemerge with higher predi
tive a

ura
y and greater generality.
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2. The Role of Experiments in Ma
hine LearningMa
hine learning is another s
ien
e, albeit a mu
h younger one than physi
s. Ourdis
ipline is primarily 
on
erned with understanding the 
omputational me
hanismsthat underlie learning, and this shared purpose holds ma
hine learning together as a
oherent �eld. Like physi
s, the su

ess of ma
hine learning as a s
ienti�
 dis
iplinewill rest on its ability to 
ombine theory and observation, using data to drive theorysele
tion and revision.The �eld of ma
hine learning fo
uses on intelligent artifa
ts { systems 
reated bythe resear
hers who study them. Thus, it 
onstitutes what Simon (1969) has 
alled as
ien
e of the arti�
ial . As su
h, there is a temptation to emphasize formal analysisand theoreti
al approa
hes. Indeed, 
onsiderable progress has re
ently o

urred onthe theoreti
al front,1 both in formalizing the nature of learning algorithms and in
hara
terizing their behavior. In this view, ma
hine learning is primarily a mathe-mati
al s
ien
e.Despite this progress, many learning algorithms are too 
omplex for formal analysis,at least at the level of generality assumed by most theoreti
al treatments. As a result,empiri
al studies of the behavior of ma
hine learning algorithms must retain a 
entralrole. Fortunately, the arti�
ial nature of learning algorithms allows 
ontrol over a widerange of fa
tors, making it more akin to experimental dis
iplines su
h as physi
s and
hemistry than to observational s
ien
es su
h as astronomy or so
iology. It is thisview { ma
hine learning as an experimental s
ien
e { that we pursue in this paper.The goal of s
ienti�
 experimentation is to better understand a 
lass of behaviorsand the 
onditions under whi
h they o

ur. Ideally, this will lead to empiri
al lawsand theories, as well as to tests of those theories. In our �eld, the 
entral behavior islearning. The 
onditions involve the algorithm employed, the domain knowledge, andthe environment in whi
h learning o

urs. La
king a formal analysis, an implementedlearning algorithm is ne
essary but not suÆ
ient for understanding { one should alsoattempt to spe
ify when it operates well and the reasons for that behavior. Su
hgeneralizations provide the raw material for forming and testing theories of ma
hinelearning. Moreover, they 
an suggest improved algorithms that exhibit more desirablelearning behaviors.As normally de�ned, an experiment involves systemati
ally varying one or moreindependent variables and examining their e�e
t on some dependent variables. Thus,a ma
hine learning experiment requires more than a single observation of a system'sbehavior; it requires a number of observations made under di�erent 
onditions. Inea
h 
ase, one must measure some aspe
t of the system's behavior for 
omparisona
ross the di�erent 
onditions.We have organized the remainder of the paper in these terms. We begin by ex-amining some dependent variables that 
an be used in the experimental study oflearning algorithms. After this, we address two broad 
lasses of independent vari-1. Kearns, Li, Pitt, and Valiant (1987), Dietteri
h (1990), and Haussler (1990) provide informativereviews of progress in the area of learnability theory.
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ables { aspe
ts of the algorithm and aspe
ts of the environment. Finally, we 
onsidersome issues in the design and exe
ution of experiments. Many of our suggestions aresimilar to the ex
ellent points made by Cohen (1991) in his dis
ussion of arti�
ialintelligen
e, but they seem worth instantiating for the �eld of ma
hine learning.3. Dependent Measures of LearningMost de�nitions of learning rely on some notion of improved performan
e. Thus, var-ious performan
e measures are the natural dependent variables for ma
hine learningexperiments, just as they are for studies of human learning. Other measures, like`understandability' of the a
quired stru
tures, may also be informative, but these arenot relevant unless a

ompanied by performan
e improvement.2 In some 
ases, intu-itively plausible learning methods a
tually lead to worse performan
e (Minton, 1985),so performan
e measures are 
entral to evaluating almost any learner's behavior.3.1 Measures of Performan
eMany measures of performan
e are possible. For supervised 
on
ept indu
tion tasks,in whi
h ea
h instan
e has an asso
iated 
lass name, the most obvious metri
 isthe per
entage of 
orre
tly 
lassi�ed instan
es (Quinlan, 1986). One 
annot use thisdependent variable for unsupervised indu
tion tasks like 
on
eptual 
lustering, sin
eno 
lass name is available. However, one 
an repla
e it with a more general measure {the ability to predi
t a missing attribute's value, averaged a
ross all attributes; Fisher(1987) refers to this performan
e task as 
exible predi
tion.More 
omplex domains require more sophisti
ated measures of performan
e. Forgrammar-indu
tion tasks, one 
an re
ord the per
entage of 
orre
tly parsed senten
esand the per
entage of 
orre
tly reje
ted non-senten
es. For problem-solving domains,one 
an examine the per
entage of problems solved or the quality of the resulting so-lution paths (Langley & Drummond, 1990). One 
an also measure the total CPU timeor number of nodes 
onsidered during sear
h (Minton, 1985). The last two metri
sare 
on
erned with eÆ
ien
y rather than 
orre
tness, and thus seems appropriate forexplanation-based approa
hes to learning, whi
h have been largely 
on
erned withthe 
ompilation of knowledge rather than its a
quisition (Mit
hell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986).Given a parti
ular performan
e 
riterion, one must implement this measure in somefashion. In nonin
remental settings, one 
an present the learning system with a train-ing set and then evaluate its performan
e on a separate test set. This is an importantmethodologi
al point. The goal of learning is typi
ally to use a
quired knowledgeto aid behavior in novel situations, not on problems that have been en
ountered inthe past. Also, be
ause any given set of instan
es may not be representative of the2. As in psy
hology, we make a 
lear distin
tion between performan
e { an agent's behavior at a giveninstant in time { and learning { the 
hange in an agent's performan
e over time. In this framework,the phrases learning performan
e and performan
e of a learning system are oxymorons.
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domain, it is important to average over the results of runs on many sets of trainingand test problems that have been sele
ted randomly from those available.3One 
an use a similar s
heme to study in
remental systems, whi
h pro
ess oneexperien
e at a time. In this 
ase, one presents training instan
es one at a time and,after every nth instan
e, turns learning o� and runs the system on a separate testset. Alternatively, one 
an treat ea
h instan
e �rst as a test datum and then as atraining datum, but this requires that one run the system more times. In either 
ase,the result is a learning 
urve that shows 
hange in performan
e as a fun
tion of thenumber of instan
es en
ountered. Although learning 
urves are informative, one 
analso 
ondense this information into more su

in
t summary measures, su
h as theasymptoti
 performan
e and the number of instan
es needed to rea
h this asymptote.When studying in
remental methods, it is important not only to average over dif-ferent training and test sets, but also over di�erent orders of the training instan
es,sin
e this 
an in
uen
e the 
ourse of learning in most in
remental systems. However,in some 
ontexts a resear
her may be interested in examining order e�e
ts them-selves, in whi
h 
ase he or she should systemati
ally vary this fa
tor like any otherindependent variable.3.2 Performan
e in Classi�
ation DomainsFisher (1987) has des
ribed Cobweb, an in
remental unsupervised algorithm forindu
ing probabilisti
 
