
Copyright  1991 Patrik W. Langley. All rights reserved.The Experimental Study of Mahine LearningPat Langley (Langley�ptolemy.ar.nasa.gov)AI Researh Branh, Mail Stop 244{17, NASA Ames Researh Center,Mo�ett Field, CA 94035 USADennis Kibler (Kibler�is.ui.edu)Department of Information & Computer Siene, University of California,Irvine, CA 92717 USA1. Siene and ObservationMahine learning is often haraterized as a sienti� disipline, and this suggests thatwe inorporate knowledge of siene and its methods into the goals and tehniquesof the �eld. Researh in AI and ognitive siene further suggests that one an viewsiene as a searh through a spae of theories that requires two ative omponents {a generator and a test . The generator produes new theories or variants on existingtheories, whereas the test yields information onerning the quality of theories. Si-ene inorporates a variety of tests that guide the theory-generation proess. Theseinlude evaluation metris like elegane and internal onsisteny, whih it shares withother intelletual endeavors suh as mathematis and philosophy.However, siene diverges from philosophy in its emphasis on observation. Nomatter how elegant or onsistent, a theory that disagrees with the data must berejeted or improved. Observation ats as the most important fator in the evaluationfuntion that direts sientists' searh through the spae of theories. Hawking (1988)holds a similar view on the evaluation of sienti� knowledge:A theory is a good theory if it satis�es two requirements: It must auratelydesribe a large lass of observations . . . , and it must make de�nite preditionsabout the results of future observations.Thus, he distinguishes between two sorts of observations: those made before thetheory is forwarded (whih it must over) and those made after its generation (whihit must predit). This distintion reets the two roles played by empirial results:the suggestion of new andidate theories and the evaluation of existing ones.The suess of physis, perhaps the most well-developed sienti� disipline, shouldlarify the importane of observation. This �eld is primarily onerned with under-standing the nature of the physial world { the struture and proesses that governmatter and energy. This shared goal holds physis together as a �eld, but its progressderives primarily from its ontinued, repeated testing of theories against observation.Data play a entral role in seleting among ompeting theories, and anomalies suggestimprovements on inorret theories. Over time, old theories are rejeted and new onesemerge with higher preditive auray and greater generality.
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2. The Role of Experiments in Mahine LearningMahine learning is another siene, albeit a muh younger one than physis. Ourdisipline is primarily onerned with understanding the omputational mehanismsthat underlie learning, and this shared purpose holds mahine learning together as aoherent �eld. Like physis, the suess of mahine learning as a sienti� disiplinewill rest on its ability to ombine theory and observation, using data to drive theoryseletion and revision.The �eld of mahine learning fouses on intelligent artifats { systems reated bythe researhers who study them. Thus, it onstitutes what Simon (1969) has alled asiene of the arti�ial . As suh, there is a temptation to emphasize formal analysisand theoretial approahes. Indeed, onsiderable progress has reently ourred onthe theoretial front,1 both in formalizing the nature of learning algorithms and inharaterizing their behavior. In this view, mahine learning is primarily a mathe-matial siene.Despite this progress, many learning algorithms are too omplex for formal analysis,at least at the level of generality assumed by most theoretial treatments. As a result,empirial studies of the behavior of mahine learning algorithms must retain a entralrole. Fortunately, the arti�ial nature of learning algorithms allows ontrol over a widerange of fators, making it more akin to experimental disiplines suh as physis andhemistry than to observational sienes suh as astronomy or soiology. It is thisview { mahine learning as an experimental siene { that we pursue in this paper.The goal of sienti� experimentation is to better understand a lass of behaviorsand the onditions under whih they our. Ideally, this will lead to empirial lawsand theories, as well as to tests of those theories. In our �eld, the entral behavior islearning. The onditions involve the algorithm employed, the domain knowledge, andthe environment in whih learning ours. Laking a formal analysis, an implementedlearning algorithm is neessary but not suÆient for understanding { one should alsoattempt to speify when it operates well and the reasons for that behavior. Suhgeneralizations provide the raw material for forming and testing theories of mahinelearning. Moreover, they an suggest improved algorithms that exhibit more desirablelearning behaviors.As normally de�ned, an experiment involves systematially varying one or moreindependent variables and examining their e�et on some dependent variables. Thus,a mahine learning experiment requires more than a single observation of a system'sbehavior; it requires a number of observations made under di�erent onditions. Ineah ase, one must measure some aspet of the system's behavior for omparisonaross the di�erent onditions.We have organized the remainder of the paper in these terms. We begin by ex-amining some dependent variables that an be used in the experimental study oflearning algorithms. After this, we address two broad lasses of independent vari-1. Kearns, Li, Pitt, and Valiant (1987), Dietterih (1990), and Haussler (1990) provide informativereviews of progress in the area of learnability theory.
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ables { aspets of the algorithm and aspets of the environment. Finally, we onsidersome issues in the design and exeution of experiments. Many of our suggestions aresimilar to the exellent points made by Cohen (1991) in his disussion of arti�ialintelligene, but they seem worth instantiating for the �eld of mahine learning.3. Dependent Measures of LearningMost de�nitions of learning rely on some notion of improved performane. Thus, var-ious performane measures are the natural dependent variables for mahine learningexperiments, just as they are for studies of human learning. Other measures, like`understandability' of the aquired strutures, may also be informative, but these arenot relevant unless aompanied by performane improvement.2 In some ases, intu-itively plausible learning methods atually lead to worse performane (Minton, 1985),so performane measures are entral to evaluating almost any learner's behavior.3.1 Measures of PerformaneMany measures of performane are possible. For supervised onept indution tasks,in whih eah instane has an assoiated lass name, the most obvious metri isthe perentage of orretly lassi�ed instanes (Quinlan, 1986). One annot use thisdependent