on
epts. The system organizes its a
quired knowledge as ahierar
hy of 
on
epts, whi
h it modi�es with ea
h training instan
e. However, our
on
ern here is not with Fisher's algorithm but with experimentation, so let us 
on-sider a re
ent study of this system by M
Kusi
k and Langley (1991). Figure 1 presentsa learning 
urve for Cobweb in a parti
ular 
lassi�
ation domain.The data used in this study were 
olle
ted by S
hlimmer (1987) from the Congres-sional Quarterly . They des
ribe votes of the 435 members of the 1984 U.S. House ofRepresentatives on 16 issues, su
h as aid to El Salvador, funding for the MX missile,and duty-free exports. Thus, there are 435 instan
es, ea
h 
onsisting of 16 Booleanattributes that spe
i�es whether a given House member voted `yea' or `nea'. Ea
hinstan
e also falls into one of two 
lasses, of whi
h 267 were Demo
rats and 168 wereRepubli
ans. Although Fisher's system was designed for unsupervised tasks, it 
analso learn from su
h supervised data, so the dependent measure here was predi
tivea

ura
y on the 
lass label, rather than Fisher's measure of 
exible predi
tion.M
Kusi
k and Langley presented Cobweb with a random sample of 100 traininginstan
es from this domain and tested it on a separate set of 25 randomly sele
tedinstan
es. After ea
h training 
ase, learning was disabled and the system was askedto predi
t the 
lass label for ea
h test 
ase. The per
entage of 
orre
tly 
lassi�ed3. One 
an a
hieve similar e�e
ts through 
ross-validation studies, in whi
h one iterates throughea
h of N available instan
es, in ea
h 
ase running the system on the other N � 1 instan
es andusing the sele
ted instan
e to test performan
e. One then averages the results for all N runs toestimate typi
al performan
e.
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Figure 1. Learning 
urve for Fisher's Cobweb algorithm on Congressional voting re
ords, asreported by M
Kusi
k and Langley (1991).instan
es was re
orded, learning was enabled, the system was presented with thenext training instan
e, and the 
y
le 
ontinued. The learning 
urve shown in Figure1 was averaged over ten runs based on di�erent random orderings of the trainingdata. Thus, ea
h point on the 
urve shows the average per
entage of the test set thatCobweb 
orre
tly 
lassi�ed.The shape of the 
urve reveals that most learning o

urs rather early. Asymptoti
a

ura
y is approximately 92%, yet Cobweb rea
hes the 85% level after fewer thanten training instan
es. The system remains stable at this point for some time, thenrises to above 88% around 20 instan
es. Slight improvements o

ur with additionalinstan
es, but the most important learning seems 
omplete by this point. Theseresults 
ontradi
t some 
laims (e.g., Mit
hell et al., 1986) that indu
tive instan
esrequire very many instan
es to a
quire useful knowledge. But it also suggests thatthe behavior of House members may be quite regular and thus simple to indu
e. Asa result, it 
an be dangerous to draw 
on
lusions about the behavior of a learningalgorithm from studies with a single domain. We will return to this issue later.3.3 Performan
e in Problem-solving DomainsLearning 
urves 
an also be used to examine performan
e improvement in problemsolving. Let us 
onsider a study by Grat
h (1991) using a redu
ed version ofProdigy-EBL (Minton, 1990), a well-known and su

essful algorithm for a
quiring sear
h-
ontrol rules. The learning system employs an explanation-based method to transformproblem-solving tra
es into rules for sele
ting operators, states, and goals duringplanning. Minton's system then uses these rules to 
onstrain sear
h on new problems.
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Grat
h's study uses CPU time as the measure of problem-solving performan
e.One 
ould examine the number of sear
h nodes 
onsidered in solving problems, butas Minton has shown, the amount of sear
h is only one fa
et of problem-solvingeÆ
ien
y. His de�nition of the utility of a
quired knowledge also in
ludes the 
ost ofapplying that knowledge in 
ontrolling sear
h, and CPU time takes this into a

ount.Langley and Allen (in press) use a related measure, the total number of uni�
ationsrequired to solve a set of problems, whi
h is less dependent on implementation andma
hine. They also examine both sear
h nodes and mat
h 
ost in an attempt todetermine the sour
e of power or diÆ
ulty.The independent variable in Grat
h's experiment is the number of training problemson whi
h the system has pra
ti
ed. He generated 220 problems from a spe
ial variantof the blo
ks world (des
ribed by Etzioni, 1990), dividing these into 100 trainingtasks, 20 `settling' problems, and 100 test 
ases. After every ten training problems,Grat
h disabled the Prodigy's explanation-based learning 
omponent and ran thesystem on the settling problems, whi
h it used to gather statisti
s about the utility ofindividual 
ontrol rules. During this stage, Prodigy deleted rules that appeared toin
rease the overall 
ost of planning. After this, the experimenter disabled this fa
etof learning as well and measured the CPU time required to solve all the test problems.Figure 2 shows the learning 
urve for this domain. The times are averaged overten random orderings of the training and settling problems, sin
e order e�e
ts 
ano

ur in problem-solving domains as easily as in 
lassi�
ation tasks. The results areintriguing. The sear
h-
ontrol knowledge that Prodigy a
quired a
tually in
reasesits problem-solving time. This begins to de
rease after the initial large rise, but itnever quite returns to the level that existed before learning. Presumably, this e�e
to

urs be
ause the 
ost of mat
hing their 
omplex 
onditions more than o�sets thesavings due to redu
ed sear
h, even though the settling phase was designed to avoidthis problem.For our purposes, these results demonstrate the 
lear need for experimental stud-ies of learning's e�e
t on performan
e. Without su
h evaluation, one 
annot knowwhether learning is a
tually bene�
ial. With su
h experiments, one 
an identify thesour
e of the degradation and modify the learning s
heme to improve performan
e.Fortunately, this is not the 
omplete story on Prodigy; in fa
t, Etzioni 
arefullydesigned this parti
ular variant of the blo
ks world to en
ourage Prodigy to a
quireexpensive sear
h-
ontrol rules. We will return to this point in Se
tion 5.Segre, Elkan, and Russell (1991) have noted an important 
ompli
ation in the ex-perimental study learning in problem-solving domains. Most problem solvers in
ludesome 
omputational limit and give up on a problem when they ex
eed it. Thus, re-porting only eÆ
ien
y results 
an be misleading; it is essential to in
lude informationabout the per
entage of test problems that the system has solved. Grat
h was 
arefulto use only problems that Prodigy 
ould solve within its 
omputational limits, butthis may not be pra
ti
al for some real-world problems. Also, in some domains, thequality of problem solutions 
an also be important. Langley and Drummond (1990)suggest some ways in whi
h to instantiate this dependent variable.
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Figure 2. Learning 
urve for a redu
ed version of Prodigy on problem-solving tasks from avariant of the blo
ks world, as reported by Grat
h (1991).4. Varying the Learning MethodOne of the most diÆ
ult problems 
onfronting psy
hology is teasing apart the relativee�e
ts of heredity and experien
e, of `nature' and `nurture'. Ma
hine learning is morefortunate, in that it 
an experimentally 
ontrol a learning system's `innate' features(nature) and the training instan
es it en
ounters (nurture). Here we examine methodsfor evaluating the e�e
t of system 
hara
teristi
s, delaying the role of experien
e untilthe following se
tion.The obvious way to examine the in
uen
e of system features on behavior is to 
om-pare di�erent algorithms on the same task. That is, one runs two or more learningsystems on a given domain, measures their performan
e on the same test 
ases, and
ompares the results. Until re
ently, su
h 
omparative studies were rare in the liter-ature, but now they have be
ome almost the default, and the availabilty of standarddatabases has provided a variety of domains to use in su
h experiments.44.1 Gross Comparisons of Learning MethodsComparative studies 
ome in a variety of forms. If one's goal is a 
omputationalmodel of human learning, then one should 
ompare the algorithm's behavior withthat of human learners. For example, 
hildren pass through a number of `stages'in their a
quisition of language, and one 
an 
ompare the model's learning 
urves4. In fa
t, most of domains we mention in this paper are available by ftp from i
s.u
i.eduusing the a

ount and password anonymous. The various data sets reside in the dire
torypub/ma
hine-learning-databases.
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Table 1. Per
entage a

ura
ies and training times for three indu
tion algorithms in diagnosingsoybean diseases (Shavlik, Mooney, & Towell, 1991).Algorithm A

ura
y A

ura
y CPU Time(Training) (Test) (Training)Per
eptron 100.0 � 0.0 92.9 � 2.1 35.8 � 5.2ID3 100.0 � 0.0 89.0 � 2.0 161.0 � 8.9Ba
kprop. 99.9 � 0.2 94.1 � 2.5 5260.0 � 7390.0with that of 
hildren (Langley, 1982). Similarly, a model of skill a
quisition shoulda

ount for the widely observed `power law' of learning (Rosenbloom & Newell, 1987).Many fa
tors a�e
t human learning, making its experimental study diÆ
ult, but thepsy
hologi
al literature is �lled with studies awaiting 
omputational explanations.More often, a ma
hine learning resear
her is interested in an algorithm's behaviorfor its own sake. However, even when studying an individual learning method, itis best to pla
e that method's behavior in 
ontext. One 
an usually 
ompare thesystem's performan
e to that of a `straw algorithm' that uses a simple-minded strat-egy. For instan
e, in 
lassi�
ation domains one 
an use an algorithm that predi
tsthe most frequently o

urring 
lass. If this 
overs 90% of the instan
es, then a moresophisti
ated learner that a
hieves 91% a

ura
y is not impressive, and should be ex-amined for ways to improve its learning ability. This approa
h is di�erent from usinga nonlearning performan
e system to establish a baseline, but the spirit is similar.Shavlik, Mooney, and Towell (1991) provide an ex
ellent example of 
omparingalternative learning methods on a diagnosti
 task originally reported by Reinke (1984).The goal is to 
lassify soybean plants into one of 17 di�erent disease 
ategories basedon 50 nominal (symboli
) attributes, su
h as weather, time of year, and 
hara
teristi
sof leaves and stems. There are 17 examples of ea
h disease, giving a total of 289 
ases.Shavlik et al. randomly sele
ted two-thirds of these as training instan
es, reservingthe remainder as test 
ases. They averaged their results over ten su
h partitions ofthe soybean data set.The authors examined the behavior of three algorithms on this domain. The Per-
eptron algorithm (Rosenblatt, 1962), one of the simplest forms of 
onne
tionistlearning methods, represents knowledge as a single linear threshold unit. This resultsin the well-known limitation that it 
an only dis
riminate 
on
epts that are linearlyseparable, that is, whi
h 
an be separated by a single hyperplane drawn throughthe instan
e spa
e. Thus, Shavlik et al. in
luded this method as a straw algorithm.However, they also studied the behavior of Ba
kpropagation (Rumelhart, Hinton,& Williams, 1986), a more popular 
onne
tionist te
hnique that supports learningin multi-layer networks. Finally, they examined Quinlan's (1986) ID3, a widely-usedalgorithm for indu
ing de
ision trees.
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Table 1 summarizes the behavior of these indu
tion algorithms on soybean domainalong three dimensions { 
lassi�
ation a

ura
y on the training set, a

ura
y onthe test set, and training time (measured in CPU se
onds). All systems a
hieveperfe
t a

ura
y on the training set, but only the Per
eptron method, whi
h haslimited representational power, might have performed poorly on this front. A systemthat simply remembers all observed instan
es 
ould fare as well; this is the reasona

ura
y on training 
ases is seldom useful. As expe
ted, Ba
kpropagation requires
onsiderably more 
omputation than either ID3 or the simpler 
onne
tionist s
heme.This is not a performan
e measure but an indi
ation of learning 
ost. Nevertheless,it 
an be an important fa
tor on sizable domains, and may be worth reporting.The surprise 
omes when we examine 
lassi�
ation a

ura
y on the test 
ases. ThePer
eptron method appears to perform slightly worse than Ba
kpropagation,but it does mu
h better than expe
ted given the abuse it has taken over the years (e.g.,Minksy & Papert, 1969). Even more unexpe
ted, this te
hnique a
tually has highera

ura
y than ID3, whi
h employs a mu
h more sophisti
ated indu
tion te
hnique.The straw program refused to be blown over in this domain, suggesting it deservesmore attention than it has traditionally re
eived. However, it would be premature to
on
lude that one te
hnique is superior to another based on their behavior in a singledomain, as we will argue in Se
tion 5.Note that the table presents not only the means for ea
h 
ombination of algorithmand dependent measure, but the standard deviations as well. One 
an use this in-formation, together with the number of runs, to determine the probability that theobserved di�eren
es are due to 
han
e. Shavlik et al. report that, using a t test,the di�eren
e between the Per
eptron and ID3 a

ura
ies is signi�
ant at the 0.01level. This means that the probability is greater than 99% that this di�eren
e didnot o

ur by 
han
e. However, they also report that the apparent di�eren
e be-tween Ba
kpropagation and Per
eptron is not signi�
ant at this level. In theabsen
e of additional eviden
e, one must 
on
lude that they are e�e
tively equivalenton this domain. Signi�
an
e tests are espe
ially important in 
omparative studiesand, although they are reported in few of the studies we will des
ribe, we en
ourageresear
hers to use them whenever possible.4.2 Parametri
 Studies of Learning MethodsGiven the 
omplexity of many learning algorithms, one may not be satis�ed with
omparisons between entire systems. The goal of experimentation is not to blindlylabel one method as superior to another, but to understand the reasons for behavioraldi�eren
es. Finer-grained studies 
an be very useful in pursuit of this end.An obvious approa
h is to examine the e�e
t of parameters o