variable for unsupervised indution tasks like oneptual lustering, sineno lass name is available. However, one an replae it with a more general measure {the ability to predit a missing attribute's value, averaged aross all attributes; Fisher(1987) refers to this performane task as exible predition.More omplex domains require more sophistiated measures of performane. Forgrammar-indution tasks, one an reord the perentage of orretly parsed sentenesand the perentage of orretly rejeted non-sentenes. For problem-solving domains,one an examine the perentage of problems solved or the quality of the resulting so-lution paths (Langley & Drummond, 1990). One an also measure the total CPU timeor number of nodes onsidered during searh (Minton, 1985). The last two metrisare onerned with eÆieny rather than orretness, and thus seems appropriate forexplanation-based approahes to learning, whih have been largely onerned withthe ompilation of knowledge rather than its aquisition (Mithell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986).Given a partiular performane riterion, one must implement this measure in somefashion. In noninremental settings, one an present the learning system with a train-ing set and then evaluate its performane on a separate test set. This is an importantmethodologial point. The goal of learning is typially to use aquired knowledgeto aid behavior in novel situations, not on problems that have been enountered inthe past. Also, beause any given set of instanes may not be representative of the2. As in psyhology, we make a lear distintion between performane { an agent's behavior at a giveninstant in time { and learning { the hange in an agent's performane over time. In this framework,the phrases learning performane and performane of a learning system are oxymorons.
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domain, it is important to average over the results of runs on many sets of trainingand test problems that have been seleted randomly from those available.3One an use a similar sheme to study inremental systems, whih proess oneexperiene at a time. In this ase, one presents training instanes one at a time and,after every nth instane, turns learning o� and runs the system on a separate testset. Alternatively, one an treat eah instane �rst as a test datum and then as atraining datum, but this requires that one run the system more times. In either ase,the result is a learning urve that shows hange in performane as a funtion of thenumber of instanes enountered. Although learning urves are informative, one analso ondense this information into more suint summary measures, suh as theasymptoti performane and the number of instanes needed to reah this asymptote.When studying inremental methods, it is important not only to average over dif-ferent training and test sets, but also over di�erent orders of the training instanes,sine this an inuene the ourse of learning in most inremental systems. However,in some ontexts a researher may be interested in examining order e�ets them-selves, in whih ase he or she should systematially vary this fator like any otherindependent variable.3.2 Performane in Classi�ation DomainsFisher (1987) has desribed Cobweb, an inremental unsupervised algorithm forinduing probabilisti onepts. The system organizes its aquired knowledge as ahierarhy of onepts, whih it modi�es with eah training instane. However, ouronern here is not with Fisher's algorithm but with experimentation, so let us on-sider a reent study of this system by MKusik and Langley (1991). Figure 1 presentsa learning urve for Cobweb in a partiular lassi�ation domain.The data used in this study were olleted by Shlimmer (1987) from the Congres-sional Quarterly . They desribe votes of the 435 members of the 1984 U.S. House ofRepresentatives on 16 issues, suh as aid to El Salvador, funding for the MX missile,and duty-free exports. Thus, there are 435 instanes, eah onsisting of 16 Booleanattributes that spei�es whether a given House member voted `yea' or `nea'. Eahinstane also falls into one of two lasses, of whih 267 were Demorats and 168 wereRepublians. Although Fisher's system was designed for unsupervised tasks, it analso learn from suh supervised data, so the dependent measure here was preditiveauray on the lass label, rather than Fisher's measure of exible predition.MKusik and Langley presented Cobweb with a random sample of 100 traininginstanes from this domain and tested it on a separate set of 25 randomly seletedinstanes. After eah training ase, learning was disabled and the system was askedto predit the lass label for eah test ase. The perentage of orretly lassi�ed3. One an ahieve similar e�ets through ross-validation studies, in whih one iterates througheah of N available instanes, in eah ase running the system on the other N � 1 instanes andusing the seleted instane to test performane. One then averages the results for all N runs toestimate typial performane.
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Figure 1. Learning urve for Fisher's Cobweb algorithm on Congressional voting reords, asreported by MKusik and Langley (1991).instanes was reorded, learning was enabled, the system was presented with thenext training instane, and the yle ontinued. The learning urve shown in Figure1 was averaged over ten runs based on di�erent random orderings of the trainingdata. Thus, eah point on the urve shows the average perentage of the test set thatCobweb orretly lassi�ed.The shape of the urve reveals that most learning ours rather early. Asymptotiauray is approximately 92%, yet Cobweb reahes the 85% level after fewer thanten training instanes. The system remains stable at this point for some time, thenrises to above 88% around 20 instanes. Slight improvements our with additionalinstanes, but the most important learning seems omplete by this point. Theseresults ontradit some laims (e.g., Mithell et al., 1986) that indutive instanesrequire very many instanes to aquire useful knowledge. But it also suggests thatthe behavior of House members may be quite regular and thus simple to indue. Asa result, it an be dangerous to draw onlusions about the behavior of a learningalgorithm from studies with a single domain. We will return to this issue later.3.3 Performane in Problem-solving DomainsLearning urves an also be used to examine performane improvement in problemsolving. Let us onsider a study by Grath (1991) using a redued version ofProdigy-EBL (Minton, 1990), a well-known and suessful algorithm for aquiring searh-ontrol rules. The learning system employs an explanation-based method to transformproblem-solving traes into rules for seleting operators, states, and goals duringplanning. Minton's system then uses these rules to onstrain searh on new problems.