urring in a system.In su
h 
ases, one 
an determine the importan
e of a parameter on algorithm behaviorby systemati
ally varying its settings and observing the results. Ideally, behavior willbe `a

eptable' within a wide range of parameter values, with the system's behavior
hanging slowly as the parameter varies. Alternatively, one might identify an optimalsetting that holds a
ross di�erent domains.
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Clark and Niblett (1989) provide an example of a parametri
 study. They des
ribeCN2, an algorithm that 
ombines aspe
ts of both Quinlan's (1986) ID3 and Mi
halskiand Chilausky's (1980) AQ11. The system 
arries out a beam sear
h through a spa
eof rules, guided by an evaluation fun
tion based on information theory. On
e it hasde
ided on a rule to 
over some training instan
es, it removes these and iterates to�nd additional rules. Be
ause CN2 uses a statisti
al test to determine when to stopadding 
onditions and rules, it should be able to avoid over�tting the training datain noisy domains.However, any statisti
al test requires one to spe
ify some level of signi�
an
e formaking de
isions. Clark and Niblett ran CN2 with di�erent signi�
an
e levels on amedi
al diagnosis task that involved 
lassifying patients as either healthy or havingsome form of lymph 
an
er. They 
arried out �ve runs on this domain, in ea
h onerandomly sele
ting 70% of the 148 instan
es as training 
ases and the rest as test 
ases.Using 90% as the signi�
an
e level, CN2's average a

ura
y on the test instan
es was78%. In 
ontrast, at the 95% and 99% levels it was 81% and 82%, respe
tively. Thus,the parameter setting appears to have some e�e
t, but the di�eren
e is not a majorone. Of 
ourse, one 
annot tell the a
tual amount of noise in su
h a real-world domain,as we dis
uss further in Se
tion 5.Robertson and Riolo (1988) report another parametri
 study, in this 
ase using ageneti
 algorithm. This 
lass of methods retains a number of rules in memory, whi
h
ompete for the 
han
e to generate o�spring through operations analogous to geneti
mutation and 
rossover. The authors hypothesize that one fa
tor in geneti
 learningis the number of 
opies retained of a given rule. Thus, they test their CFS systemwith di�erent limits on this number, measuring its behavior on a task that involveslearning to predi
t sequen
es of symbols. The results suggested a `U-shaped' 
urve,in whi
h performan
e in
reased with the number of 
opies allowed, but only up to a
ertain point, beyond whi
h it dropped again. Dete
ting su
h regularities 
an let one�ne tune a learning system to in
rease its learning rate or asymptoti
 performan
e.4.3 Lesion Studies of Learning ComponentsParametri
 studies are not the only means of exploring the sour
es of power in anintelligent system. One of the most 
ommon te
hniques in neuros
ien
e involves theex
ision of a well-de�ned area of the brain to determine its role in behavior, and thereis no diÆ
ulty in adapting this notion to the study of artifa
ts.Many ma
hine learning systems 
ontain a number of independent 
omponents, andea
h 
omponent's usefulness 
an be studied through `lesion' experiments.5 In otherwords, one runs the system with and without a given 
omponent, measuring thedi�eren
e on some performan
e dimension. If a 
omponent does not aid the overalllearning pro
ess, then it 
an be safely omitted from the system.For example, S
hlimmer (1987) des
ribes a lesion study using an arti�
ial task thatinvolves predi
ting the output of a 1 � 2 multiplexer. He designed this experiment5. Cohen and Howe (1988) have referred to su
h experiments as ablation studies.
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Figure 3. The e�e
t of lesioning Stagger's Boolean me
hanism for 
reating new 
on
eptual
omponents (S
hlimmer, 1987).to evaluate the relative impa
t of two separate learning 
omponents in his Staggersystem. The �rst 
omponent assigns weights to the various 
omponents in a mannerreminis
ent of the Per
eptron algorithm, but using information about 
onditionalprobabilities to speed learning. The se
ond 
omponent augments this pro
ess byforming logi
al 
ombinations (
onjun
ts, disjun
ts, and negations) of features thathave high diagnosti
 power, whi
h are then used by the weight-learning routine.Figure 3 presents the learning 
urves for the two experimental 
onditions, whi
hdemonstrate the advantage of augmenting weight learning with a method for intro-du
ing Boolean features. In this 
ase, the main di�eren
e lies in Stagger's asymp-toti
 a

ura
y, whi
h is mu
h greater for the 
ombined method. However, the two-
omponent version does take somewhat more training instan
es to rea
h its higherasymptote than does the weight-learning method to rea
h its lower one.Although this experiment fo
uses on a knowledge-lean method, lesion studies alsoseem well suited to knowledge-intensive learning methods. One might `lobotomize' asystem by removing some of its knowledge or some of its me
hanisms, then observethe e�e
t on learning. For instan
e, in explanation-based approa
hes, overly spe
i�
domain theories would presumably lead to less transfer and thus to slower learning.We will brie
y des
ribe one study involving the impa
t of knowledge in Se
tion 6.Before 
losing our dis
ussion of experiments with learning methods, we shouldemphasize that the goal of su
h studies is not to demonstrate superiority of onemethod over another, but to in
rease understanding. Experiments may indeed reveallimitations of parti
ular methods or 
omponents, but this knowledge 
an in turn
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suggest improved versions of the initial algorithm. For example, Aha, Kibler, andAlbert (1991) des
ribe a learning algorithm that simply stores training instan
esand uses a nearest-neighbor te
hnique to 
lassify new 
ases. Experiments revealdrawba
ks of this method, whi
h they attempt to remedy by pla
ing 
onstraints onthe storage of instan
es. Lesion studies indi
ate the usefulness of this extension,but further experiments suggest other problems, whi
h they mitigate with anotheraddition to their instan
e-based algorithm. This pro
ess of in
remental re�nementrelies on understanding the reasons for a learning method's behavior, and this shouldbe the primary aim of experimentation.5. Varying Chara
teristi
s of the DomainAs we mentioned earlier, innate biases or `nature' are not the only in
uen
e on alearning system. One must also examine the e�e
t of experien
e or `nurture' onbehavior, and this means systemati
ally varying the environment or domain in whi
hthe learner a
quires knowledge. This presents the ma
hine learning experimenter witha 
hoi
e. One 
an employ `natural' domains like the diagnosti
 tasks we examinedearlier. Alternatively, one use `arti�
ial' domains that have been designed with spe
i�

hara
teristi
s in mind. In this se
tion we examine these two options. As we will see,ea
h approa
h has its advantages and disadvantages, and we re
ommend both for theexperimental study of ma
hine learning.5.1 Studies with Natural DomainsNatural domains, su
h as Reinke's (1984) soybean diagnosis task, are the most obvioustestbeds be
ause they show real-world relevan
e. Also, su

essful runs on a numberof di�erent natural domains provide eviden
e of generality. For example, let us returnto Shavlik et al.'s study, from Se
tion 4.1, and 
onsider it in more depth.Table 2 presents additional results for their three algorithms on four separate 
las-si�
ation tasks. These in
lude the soybean domain des
ribed earlier, a task thatinvolves predi
ting the winner of 
hess end games based on 36 high-level features, anaudiology domain that requires diagnosis of 24 hearing disorders based on 58 features,and a task that involves determining whether a patient has heart disease, given eightnominal attributes and six numeri
 ones. The table reports only a