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Grath's study uses CPU time as the measure of problem-solving performane.One ould examine the number of searh nodes onsidered in solving problems, butas Minton has shown, the amount of searh is only one faet of problem-solvingeÆieny. His de�nition of the utility of aquired knowledge also inludes the ost ofapplying that knowledge in ontrolling searh, and CPU time takes this into aount.Langley and Allen (in press) use a related measure, the total number of uni�ationsrequired to solve a set of problems, whih is less dependent on implementation andmahine. They also examine both searh nodes and math ost in an attempt todetermine the soure of power or diÆulty.The independent variable in Grath's experiment is the number of training problemson whih the system has pratied. He generated 220 problems from a speial variantof the bloks world (desribed by Etzioni, 1990), dividing these into 100 trainingtasks, 20 `settling' problems, and 100 test ases. After every ten training problems,Grath disabled the Prodigy's explanation-based learning omponent and ran thesystem on the settling problems, whih it used to gather statistis about the utility ofindividual ontrol rules. During this stage, Prodigy deleted rules that appeared toinrease the overall ost of planning. After this, the experimenter disabled this faetof learning as well and measured the CPU time required to solve all the test problems.Figure 2 shows the learning urve for this domain. The times are averaged overten random orderings of the training and settling problems, sine order e�ets anour in problem-solving domains as easily as in lassi�ation tasks. The results areintriguing. The searh-ontrol knowledge that Prodigy aquired atually inreasesits problem-solving time. This begins to derease after the initial large rise, but itnever quite returns to the level that existed before learning. Presumably, this e�etours beause the ost of mathing their omplex onditions more than o�sets thesavings due to redued searh, even though the settling phase was designed to avoidthis problem.For our purposes, these results demonstrate the lear need for experimental stud-ies of learning's e�et on performane. Without suh evaluation, one annot knowwhether learning is atually bene�ial. With suh experiments, one an identify thesoure of the degradation and modify the learning sheme to improve performane.Fortunately, this is not the omplete story on Prodigy; in fat, Etzioni arefullydesigned this partiular variant of the bloks world to enourage Prodigy to aquireexpensive searh-ontrol rules. We will return to this point in Setion 5.Segre, Elkan, and Russell (1991) have noted an important ompliation in the ex-perimental study learning in problem-solving domains. Most problem solvers inludesome omputational limit and give up on a problem when they exeed it. Thus, re-porting only eÆieny results an be misleading; it is essential to inlude informationabout the perentage of test problems that the system has solved. Grath was arefulto use only problems that Prodigy ould solve within its omputational limits, butthis may not be pratial for some real-world problems. Also, in some domains, thequality of problem solutions an also be important. Langley and Drummond (1990)suggest some ways in whih to instantiate this dependent variable.
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Figure 2. Learning urve for a redued version of Prodigy on problem-solving tasks from avariant of the bloks world, as reported by Grath (1991).4. Varying the Learning MethodOne of the most diÆult problems onfronting psyhology is teasing apart the relativee�ets of heredity and experiene, of `nature' and `nurture'. Mahine learning is morefortunate, in that it an experimentally ontrol a learning system's `innate' features(nature) and the training instanes it enounters (nurture). Here we examine methodsfor evaluating the e�et of system harateristis, delaying the role of experiene untilthe following setion.The obvious way to examine the inuene of system features on behavior is to om-pare di�erent algorithms on the same task. That is, one runs two or more learningsystems on a given domain, measures their performane on the same test ases, andompares the results. Until reently, suh omparative studies were rare in the liter-ature, but now they have beome almost the default, and the availabilty of standarddatabases has provided a variety of domains to use in suh experiments.44.1 Gross Comparisons of Learning MethodsComparative studies ome in a variety of forms. If one's goal is a omputationalmodel of human learning, then one should ompare the algorithm's behavior withthat of human learners. For example, hildren pass through a number of `stages'in their aquisition of language, and one an ompare the model's learning urves4. In fat, most of domains we mention in this paper are available by ftp from is.ui.eduusing the aount and password anonymous. The various data sets reside in the diretorypub/mahine-learning-databases.
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Table 1. Perentage auraies and training times for three indution algorithms in diagnosingsoybean diseases (Shavlik, Mooney, & Towell, 1991).Algorithm Auray Auray CPU Time(Training) (Test) (Training)Pereptron 100.0 � 0.0 92.9 � 2.1 35.8 � 5.2ID3 100.0 � 0.0 89.0 � 2.0 161.0 � 8.9Bakprop. 99.9 � 0.2 94.1 � 2.5 5260.0 � 7390.0with that of hildren (Langley, 1982). Similarly, a model of skill aquisition shouldaount for the widely observed `power law' of learning (Rosenbloom & Newell, 1987).Many fators a�et human learning, making its experimental study diÆult, but thepsyhologial literature is �lled with studies awaiting omputational explanations.More often, a mahine learning researher is interested in an algorithm's behaviorfor its own sake. However, even when studying an individual learning method, itis best to plae that method's behavior in ontext. One an usually ompare thesystem's performane to that of a `straw algorithm' that uses a simple-minded strat-egy. For instane, in lassi�ation domains one an use an algorithm that preditsthe most frequently ourring lass. If this overs 90% of the instanes, then a moresophistiated learner that ahieves 91% auray is not impressive, and should be ex-amined for ways to improve its learning ability. This approah is di�erent from usinga nonlearning performane system to establish a baseline, but the spirit is similar.Shavlik, Mooney, and Towell (1991) provide an exellent example of omparingalternative learning methods on a diagnosti task originally reported by Reinke (1984).The goal is to lassify soybean plants into one of 17 di�erent disease ategories basedon 50 nominal (symboli) attributes, suh as weather, time of year, and harateristisof leaves and stems. There are 17 examples of eah disease, giving a total of 289 ases.Shavlik et al. randomly seleted two-thirds of these as training instanes, reservingthe remainder as test ases. They averaged their results over ten suh partitions ofthe soybean data set.The authors examined the behavior of three algorithms on this domain. The Per-eptron algorithm (Rosenblatt, 1962), one of the simplest forms of onnetionistlearning methods, represents knowledge as a single linear threshold unit. This resultsin the well-known limitation that it an only disriminate onepts that are linearlyseparable, that is, whih an be separated by a single hyperplane drawn throughthe instane spae. Thus, Shavlik et al. inluded this method as a straw algorithm.However, they also studied the behavior of Bakpropagation (Rumelhart, Hinton,& Williams, 1986), a more popular onnetionist tehnique that supports learningin multi-layer networks. Finally, they examined Quinlan's (1986) ID3, a widely-usedalgorithm for induing deision trees.
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Table 1 summarizes the behavior of these indution algorithms on soybean domainalong three dimensions { lassi�ation auray on the training set, auray onthe test set, and training time (measured in CPU seonds). All systems ahieveperfet auray on the training set, but only the Pereptron method, whih haslimited representational power, might have performed poorly on this front. A systemthat simply remembers all observed instanes ould fare as well; this is the reasonauray on training ases is seldom useful. As expeted, Bakpropagation requiresonsiderably more omputation than either ID3 or the simpler onnetionist sheme.This is not a performane measure but an indiation of learning ost. Nevertheless,it an be an important fator on sizable domains, and may be worth reporting.The surprise omes when we examine lassi�ation auray on the test ases. ThePereptron method appears to perform slightly worse than Bakpropagation,but it does muh better than expeted given the abuse it has taken over the years (e.g.,Minksy & Papert, 1969). Even more unexpeted, this tehnique atually has higherauray than ID3, whih employs a muh more sophistiated indution tehnique.The straw program refused to be blown over in this domain, suggesting it deservesmore attention than it has traditionally reeived. However, it would be premature toonlude that one tehnique is superior to another based on their behavior in a singledomain, as we will argue in Setion 5.Note that the table presents not only the means for eah ombination of algorithmand dependent measure, but the standard deviations as well. One an use this in-formation, together with the number of runs, to determine the probability that theobserved di�erenes are due to hane. Shavlik et al. report that, using a t test,the di�erene between the Pereptron and ID3 auraies is signi�ant at the 0.01level. This means that the probability is greater than 99% that this di�erene didnot our by hane. However, they also report that the apparent di�erene be-tween Bakpropagation and Pereptron is not signi�ant at this level. In theabsene of additional evidene, one must onlude that they are e�etively equivalenton this domain. Signi�ane tests are espeially important in omparative studiesand, although they are reported in few of the studies we will desribe, we enourageresearhers to use them whenever possible.4.2 Parametri Studies of Learning MethodsGiven the omplexity of many learning algorithms, one may not be satis�ed withomparisons between entire systems. The goal of experimentation is not to blindlylabel one method as superior to another, but to understand the reasons for behavioraldi�erenes. Finer-grained studies an be very useful in pursuit of this end.An obvious approah is to examine the e�et of parameters ourring in a system.In suh ases, one an determine the importane of a parameter on algorithm behaviorby systematially varying its settings and observing the results. Ideally, behavior willbe `aeptable' within a wide range of parameter values, with the system's behaviorhanging slowly as the parameter varies. Alternatively, one might identify an optimalsetting that holds aross di�erent domains.
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Clark and Niblett (1989) provide an example of a parametri study. They desribeCN2, an algorithm that ombines aspets of both Quinlan's (1986) ID3 and Mihalskiand Chilausky's (1980) AQ11. The system arries out a beam searh through a spaeof rules, guided by an evaluation funtion based on information theory. One it hasdeided on a rule to over some training instanes, it removes these and iterates to�nd additional rules. Beause CN2 uses a statistial test to determine when to stopadding onditions and rules, it should be able to avoid over�tting the training datain noisy domains.However, any statistial test requires one to speify some level of signi�ane formaking deisions. Clark and Niblett ran CN2 with di�erent signi�ane levels on amedial diagnosis task that involved lassifying patients as either healthy or havingsome form of lymph aner. They arried out �ve runs on this domain, in eah onerandomly seleting 70% of the 148 instanes as training ases and the rest as test ases.Using 90% as the signi�ane level, CN2's average auray on the test instanes was78%. In ontrast, at the 95% and 99% levels it was 81% and 82%, respetively. Thus,the parameter setting appears to have some e�et, but the di�erene is not a majorone. Of ourse, one annot tell the atual amount of noise in suh a real-world domain,as we disuss further in Setion 5.Robertson and Riolo (1988) report another parametri study, in this ase using ageneti algorithm. This lass of methods retains a number of rules in memory, whihompete for the hane to generate o�spring through operations analogous to genetimutation and rossover. The authors hypothesize that one fator in geneti learningis the number of opies retained of a given rule. Thus, they test their CFS systemwith di�erent limits on this number, measuring its behavior on a task that involveslearning to predit sequenes of symbols. The results suggested a `U-shaped' urve,in whih performane inreased with the number of opies allowed, but only up to aertain point, beyond whih it dropped again. Deteting suh regularities an let one�ne tune a learning system to inrease its learning rate or asymptoti performane.4.3 Lesion Studies of Learning ComponentsParametri studies are not the only means of exploring the soures of power in anintelligent system. One of the most ommon tehniques in neurosiene involves theexision of a well-de�ned area of the brain to determine its role in behavior, and thereis no diÆulty in adapting this notion to the study of artifats.Many mahine learning systems ontain a number of independent omponents, andeah omponent's usefulness an be studied through `lesion' experiments.5 In otherwords, one runs the system with and without a given omponent, measuring thedi�erene on some performane dimension. If a omponent does not aid the overalllearning proess, then it an be safely omitted from the system.For example, Shlimmer (1987) desribes a lesion study using an arti�ial task thatinvolves prediting the output of a 1 � 2 multiplexer. He designed this experiment5. Cohen and Howe (1988) have referred to suh experiments as ablation studies.