ura
y on the testsets. For 
omparison, we have repeated the results for the soybean domain.Re
all that on the soybean data, the knowledge indu
ed by both the Ba
kpropa-gation and Per
eptron methods performed better than the ID3 algorithm. How-ever, by examining behavior a
ross domains, Shavlik et al. demonstrated that thisresult is misleading. Behavior in a single domain, even a real-world one, does not ne
-essarily generalize to other domains. On both the 
hess and audiology testbeds, bothID3 and Ba
kpropagation are signi�
antly more a

urate (at the 0.05 level) thanthe Per
eptron learning algorithm, but there is no signi�
ant di�eren
e betweenthe two more sophisti
ated methods. Ba
kpropagation does signi�
antly better
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Table 2. Per
entage a

ura
ies for three indu
tion algorithms on four 
lassi�
ation domains(Shavlik et al., 1991).Algorithm Soybean Chess Audiology HeartDisease End Game Diagnosis DiseasePer
eptron 92.9 � 2.1 93.9 � 2.2 73.5 � 3.9 60.5 � 7.9ID3 89.0 � 2.0 97.0 � 1.6 75.5 � 4.4 71.2 � 5.2Ba
kprop. 94.1 � 2.5 96.3 � 1.0 77.7 � 3.8 80.6 � 3.1than ID3 in diagnosing heart disease, but the indu
ed de
ision trees outperform thelearned per
eptrons in turn (at the 0.01 level).These results make one more 
on�dent in the non-naive approa
hes, but one wouldstill like to understand the reasons for ID3's poor behavior on the soybean data. Onepossibility is that this domain is nearly linear separable, but that the hyperplane isnot orthogonal to any of the axes in the instan
e spa
e. Thus, the Per
eptronte
hnique 
an a

urately 
lassify instan
es using a linear unit, whereas ID3 is for
edto approximate this with a highly disjun
tive de
ision tree, in whi
h ea
h terminalnode is based on a small sample.In the midst of this dis
ussion, we should not forget one of the main points of theShavlik et al. study. Conne
tionist and `symboli
' indu
tion algorithms, althoughthey rely on di�erent representations of knowledge and use di�erent methods to a
-quire that knowledge, are dealing with essentially the same problem, and this meansthat one 
an 
ompare them on the same tasks. This form of 
omparative study ismu
h healthier for the �eld than rhetori
al arguments about the limitations of existingmethods and the advantages of new approa
hes.Experimental studies of problem-solving systems 
an also use multiple domains toevaluate learning algorithms. In Se
tion 3.3 we reviewed results from Grat
h's (1991)study of Prodigy on a single domain, but in fa
t he examined the system's behavioron others as well. Figure 4 in
orporates the learning 
urves for an extended version ofthe Strips planning domain and for the original version of the blo
ks world used byMinton (1990). The results here are mu
h more en
ouraging, with Prodigy showing
lear improvement by the tenth training problem in both 
ases. After this point, thesystem seems to have stabilized, apparently having 
ompleted its a
quisition of usefulsear
h-
ontrol knowledge.This raises issues about the reasons Prodigy en
ounters diÆ
ulty in the originaldomain we examined. As mentioned earlier, Etzioni (1990) designed this variant ofthe blo
ks world, whi
h in
ludes a single additional operator that lets one move twoblo
ks at a time, to produ
e just su
h a negative e�e
t in Prodigy. He providesan interesting analysis of the 
auses for the system's divergent behaviors in thesedomains. This te
hnique { altering an existing domain to eli
it some e�e
t { is apowerful experimental tool, and it leads naturally into our next topi
.
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Figure 4. Learning 
urves for the Prodigy algorithm on three problem-solving domains(Grat
h, 1991).5.2 Noise in Arti�
ial DomainsStudies with multiple natural domains are mu
h more revealing than single-domainstudies, in that they give eviden
e about the generality of learning phenomena. How-ever, they provide little aid in understanding the e�e
ts of domain 
hara
teristi
s,sin
e they do not let one independently vary di�erent aspe
ts of the environment. Agiven natural domain may be diÆ
ult along many dimensions, and one would like toknow whi
h fa
tor is responsible for parti
ular aspe
ts of behavior. Arti�
ial domainsprovide a way out of this dilemma by letting one 
ontrol domain 
hara
teristi
s asindependent variables. Instead of 
arrying out experiments with a real-world domainshaving unknown 
hara
teristi
s, one 
an design domain that have exa
tly the featuresone wants to study.For instan
e, Breiman, Friedman, Olshen, and Stone (1984) report an arti�
ialdomain they designed to test the e�e
tiveness of their Cart algorithm for de
ision-tree indu
tion. The domain 
on
erns a simulated LED display in whi
h digits aredes
ribed by seven Boolean features. The performan
e task involves 
lassifying par-ti
ular displays as one of the ten digits, whi
h one must learn from 
lassi�ed traininginstan
es. However, to make the learning task diÆ
ult, they added random noise tofeatures in the training instan
es, thus simulating a faulty display. To be spe
i�
,they introdu
ed a ten per
ent noise level for ea
h feature, by whi
h they meant thatea
h Boolean value was inverted with 0.1 probability.Breiman et al. 
ompared Cart's a

ura
y on this domain to a `straw algorithm'that simply predi
ts the most frequent 
lass. Moreover, using their knowledge aboutthe probability of noise in features, they 
omputed the predi
tive a

ura
y for an
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Figure 5. The e�e
t of three types of noise on predi
tive a

ura
y in Quinlan's (1986) ID3.optimal 
lassi�er. Thus, they established best-
ase learning behavior, whi
h wouldbe impossible for a real-world problem. For the LED domain with ten per
ent noise,the optimal a

ura
y is 74%. Be
ause Cart uses a statisti
al pruning te
hnique toavoid over�tting the training data, they expe
ted it would approa
h this level. Theirexperimental results ba
ked this predi
tion, showing an a

ura
y of 70% for Cartafter 200 training instan
es, but only a 10% a

ura
y for the frequen
y method. Thus,their algorithm fares almost as well as possible on the LED task.The Breiman et al. study used an arti�
ial domain with 
ontrolled noise level, butit did not systemati
ally vary this variable to determine the algorithms' behaviorsa
ross a range of noise levels. Quinlan (1986) provides an example of this type ofexperiment. He studied the 
lassi�
ation a

ura
y of the trees indu
ed by his ID3algorithm when he varied the amount of noise in the training instan
es.In parti
ular, Quinlan examined the e�e
t of noise when it o

urred in a single(nominal) attribute, when it was present in all attributes, and when it o