Experimentation in Mahine Learning 11

0 50 100 150 200 250 300

Number of Training Instances

0
10

20
30

40
50

60
70

80
90

10
0

P
re

di
ct

iv
e 

A
cc

ur
ac

y

Weight + Boolean

Weight Learning

Figure 3. The e�et of lesioning Stagger's Boolean mehanism for reating new oneptualomponents (Shlimmer, 1987).to evaluate the relative impat of two separate learning omponents in his Staggersystem. The �rst omponent assigns weights to the various omponents in a mannerreminisent of the Pereptron algorithm, but using information about onditionalprobabilities to speed learning. The seond omponent augments this proess byforming logial ombinations (onjunts, disjunts, and negations) of features thathave high diagnosti power, whih are then used by the weight-learning routine.Figure 3 presents the learning urves for the two experimental onditions, whihdemonstrate the advantage of augmenting weight learning with a method for intro-duing Boolean features. In this ase, the main di�erene lies in Stagger's asymp-toti auray, whih is muh greater for the ombined method. However, the two-omponent version does take somewhat more training instanes to reah its higherasymptote than does the weight-learning method to reah its lower one.Although this experiment fouses on a knowledge-lean method, lesion studies alsoseem well suited to knowledge-intensive learning methods. One might `lobotomize' asystem by removing some of its knowledge or some of its mehanisms, then observethe e�et on learning. For instane, in explanation-based approahes, overly spei�domain theories would presumably lead to less transfer and thus to slower learning.We will briey desribe one study involving the impat of knowledge in Setion 6.Before losing our disussion of experiments with learning methods, we shouldemphasize that the goal of suh studies is not to demonstrate superiority of onemethod over another, but to inrease understanding. Experiments may indeed reveallimitations of partiular methods or omponents, but this knowledge an in turn
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suggest improved versions of the initial algorithm. For example, Aha, Kibler, andAlbert (1991) desribe a learning algorithm that simply stores training instanesand uses a nearest-neighbor tehnique to lassify new ases. Experiments revealdrawbaks of this method, whih they attempt to remedy by plaing onstraints onthe storage of instanes. Lesion studies indiate the usefulness of this extension,but further experiments suggest other problems, whih they mitigate with anotheraddition to their instane-based algorithm. This proess of inremental re�nementrelies on understanding the reasons for a learning method's behavior, and this shouldbe the primary aim of experimentation.5. Varying Charateristis of the DomainAs we mentioned earlier, innate biases or `nature' are not the only inuene on alearning system. One must also examine the e�et of experiene or `nurture' onbehavior, and this means systematially varying the environment or domain in whihthe learner aquires knowledge. This presents the mahine learning experimenter witha hoie. One an employ `natural' domains like the diagnosti tasks we examinedearlier. Alternatively, one use `arti�ial' domains that have been designed with spei�harateristis in mind. In this setion we examine these two options. As we will see,eah approah has its advantages and disadvantages, and we reommend both for theexperimental study of mahine learning.5.1 Studies with Natural DomainsNatural domains, suh as Reinke's (1984) soybean diagnosis task, are the most obvioustestbeds beause they show real-world relevane. Also, suessful runs on a numberof di�erent natural domains provide evidene of generality. For example, let us returnto Shavlik et al.'s study, from Setion 4.1, and onsider it in more depth.Table 2 presents additional results for their three algorithms on four separate las-si�ation tasks. These inlude the soybean domain desribed earlier, a task thatinvolves prediting the winner of hess end games based on 36 high-level features, anaudiology domain that requires diagnosis of 24 hearing disorders based on 58 features,and a task that involves determining whether a patient has heart disease, given eightnominal attributes and six numeri ones. The table reports only auray on the testsets. For omparison, we have repeated the results for the soybean domain.Reall that on the soybean data, the knowledge indued by both the Bakpropa-gation and Pereptron methods performed better than the ID3 algorithm. How-ever, by examining behavior aross domains, Shavlik et al. demonstrated that thisresult is misleading. Behavior in a single domain, even a real-world one, does not ne-essarily generalize to other domains. On both the hess and audiology testbeds, bothID3 and Bakpropagation are signi�antly more aurate (at the 0.05 level) thanthe Pereptron learning algorithm, but there is no signi�ant di�erene betweenthe two more sophistiated methods. Bakpropagation does signi�antly better
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Table 2. Perentage auraies for three indution algorithms on four lassi�ation domains(Shavlik et al., 1991).Algorithm Soybean Chess Audiology HeartDisease End Game Diagnosis DiseasePereptron 92.9 � 2.1 93.9 � 2.2 73.5 � 3.9 60.5 � 7.9ID3 89.0 � 2.0 97.0 � 1.6 75.5 � 4.4 71.2 � 5.2Bakprop. 94.1 � 2.5 96.3 � 1.0 77.7 � 3.8 80.6 � 3.1than ID3 in diagnosing heart disease, but the indued deision trees outperform thelearned pereptrons in turn (at the 0.01 level).These results make one more on�dent in the non-naive approahes, but one wouldstill like to understand the reasons for ID3's poor behavior on the soybean data. Onepossibility is that this domain is nearly linear separable, but that the hyperplane isnot orthogonal to any of the axes in the instane spae. Thus, the Pereptrontehnique an aurately lassify instanes using a linear unit, whereas ID3 is foredto approximate this with a highly disjuntive deision tree, in whih eah terminalnode is based on a small sample.In the midst of this disussion, we should not forget one of the main points of theShavlik et al. study. Connetionist and `symboli' indution algorithms, althoughthey rely on di�erent representations of knowledge and use di�erent methods to a-quire that knowledge, are dealing with essentially the same problem, and this meansthat one an ompare them on the same tasks. This form of omparative study ismuh healthier for the �eld than rhetorial arguments about the limitations of existingmethods and the advantages of new approahes.Experimental studies of problem-solving systems an also use multiple domains toevaluate learning algorithms. In Setion 3.3 we reviewed results from Grath's (1991)study of Prodigy on a single domain, but in fat he examined the system's behavioron others as well. Figure 4 inorporates the learning urves for an extended version ofthe Strips planning domain and for the original version of the bloks world used byMinton (1990). The results here are muh more enouraging, with Prodigy showinglear improvement by the tenth training problem in both ases. After this point, thesystem seems to have stabilized, apparently having ompleted its aquisition of usefulsearh-ontrol knowledge.This raises issues about the reasons Prodigy enounters diÆulty in the originaldomain we examined. As mentioned earlier, Etzioni (1990) designed this variant ofthe bloks world, whih inludes a single additional operator that lets one move twobloks at a time, to produe just suh a negative e�et in Prodigy. He providesan interesting analysis of the auses for the system's divergent behaviors in thesedomains. This tehnique { altering an existing domain to eliit some e�et { is apowerful experimental tool, and it leads naturally into our next topi.
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Figure 4. Learning urves for the Prodigy algorithm on three problem-solving domains(Grath, 1991).5.2 Noise in Arti�ial DomainsStudies with multiple natural domains are muh more revealing than single-domainstudies, in that they give evidene about the generality of learning phenomena. How-ever, they provide little aid in understanding the e�ets of domain harateristis,sine they do not let one independently vary di�erent aspets of the environment. Agiven natural domain may be diÆult along many dimensions, and one would like toknow whih fator is responsible for partiular aspets of behavior. Arti�ial domainsprovide a way out of this dilemma by letting one ontrol domain harateristis asindependent variables. Instead of arrying out experiments with a real-world domainshaving unknown harateristis, one an design domain that have exatly the featuresone wants to study.For instane, Breiman, Friedman, Olshen, and Stone (1984) report an arti�ialdomain they designed to test the e�etiveness of their Cart algorithm for deision-tree indution. The domain onerns a simulated LED display in whih digits aredesribed by seven Boolean features. The performane task involves lassifying par-tiular displays as one of the ten digits, whih one must learn from lassi�ed traininginstanes. However, to make the learning task diÆult, they added random noise tofeatures in the training instanes, thus simulating a faulty display. To be spei�,they introdued a ten perent noise level for eah feature, by whih they meant thateah Boolean value was inverted with 0.1 probability.Breiman et al. ompared Cart's auray on this domain to a `straw algorithm'that simply predits the most frequent lass. Moreover, using their knowledge aboutthe probability of noise in features, they omputed the preditive auray for an
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Figure 5. The e�et of three types of noise on preditive auray in Quinlan's (1986) ID3.optimal lassi�er. Thus, they established best-ase learning behavior, whih wouldbe impossible for a real-world problem. For the LED domain with ten perent noise,the optimal auray is 74%. Beause Cart uses a statistial pruning tehnique toavoid over�tting the training data, they expeted it would approah this level. Theirexperimental results baked this predition, showing an auray of 70% for Cartafter 200 training instanes, but only a 10% auray for the frequeny method. Thus,their algorithm fares almost as well as possible on the LED task.The Breiman et al. study used an arti�ial domain with ontrolled noise level, butit did not systematially vary this variable to determine the algorithms' behaviorsaross a range of noise levels. Quinlan (1986) provides an example of this type ofexperiment. He studied the lassi�ation auray of the trees indued by his ID3algorithm when he varied the amount of noise in the training instanes.In partiular, Quinlan examined the e�et of noise when it ourred in a single(nominal) attribute, when it was present in all attributes, and when it ourred inthe lass label. The de�nition of noise in this study is somewhat di�erent, referringto the probability of replaing the atual value with a randomly seleted value (whihmight be still be orret). Thus, the maximum noise level is 100%, in whih asethe attribute or label ontains no useful information. The ID3 algorithm di�ers fromCart in its response to over�tting, halting onstrution of the deision tree when astatistial test indiates that the training data fail to justify further splits. However,Quinlan antiipated that this approah would let the system degrade graefully forall three forms of noise.Figure 5 shows the results when noise was added to training instanes taken froma task involving hess end game, similar but not idential to that used in the Shavlik
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et al. (1991) study. Noise in the lass label degrades performane muh more thannoise in individual attributes, as one might expet. Also, the former hanges in aroughly linear fashion, whereas the latter appears logarithmi. One might preditthat noise in all attributes would make learning more diÆult that noise in any singlefeature, inluding the lass label. Indeed, the urve for this ondition goes up rapidly,6but then atually dereases and levels o� at a 26% error rate. Quinlan explains thissurprising result by noting that, beyond a ertain noise level, ID3's pruning tehniqueleads to one-node trees that simply predit the most frequent lass. The dip in theurve suggests the parameter setting for the statistial test is slightly high, allowingsome over�tting to our around the 40% noise level.5.3 The E�et of Irrelevant AttributesArti�ial domains are also useful for examining the e�et of irrelevant attributes onlearning. In general, as the number of attributes inreases, the number of possibleonept desriptions grows exponentially (Haussler, 1987). Intuitively, learning shouldbe more diÆult in domains that ontain more alternative hypotheses. If an algorithmhas no way to identify relevant features early in training, inreasing the number ofattributes ould drastially slow the rate of learning.However, the e�et of irrelevant features on any partiular system is an empirialquestion, and many indution algorithms inlude tehniques that should let theme�etively ignore attributes that ontain no useful information. For instane, Fisher's(1987) Cobweb system uses an information-theoreti evaluation funtion to lassifyinstanes through its probabilisti onept hierarhy. This funtion subtrats out theinformation that has already been summarized at a parent node, and thus emphasizesattributes that serve to distinguish onepts at the same level.Gennari (1990) examined the e�et of this fator on the behavior of Classit,an extension of Cobweb that handles both symboli and numeri attributes. Heused a set of arti�ial domains that involved four separate lasses, eah di�ering intheir values on four relevant numeri attributes. However, the domains varied inthe number of irrelevant attributes { whih have the same probability distributionindependent of lass { from zero to sixteen. All domains had small but de�niteamounts of attribute noise, and training instanes were unlassi�ed. The performanetask involved prediting the numeri values of single relevant attributes omitted fromtest instanes, and the dependent measure was the absolute error between the atualand predited values.Figure 6 presents the results, whih are based on ten di�erent orders of randomlygenerated training instanes. The graph suggests that Classit is robust with respetto irrelevant attributes, with an asymptote around 2.0, regardless of the number ofirrelevant terms. This is lose to the `ideal' error of 0.47, whih is the error forthe best possible preditions that ould be based on the observed training instanes.Classit's asymptote is also onsiderably less than that of a naive algorithm whih6. Note that the dependent variable reported in this ase is perentage error, rather than the auraymeasure used in the previous studies we have examined.
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Figure 6. Learning urves for Gennari's (1990) Classit on domains with varying numbers ofirrelevant attributes.simply predits the mean value for eah attribute, independent of its lass. Thisprovides another example of how one an use straw algorithms and optimal ones toalibrate learning behavior. The system's rate of learning does seem a�eted by thenumber of irrelevant attributes, but Classit appears to sale well on this dimension,at least in the urrent domain.Although the notion of irrelevany has been most widely studied for indutivelearning and for lassi�ation tasks, it has lear analogues in other approahes anddi�erent domains. For instane, Iba (1989) has demonstrated that promisuous learn-ing of maro-operators an degrade the performane of problem-solving systems. Heshows that one an use statistial and other methods to eliminate suh knowledgestrutures, retaining ones that atually redue searh on test problems. His studiesfoused on diÆult but well-strutured puzzles that had many aspets of arti�ialdomains. Tambe, Newell, and Rosenbloom (1990) use an even more idealized searhproblem to study the e�et of expensive rules on learning in problem solving.Similarly, we suspet that irrelevant knowledge ould slow the learning rate of ana-lyti learning approahes by produing misleading explanations or making derivationsintratable. Tehniques for seleting among ompeting explanations and seletinglikely searh paths ould play a similar role to the evaluation funtion that Classituses to ignore irrelevant attributes. Arti�ial domains, inluding both relevant andirrelevant bakground knowledge, are an obvious approah to testing this hypothe-sis. Elio and Watanabe (1991) desribe one suh study, in whih they use arefullydesigned rules to study how the size and `shape' of bakground knowledge a�etsonstrutive indution.