urred inthe 
lass label. The de�nition of noise in this study is somewhat di�erent, referringto the probability of repla
ing the a
tual value with a randomly sele
ted value (whi
hmight be still be 
orre
t). Thus, the maximum noise level is 100%, in whi
h 
asethe attribute or label 
ontains no useful information. The ID3 algorithm di�ers fromCart in its response to over�tting, halting 
onstru
tion of the de
ision tree when astatisti
al test indi
ates that the training data fail to justify further splits. However,Quinlan anti
ipated that this approa
h would let the system degrade gra
efully forall three forms of noise.Figure 5 shows the results when noise was added to training instan
es taken froma task involving 
hess end game, similar but not identi
al to that used in the Shavlik
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et al. (1991) study. Noise in the 
lass label degrades performan
e mu
h more thannoise in individual attributes, as one might expe
t. Also, the former 
hanges in aroughly linear fashion, whereas the latter appears logarithmi
. One might predi
tthat noise in all attributes would make learning more diÆ
ult that noise in any singlefeature, in
luding the 
lass label. Indeed, the 
urve for this 
ondition goes up rapidly,6but then a
tually de
reases and levels o� at a 26% error rate. Quinlan explains thissurprising result by noting that, beyond a 
ertain noise level, ID3's pruning te
hniqueleads to one-node trees that simply predi
t the most frequent 
lass. The dip in the
urve suggests the parameter setting for the statisti
al test is slightly high, allowingsome over�tting to o

ur around the 40% noise level.5.3 The E�e
t of Irrelevant AttributesArti�
ial domains are also useful for examining the e�e
t of irrelevant attributes onlearning. In general, as the number of attributes in
reases, the number of possible
on
ept des
riptions grows exponentially (Haussler, 1987). Intuitively, learning shouldbe more diÆ
ult in domains that 
ontain more alternative hypotheses. If an algorithmhas no way to identify relevant features early in training, in
reasing the number ofattributes 
ould drasti
ally slow the rate of learning.However, the e�e
t of irrelevant features on any parti
ular system is an empiri
alquestion, and many indu
tion algorithms in
lude te
hniques that should let theme�e
tively ignore attributes that 
ontain no useful information. For instan
e, Fisher's(1987) Cobweb system uses an information-theoreti
 evaluation fun
tion to 
lassifyinstan
es through its probabilisti
 
on
ept hierar
hy. This fun
tion subtra
ts out theinformation that has already been summarized at a parent node, and thus emphasizesattributes that serve to distinguish 
on
epts at the same level.Gennari (1990) examined the e�e
t of this fa
tor on the behavior of Classit,an extension of Cobweb that handles both symboli
 and numeri
 attributes. Heused a set of arti�
ial domains that involved four separate 
lasses, ea
h di�ering intheir values on four relevant numeri
 attributes. However, the domains varied inthe number of irrelevant attributes { whi
h have the same probability distributionindependent of 
lass { from zero to sixteen. All domains had small but de�niteamounts of attribute noise, and training instan
es were un
lassi�ed. The performan
etask involved predi
ting the numeri
 values of single relevant attributes omitted fromtest instan
es, and the dependent measure was the absolute error between the a
tualand predi
ted values.Figure 6 presents the results, whi
h are based on ten di�erent orders of randomlygenerated training instan
es. The graph suggests that Classit is robust with respe
tto irrelevant attributes, with an asymptote around 2.0, regardless of the number ofirrelevant terms. This is 
lose to the `ideal' error of 0.47, whi
h is the error forthe best possible predi
tions that 
ould be based on the observed training instan
es.Classit's asymptote is also 
onsiderably less than that of a naive algorithm whi
h6. Note that the dependent variable reported in this 
ase is per
entage error, rather than the a

ura
ymeasure used in the previous studies we have examined.
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Figure 6. Learning 
urves for Gennari's (1990) Classit on domains with varying numbers ofirrelevant attributes.simply predi
ts the mean value for ea
h attribute, independent of its 
lass. Thisprovides another example of how one 
an use straw algorithms and optimal ones to
alibrate learning behavior. The system's rate of learning does seem a�e
ted by thenumber of irrelevant attributes, but Classit appears to s
ale well on this dimension,at least in the 
urrent domain.Although the notion of irrelevan
y has been most widely studied for indu
tivelearning and for 
lassi�
ation tasks, it has 
lear analogues in other approa
hes anddi�erent domains. For instan
e, Iba (1989) has demonstrated that promis
uous learn-ing of ma
ro-operators 
an degrade the performan
e of problem-solving systems. Heshows that one 
an use statisti
al and other methods to eliminate su
h knowledgestru
tures, retaining ones that a
tually redu
e sear
h on test problems. His studiesfo
used on diÆ
ult but well-stru
tured puzzles that had many aspe
ts of arti�
ialdomains. Tambe, Newell, and Rosenbloom (1990) use an even more idealized sear
hproblem to study the e�e
t of expensive rules on learning in problem solving.Similarly, we suspe
t that irrelevant knowledge 
ould slow the learning rate of ana-lyti
 learning approa
hes by produ
ing misleading explanations or making derivationsintra
table. Te
hniques for sele
ting among 
ompeting explanations and sele
tinglikely sear
h paths 
ould play a similar role to the evaluation fun
tion that Classituses to ignore irrelevant attributes. Arti�
ial domains, in
luding both relevant andirrelevant ba
kground knowledge, are an obvious approa
h to testing this hypothe-sis. Elio and Watanabe (1991) des
ribe one su
h study, in whi
h they use 
arefullydesigned rules to study how the size and `shape' of ba
kground knowledge a�e
ts
onstru
tive indu
tion.
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Figure 7. Predi
tive a

ura
y of the PLS system as a fun
tion of 
on
ept 
omplexity, asreported by Rendell and Cho (1990).5.4 The E�e
t of Con
ept ComplexityAnother important 
hara
teristi
 of 
lassi�
ation domains is the 
omplexity of the
on
epts that des
ribe their regularity, and one 
an use arti�
ial domains to study thee�e
t of 
on
ept 
omplexity on learning. For instan
e, Langley (1987) systemati
allyvaried the number of 
onjun
tive and disjun
tive features in 
on
epts, studying theimpa
t of these fa
tors on an in
remental learning algorithm. Iba, Wogulis, andLangley (1998) report the results of a similar study with the Hillary system.However, Rendell and Cho (1990) have argued that many real-world 
on
epts aremu
h more 
omplex than those typi
ally used in experimental studies. They view
on
epts as fun
tions over the spa
e of instan
es, measuring 
omplexity as the numberof `peaks' or disjoint regions of 
lasses in this spa
e. There are now many algorithmsthat 
an a
quire disjun
tive 
on
epts, but the authors hypothesized that existingte
hniques would break down on domains involving very many peaks.To test this hypothesis, Rendell and Cho used an automated data generator to pro-du
e training and test sets for a variety of domains that had between one and 1000peaks. Figure 7 shows the results for PLS1, a nonin
remental indu
tion algorithmthat is similar to ID3, based on training sets with 2000 instan
es. The predi
tivea

ura
y of the indu
ed 
on
ept de
reases nearly linearly with the log of the domain
omplexity, even when the training data are free of noise. A similar but more raggede�e
t o