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Figure 7. Preditive auray of the PLS system as a funtion of onept omplexity, asreported by Rendell and Cho (1990).5.4 The E�et of Conept ComplexityAnother important harateristi of lassi�ation domains is the omplexity of theonepts that desribe their regularity, and one an use arti�ial domains to study thee�et of onept omplexity on learning. For instane, Langley (1987) systematiallyvaried the number of onjuntive and disjuntive features in onepts, studying theimpat of these fators on an inremental learning algorithm. Iba, Wogulis, andLangley (1998) report the results of a similar study with the Hillary system.However, Rendell and Cho (1990) have argued that many real-world onepts aremuh more omplex than those typially used in experimental studies. They viewonepts as funtions over the spae of instanes, measuring omplexity as the numberof `peaks' or disjoint regions of lasses in this spae. There are now many algorithmsthat an aquire disjuntive onepts, but the authors hypothesized that existingtehniques would break down on domains involving very many peaks.To test this hypothesis, Rendell and Cho used an automated data generator to pro-due training and test sets for a variety of domains that had between one and 1000peaks. Figure 7 shows the results for PLS1, a noninremental indution algorithmthat is similar to ID3, based on training sets with 2000 instanes. The preditiveauray of the indued onept dereases nearly linearly with the log of the domainomplexity, even when the training data are free of noise. A similar but more raggede�et ours when there is 30% noise in the lass label, though this urve is loweroverall. Also, Quinlan's ID3 algorithm produes a similar degradation as omplex-
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ity inreases. Rendell and Cho suggest methods for representation hange as oneapproah to grouping peaks and thus reduing e�etive omplexity.Issues of omplexity are not limited to lassi�ation tasks. One an also vary theregularity of problem spaes, the struture of grammars, and the form of sienti�laws. Arti�ial domains have a role to play in these domains as well, although learde�nitions of omplexity have not yet been forwarded for these more advaned datastrutures. Extending omplexity measures to non-lassi�ation tasks is a prerequisitefor understanding suh domains, and thus should have priority in future work.6. Stages of the Experimental ProessBefore losing, it seems worth reviewing the basi steps involved in the experimentalstudy of mahine learning. The basi proedure di�ers little from that in other exper-imental sienes, exept for the nature of the independent and dependent variables,whih we have disussed in the previous setions. Many of our points will appearobvious to readers, but given the youth of our �eld, they are worth reiterating.6.1 Formulating HypothesesIn many situations, a researher has lear expetations about the e�ets he will ob-serve in an experiment. If so, it is important to state these hypotheses expliitly andto use them in fousing his/her experimental design. In many ases, these will bevague and qualitative. For instane, an experimenter will typially believe that analgorithm will lead to improved performane as the result of experiene. Similarly,he/she may predit that an indution algorithm with pruning will produe more a-urate deision trees in a noisy domain than one without pruning.Some studies, partiularly those involving natural domains, are so exploratory thatno lear hypotheses suggest themselves. But many experiments are based on someanalogy with previous studies, and in these situations, it seems worth stating pre-ditions formally. In our own experiene, preditions are often violated, and havingstated them at the outset helps one fous attention on interesting phenomena, evenwhen they are qualitative in nature.In some ases, one has a lear model of both the algorithm and the learning envi-ronment, partiularly when working with simple algorithms and arti�ial domains. Ifone is willing to make suÆient assumptions about the distribution of training data,one an make detailed preditions about the system's behavior, as Cohen (1991) hasenouraged. For example, Pazzani and Sarrett (1990) present an average-ase anal-ysis of a onjuntive indution algorithm, whih lets them predit detailed learningurves for domains with various harateristis.In a similar vein, Thompson, Langley, and Iba (1991) desribe an analysis that letsthem predit the bene�t their Labyrinth system reeives from bakground knowl-edge in omparison to Fisher's Cobweb, whih annot use the same form of knowl-edge. To aomplish this, they make assumptions about the number of onepts in a
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bakground is-a hierarhy, the number of omponents assoiated with eah onepts,and the number of possible types for eah omponent. They also assume a regu-lar struture for the bakground knowledge and a uniform distribution of instanes.7From this they alulate the theoretial learning urves presented in Figure 8. Suhdetailed hypotheses are not required for progress in mahine learning, but they havelear advantages over qualitative preditions.6.2 Designing Experiments and Seleting SamplesHaving deided on a set of hypotheses, the researher must next design one or moreexperiments to test them. The obvious requirement here is to deide on the depen-dent and independent variables. Sine we have spent many of the preeding pagesexamining the various options, we will not repeat them here. In most ases, the hy-potheses themselves will suggest a small set of variables, and the experimenter needonly deide whih measures best suit his/her purpose. A omplete design must alsoinlude deisions about the number of runs to average aross, the range of eah inde-pendent variable, and the step size for eah suh fator. If the independent variablesare qualitative in nature, one must speify the set of values they take on. For exam-ple, one must enumerate the algorithms to be tested, the omponents to be lesioned,or the natural domains from whih one will draw instanes.Another issue in experimental design involves sampling strategies. In the naturalsienes, one an never ontrol all possible variables. As a result, researhers mustollet multiple observations for eah ell in their experimental design and average theresulting values. As a siene of the arti�ial, mahine learning an avoid some butnot all of these ompliations. One has ontrol over the learning algorithm and theenvironment, but pratial onerns still ome into play. In partiular, one annotexamine all possible training and test sets in a natural domain, so typially onerandomly selets a number of suh sets for use in an experiment, then averages overthe results. Similarly, one annot examine all possible training orders for inrementallearning methods, so one must resort to a set of randomly seleted orders.Basi experimental method reommends varying the value of one independent termwhile holding others onstant. However, one an apply this proess iteratively to ob-tain fatorial designs, in whih one observes the dependent measures(s) under allombinations of independent values. This lets one move beyond isolated e�ets andlook for interations between independent variables. For instane, one might hypoth-esize that a deision-tree algorithm will fare better in one environment and that apereptron method will fare better in another, as argued by Utgo� (1988). Fatorialdesigns let one measure suh interations between independent variables. The resultsof Rendell and Cho's study, illustrated in Figure 7, revealed no interation betweenomplexity and noise; rather, their e�ets on auray appeared to be additive.7. Most theoretial analyses of learning tasks and algorithms have aimed for distribution-independent results. However, this bias di�ers from those of more mature sienes like physisand hemistry, whih are willing to make detailed assumptions to generate preise preditions,then to reonsider those assumptions if preditions are violated.