urs when there is 30% noise in the 
lass label, though this 
urve is loweroverall. Also, Quinlan's ID3 algorithm produ
es a similar degradation as 
omplex-
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ity in
reases. Rendell and Cho suggest methods for representation 
hange as oneapproa
h to grouping peaks and thus redu
ing e�e
tive 
omplexity.Issues of 
omplexity are not limited to 
lassi�
ation tasks. One 
an also vary theregularity of problem spa
es, the stru
ture of grammars, and the form of s
ienti�
laws. Arti�
ial domains have a role to play in these domains as well, although 
learde�nitions of 
omplexity have not yet been forwarded for these more advan
ed datastru
tures. Extending 
omplexity measures to non-
lassi�
ation tasks is a prerequisitefor understanding su
h domains, and thus should have priority in future work.6. Stages of the Experimental Pro
essBefore 
losing, it seems worth reviewing the basi
 steps involved in the experimentalstudy of ma
hine learning. The basi
 pro
edure di�ers little from that in other exper-imental s
ien
es, ex
ept for the nature of the independent and dependent variables,whi
h we have dis
ussed in the previous se
tions. Many of our points will appearobvious to readers, but given the youth of our �eld, they are worth reiterating.6.1 Formulating HypothesesIn many situations, a resear
her has 
lear expe
tations about the e�e
ts he will ob-serve in an experiment. If so, it is important to state these hypotheses expli
itly andto use them in fo
using his/her experimental design. In many 
ases, these will bevague and qualitative. For instan
e, an experimenter will typi
ally believe that analgorithm will lead to improved performan
e as the result of experien
e. Similarly,he/she may predi
t that an indu
tion algorithm with pruning will produ
e more a
-
urate de
ision trees in a noisy domain than one without pruning.Some studies, parti
ularly those involving natural domains, are so exploratory thatno 
lear hypotheses suggest themselves. But many experiments are based on someanalogy with previous studies, and in these situations, it seems worth stating pre-di
tions formally. In our own experien
e, predi
tions are often violated, and havingstated them at the outset helps one fo
us attention on interesting phenomena, evenwhen they are qualitative in nature.In some 
ases, one has a 
lear model of both the algorithm and the learning envi-ronment, parti
ularly when working with simple algorithms and arti�
ial domains. Ifone is willing to make suÆ
ient assumptions about the distribution of training data,one 
an make detailed predi
tions about the system's behavior, as Cohen (1991) hasen
ouraged. For example, Pazzani and Sarrett (1990) present an average-
ase anal-ysis of a 
onjun
tive indu
tion algorithm, whi
h lets them predi
t detailed learning
urves for domains with various 
hara
teristi
s.In a similar vein, Thompson, Langley, and Iba (1991) des
ribe an analysis that letsthem predi
t the bene�t their Labyrinth system re
eives from ba
kground knowl-edge in 
omparison to Fisher's Cobweb, whi
h 
annot use the same form of knowl-edge. To a

omplish this, they make assumptions about the number of 
on
epts in a
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ba
kground is-a hierar
hy, the number of 
omponents asso
iated with ea
h 
on
epts,and the number of possible types for ea
h 
omponent. They also assume a regu-lar stru
ture for the ba
kground knowledge and a uniform distribution of instan
es.7From this they 
al
ulate the theoreti
al learning 
urves presented in Figure 8. Su
hdetailed hypotheses are not required for progress in ma
hine learning, but they have
lear advantages over qualitative predi
tions.6.2 Designing Experiments and Sele
ting SamplesHaving de
ided on a set of hypotheses, the resear
her must next design one or moreexperiments to test them. The obvious requirement here is to de
ide on the depen-dent and independent variables. Sin
e we have spent many of the pre
eding pagesexamining the various options, we will not repeat them here. In most 
ases, the hy-potheses themselves will suggest a small set of variables, and the experimenter needonly de
ide whi
h measures best suit his/her purpose. A 
omplete design must alsoin
lude de
isions about the number of runs to average a
ross, the range of ea
h inde-pendent variable, and the step size for ea
h su
h fa
tor. If the independent variablesare qualitative in nature, one must spe
ify the set of values they take on. For exam-ple, one must enumerate the algorithms to be tested, the 
omponents to be lesioned,or the natural domains from whi
h one will draw instan
es.Another issue in experimental design involves sampling strategies. In the naturals
ien
es, one 
an never 
ontrol all possible variables. As a result, resear
hers must
olle
t multiple observations for ea
h 
ell in their experimental design and average theresulting values. As a s
ien
e of the arti�
ial, ma
hine learning 
an avoid some butnot all of these 
ompli
ations. One has 
ontrol over the learning algorithm and theenvironment, but pra
ti
al 
on
erns still 
ome into play. In parti
ular, one 
annotexamine all possible training and test sets in a natural domain, so typi
ally onerandomly sele
ts a number of su
h sets for use in an experiment, then averages overthe results. Similarly, one 
annot examine all possible training orders for in
rementallearning methods, so one must resort to a set of randomly sele
ted orders.Basi
 experimental method re
ommends varying the value of one independent termwhile holding others 
onstant. However, one 
an apply this pro
ess iteratively to ob-tain fa
torial designs, in whi
h one observes the dependent measures(s) under all
ombinations of independent values. This lets one move beyond isolated e�e
ts andlook for intera
tions between independent variables. For instan
e, one might hypoth-esize that a de
ision-tree algorithm will fare better in one environment and that aper
eptron method will fare better in another, as argued by Utgo� (1988). Fa
torialdesigns let one measure su
h intera
tions between independent variables. The resultsof Rendell and Cho's study, illustrated in Figure 7, revealed no intera
tion between
omplexity and noise; rather, their e�e
ts on a

ura
y appeared to be additive.7. Most theoreti
al analyses of learning tasks and algorithms have aimed for distribution-independent results. However, this bias di�ers from those of more mature s
ien
es like physi
sand 
hemistry, whi
h are willing to make detailed assumptions to generate pre
ise predi
tions,then to re
onsider those assumptions if predi
tions are violated.
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Figure 8. Theoreti
al and observed learning 
urves for Labyrinth and Cobweb in the pres-en
e of ba
kground knowledge (Thompson, Langley, & Iba, 1991).6.3 Running Experiments and Compiling ResultsGiven a 
lear experimental design, one 
an 
arry out the experiment that it spe
i�es.For this one must gather the training instan
es or problems, implement or a

ess thealgorithms, run the algorithms on the training 
ases, and measure their performan
efor ea
h sample in ea
h experimental 
ondition (i.e., 
ombination of independentvariables). One then averages a
ross all samples in a 
ondition and organizes theresults in some readable format su
h as tables or graphs. This step is probably theleast 
ontroversial a
tivity in an experimental study.We have seen many examples of experimental results in this paper, in
luding learn-ing 
urves, asymptoti
 a