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Figure 8. Theoretial and observed learning urves for Labyrinth and Cobweb in the pres-ene of bakground knowledge (Thompson, Langley, & Iba, 1991).6.3 Running Experiments and Compiling ResultsGiven a lear experimental design, one an arry out the experiment that it spei�es.For this one must gather the training instanes or problems, implement or aess thealgorithms, run the algorithms on the training ases, and measure their performanefor eah sample in eah experimental ondition (i.e., ombination of independentvariables). One then averages aross all samples in a ondition and organizes theresults in some readable format suh as tables or graphs. This step is probably theleast ontroversial ativity in an experimental study.We have seen many examples of experimental results in this paper, inluding learn-ing urves, asymptoti auraies in omparative studies, the e�ets of noise andother fators on asymptotes and learning rates. Suh statistis are the most obviousprodut of sienti� experimentation. Figure 8 presents another example, in this asethe results of Thompson et al.'s omparative study of Labyrinth and Cobweb inthe presene of bakground knowledge.6.4 Testing HypothesesOne the experimenter has olleted and organized the data, they an be used to drawtentative onlusions. In an exploratory study, the results may suggest hypothesesthat require additional experiments. In other ases, one will have hypotheses and usethe observations to test them. Thus, one an examine learning urves to determinewhether the aquired knowledge atually improves performane, or one an omparedi�erent experimental onditions to see whether the number of irrelevant variables
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a�et asymptoti auray. In some ases, regularities in the data may suggest de-tailed models that would explain them. For instane, both Quinlan's results on noise(Figure 5) and Rendell and Cho's �ndings (Figure 7) involved near-linear relationsthat all out for explanations.As we saw in Setion 4.1, one an use statistial methods to test some hypotheses,and these indiate the on�dene with whih one an believe apparent di�erenes.This on�dene level is a�eted by three fators { the observed di�erenes betweenonditions, the number of samples in eah ondition, and the varianes of those sam-ples. Thus, even a large di�erene may not be robust if the sample is small or thevariane is high, making it desirable to use signi�ane tests whenever possible. Suhtests make the most sense when omparing nominal onditions, suh as alternative al-gorithms or di�erent natural domains. Other statistial methods, suh as orrelationanalysis, an be used for numeri variables.Ironially, signi�ane tests are least relevant when one has a detailed model thatmakes numeri preditions. Consider the theoretial and observed learning urves inFigure 8. The analysis spei�es a lear di�erene in learning rate between the twoalgorithms, but predits the same asymptote. These trends are learly apparent inthe experimental urves as well. Here the issue is the degree to whih the preditionsmath the observations. One an use a tehnique like orrelation analysis for this pur-pose. Alternatively, one an use the standard deviation of eah point on the urve todraw `error bars' around the urve, then see whether the theoretial urve falls withinthese ranges, as Pazzani and Sarrett (1990) have done. But in general, theory-ladensienes like physis have less need of statistial hypothesis testing than experiment-driven ones like psyhology, and we hope that as mahine learning matures, it willprogress from the latter into the former.6.5 Explaining Unexpeted ResultsHypotheses in mahine learning are based on some model of an algorithm and anenvironment, whether this is expliit or not. Results that agree with an hypothesislend evidene to that model, though they do not `on�rm' it; siene an never draw�nal onlusions about any situation. Results that diverge from one's expetationsount as evidene against a model, and thus require additional explanation.In some ases, explanations of rejeted hypotheses may involve altering assumptionsabout the environment. Thus, one may posit that the Pereptron algorithm didwell on a partiular domain beause it was linearly separable, even though this wasnot antiipated at the outset. Other explanations onern the algorithms themselves.For instane, Thompson et al. suggest that Labyrinth's and Cobweb's behaviorsdiverge slightly from the theoretial urves in Figure 8 beause they annot retrievesome instanes due to poor indexing.In either ase, faulty preditions indiate that one's model needs improvement,often making them more signi�ant than positive results. More important, they anindiate diretions in whih to make hanges. The ensuing altered models, whether
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formal or informal, suggest new hypotheses and preditions, whih in turn suggestnew experiments to test them. In other words, the iterative loop of hypothesize andtest is as valid for mahine learning as for any other experimental disipline.6.6 Communiating Experimental ResultsLike other sienes, mahine learning is largely a ommunal ativity, and this makeslear ommuniation essential. Repliation plays an important role in physis, hem-istry, biology, and other mature sienes, sine it ensures that results are robust andgeneral before they beome widely aepted. Suh repliation would aid our �eld aswell, but it requires detailed enough desriptions to let researhers at other sites re-peat the onditions of original studies. Mahine learning has made an exellent startin using a standard set of natural domains and in providing pseudoode desriptionsof algorithms, whih allow reonstrution of learning systems even when the originalode is unavailable.However, repliation also requires preise desriptions of the independent and de-pendent variables, the number of runs, the sampling strategy, and other details of theexperimental design. Fators used to generate arti�ial data, suh as one's de�nitionof noise and irrelevant attributes, are also essential. Finally, one should inlude in-formation about statistial tests used to evaluate hypotheses in ommuniations ofexperimental results, sine these depend on assumptions that others may question.Clear desriptions in a tehnial report or an arhival journal onstitute the �nal stagein an experimental study.7. ConlusionsOne an trae experimental approahes to mahine learning bak more than twodeades (e.g., Hunt, Marin, & Stone, 1966), but the `modern' era of experimentationbegan about �ve years ago. Sine then, the number of experimental studies hasgrown at a rapid pae, with researhers identifying new dependent and independentvariables, testing existing systems on new domains, and improving these systems whenthey enounter diÆulties. Many experimental studies produe unexpeted results,foring the experimenter to think deeply about reasons for the observed learningbehavior.In general, the �eld of mahine learning oupies a muh healthier methodologi-al state than a deade ago. However, the experimental method has been adaptedmore quikly to some areas than others. Early experimentation foused on indutiveapproahes to lassi�ation, as the urrent paper reets in its examples, but reentyears have seen many analogous studies of learning in problem-solving domains andexperiments on explanation-based methods. Researhers have also started to measurethe inuene of bakground knowledge on indutive learning.In summary, mahine learning oupies a fortunate position that makes systematiexperimentation easy and pro�table. Some methodologial questions remain unan-swered, but researhers have made an exellent start and we expet the future holds
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