ura
ies in 
omparative studies, the e�e
ts of noise andother fa
tors on asymptotes and learning rates. Su
h statisti
s are the most obviousprodu
t of s
ienti�
 experimentation. Figure 8 presents another example, in this 
asethe results of Thompson et al.'s 
omparative study of Labyrinth and Cobweb inthe presen
e of ba
kground knowledge.6.4 Testing HypothesesOn
e the experimenter has 
olle
ted and organized the data, they 
an be used to drawtentative 
on
lusions. In an exploratory study, the results may suggest hypothesesthat require additional experiments. In other 
ases, one will have hypotheses and usethe observations to test them. Thus, one 
an examine learning 
urves to determinewhether the a
quired knowledge a
tually improves performan
e, or one 
an 
omparedi�erent experimental 
onditions to see whether the number of irrelevant variables
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a�e
t asymptoti
 a

ura
y. In some 
ases, regularities in the data may suggest de-tailed models that would explain them. For instan
e, both Quinlan's results on noise(Figure 5) and Rendell and Cho's �ndings (Figure 7) involved near-linear relationsthat 
all out for explanations.As we saw in Se
tion 4.1, one 
an use statisti
al methods to test some hypotheses,and these indi
ate the 
on�den
e with whi
h one 
an believe apparent di�eren
es.This 
on�den
e level is a�e
ted by three fa
tors { the observed di�eren
es between
onditions, the number of samples in ea
h 
ondition, and the varian
es of those sam-ples. Thus, even a large di�eren
e may not be robust if the sample is small or thevarian
e is high, making it desirable to use signi�
an
e tests whenever possible. Su
htests make the most sense when 
omparing nominal 
onditions, su
h as alternative al-gorithms or di�erent natural domains. Other statisti
al methods, su
h as 
orrelationanalysis, 
an be used for numeri
 variables.Ironi
ally, signi�
an
e tests are least relevant when one has a detailed model thatmakes numeri
 predi
tions. Consider the theoreti
al and observed learning 
urves inFigure 8. The analysis spe
i�es a 
lear di�eren
e in learning rate between the twoalgorithms, but predi
ts the same asymptote. These trends are 
learly apparent inthe experimental 
urves as well. Here the issue is the degree to whi
h the predi
tionsmat
h the observations. One 
an use a te
hnique like 
orrelation analysis for this pur-pose. Alternatively, one 
an use the standard deviation of ea
h point on the 
urve todraw `error bars' around the 
urve, then see whether the theoreti
al 
urve falls withinthese ranges, as Pazzani and Sarrett (1990) have done. But in general, theory-ladens
ien
es like physi
s have less need of statisti
al hypothesis testing than experiment-driven ones like psy
hology, and we hope that as ma
hine learning matures, it willprogress from the latter into the former.6.5 Explaining Unexpe
ted ResultsHypotheses in ma
hine learning are based on some model of an algorithm and anenvironment, whether this is expli
it or not. Results that agree with an hypothesislend eviden
e to that model, though they do not `
on�rm' it; s
ien
e 
an never draw�nal 
on
lusions about any situation. Results that diverge from one's expe
tations
ount as eviden
e against a model, and thus require additional explanation.In some 
ases, explanations of reje
ted hypotheses may involve altering assumptionsabout the environment. Thus, one may posit that the Per
eptron algorithm didwell on a parti
ular domain be
ause it was linearly separable, even though this wasnot anti
ipated at the outset. Other explanations 
on
ern the algorithms themselves.For instan
e, Thompson et al. suggest that Labyrinth's and Cobweb's behaviorsdiverge slightly from the theoreti
al 
urves in Figure 8 be
ause they 
annot retrievesome instan
es due to poor indexing.In either 
ase, faulty predi
tions indi
ate that one's model needs improvement,often making them more signi�
ant than positive results. More important, they 
anindi
ate dire
tions in whi
h to make 
hanges. The ensuing altered models, whether
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formal or informal, suggest new hypotheses and predi
tions, whi
h in turn suggestnew experiments to test them. In other words, the iterative loop of hypothesize andtest is as valid for ma
hine learning as for any other experimental dis
ipline.6.6 Communi
ating Experimental ResultsLike other s
ien
es, ma
hine learning is largely a 
ommunal a
tivity, and this makes
lear 
ommuni
ation essential. Repli
ation plays an important role in physi
s, 
hem-istry, biology, and other mature s
ien
es, sin
e it ensures that results are robust andgeneral before they be
ome widely a

epted. Su
h repli
ation would aid our �eld aswell, but it requires detailed enough des
riptions to let resear
hers at other sites re-peat the 
onditions of original studies. Ma
hine learning has made an ex
ellent startin using a standard set of natural domains and in providing pseudo
ode des
riptionsof algorithms, whi
h allow re
onstru
tion of learning systems even when the original
ode is unavailable.However, repli
ation also requires pre
ise des
riptions of the independent and de-pendent variables, the number of runs, the sampling strategy, and other details of theexperimental design. Fa
tors used to generate arti�
ial data, su
h as one's de�nitionof noise and irrelevant attributes, are also essential. Finally, one should in
lude in-formation about statisti
al tests used to evaluate hypotheses in 
ommuni
ations ofexperimental results, sin
e these depend on assumptions that others may question.Clear des
riptions in a te
hni
al report or an ar
hival journal 
onstitute the �nal stagein an experimental study.7. Con
lusionsOne 
an tra
e experimental approa
hes to ma
hine learning ba
k more than twode
ades (e.g., Hunt, Marin, & Stone, 1966), but the `modern' era of experimentationbegan about �ve years ago. Sin
e then, the number of experimental studies hasgrown at a rapid pa
e, with resear
hers identifying new dependent and independentvariables, testing existing systems on new domains, and improving these systems whenthey en
ounter diÆ
ulties. Many experimental studies produ
e unexpe
ted results,for
ing the experimenter to think deeply about reasons for the observed learningbehavior.In general, the �eld of ma
hine learning o

upies a mu
h healthier methodologi-
al state than a de
ade ago. However, the experimental method has been adaptedmore qui
kly to some areas than others. Early experimentation fo
used on indu
tiveapproa
hes to 
lassi�
ation, as the 
urrent paper re
e
ts in its examples, but re
entyears have seen many analogous studies of learning in problem-solving domains andexperiments on explanation-based methods. Resear
hers have also started to measurethe in
uen
e of ba
kground knowledge on indu
tive learning.In summary, ma
hine learning o

upies a fortunate position that makes systemati
experimentation easy and pro�table. Some methodologi
al questions remain unan-swered, but resear
hers have made an ex
ellent start and we expe
t the future holds
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improved dependent measures, better independent variables, and more useful experi-mental designs. There remains room for improvement in all areas of ma
hine learning,but the dis
ipline seems well on its way to developing a sound experimental tradition.However, these su

esses do not mean that empiri
al resear
hers should reportgratuitous experiments any more than theoreti
ians should publish va
uous proofs.Whether they lead to positive or negative results, experiments are worthwhile onlyto the extent that they illuminate the nature of learning me
hanisms and the reasonsfor their su

ess or failure. Although experimental studies are not the only pathto understanding, we feel they 
onstitute one of ma
hine learning's brightest hopesfor rapid s
ienti�
 progress, and we en
ourage other resear
hers to join in our �eld'sevolution toward an experimental s
ien
e.A
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