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Abstract 

Many advanced safety and navigation applications in vehicles re- 
quire accurate, detailed digital maps, but manual lane measure- 
ments are expensive and time-consuming, making automated tech- 
niques desirable. This paper describes a data-mining approach to 
map refinement, using position traces that come from Global Po- 
sitioning System receivers with differential corrections. The com- 
puted lane models enable safety applications, such as lanekeeping, 
and convenience applications, such as lane-changing advice. Ex- 
periments show that, starting from a baseline map that is commer- 
cially available, our lane models predict a vehicle’s lane with high 
accuracy from a small number of passes over a particular road seg- 
ment. Multiple position traces are a powerful new source of data 
that enables cheap, automated methods of inducing lane models, as 
well as other geographic knowledge, like traffic signals and eleva- 
tions, and potentially impacts any geographic information system 
with a need to relate to actual behavior. 

Keywords: Background knowledge, noisy data, incre- 
mental algorithms, implementation and use of KDD sys- 
tems, case studies, evaluating knowledge and potential dis- 
coveries. 

1 Introduction 

There are many potential uses for an in-car system that can 
determine position on the road relative to lane markings. 
These can be roughly grouped into safety applications, 
such as lane departure warnings [17, 11, and convenience 
applications, such as lane-changing advice to improve traffic 
flow [8]. Although Differential Global Positioning System 
(DGPS) receivers are often accurate enough to locate a 
vehicle to within a lane,’ there is no reliable source of lane 
locations. 

‘The GPS receivers used in this study are generally accurate to between 
1 and 2 meters, whereas road lanes are about 3 to 4 meters wide. 
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In this paper, we present and evaluate the first system, 
to our knowledge, that enhances digital road maps with 
descriptions of lane structure, including number of lanes 
and their locations. Our approach involves mining mas- 
sive amounts of DGPS traces from floating probe vehicles to 
augment the digital maps with lane information, creating a 
resource usable by any lane-related automotive application. 
Our system does not require special vehicles or expensive 
hardware to collect data, unlike some GPS mapping meth- 
ods [4]. Our approach to data collection is to unobtrusively 
and indiscriminately gather as much data as possible from 
multiple drivers going about their ordinary business and to 
mine the resultant traces for knowledge about the road net- 
work. 

Previous work on lane boundary finding has focused 
on directly performing tasks, such as lanekeeping, using 
machine vision to find lane markings related to the vehicle 
position [2, 111. This approach is limited in several ways. 
First, the vision system must be correctly calibrated to the 
lane markings it will sense. Our reliance on DGPS traces 
effectively lets us use the driver’s lanekeeping ability to 
identify the center of the lane. The absolute nature of 
the data also provides information on upcoming terrain not 
directly sensible from the vehicle. Second, it is difficult, 
if not impossible, to build an accurate database of lane 
models with machine vision, or any other relative sensing 
method, alone. This is because the straightforward approach 
to building such a database is to store the lane structures in 
a spatially absolute reference system, and vehicles without 
an absolute sensing method, such as GPS, have no way to 
register the data spatially. An advantage to using machine 
vision techniques is that GPS accuracy suffers when the 
satellite view is partially or totally obstructed. In fact, 
deployed systems will probably use a combination of both 
technologies. We are currently developing a positioning 
system that combines GPS and local sensors to compensate 
for satellite visibility problems [ 151. 

The next section motivates this work in more detail by 
describing some uses of a lane-sensitive vehicle. We then 
discuss some related work on problems similar in spirit to 
our own and some possible approaches to the problem. After 
this, we describe our solution to the problem, a system that 
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creates an accurate description of road centerlines from a 
commercially-available map with relatively low accuracy 
and induces lane models by unsupervised learning. We 
evaluate the lane models against manual lane labels on 
highways. Finally, we describe some plans for future 
extensions to the work. 

2 Lane-sensitive applications 

The combination of a digital road map with accurate lane 
models and an in-car positioning system enables several 
novel applications [ 161. Some require additional parameters 
and data fields, but all are easily derived from current 
position traces. These include: 

Lane departure WarningAanekeeping This safety appli- 
cation tracks a car’s current offset from the road/lane 
centerline. If it deviates more than a certain amount, a 
warning signal could activate or the car could assume 
control to avoid an accident. The threshold amount could 
be related to the standard deviation of offsets during typ- 
ical driving. This application requires very high position 
accuracy to avoid false positives and negatives. 

Lane-level navigation This enhancement to standard road- 
level navigation advises the driver as to which specific 
lane he should choose to reach his destination without 
excess and last-minute lane changing. Besides the 
lane models, this application requires a per-lane model 
of intersection behavior. For example, position traces 
may indicate that 100% of drivers in the left lane at a 
particular intersection turn left, 50% of drivers in the 
right lane go straight, and 50% turn right. 

Dynamic lane closures If aggregate data on lane occu- 
pancy is available dynamically though wireless commu- 
nications, a lane closure application can compare current 
occupancies for a road segment with past lane occupan- 
cies. If that lane is particularly under-represented, the 
application may infer that it is closed due to an accident 
or construction. Navigation applications can then take 
this into account when calculating routes. 

We believe these, and other, safety and convenience applica- 
tions will provide benefits to drivers, and that unsupervised 
learning from position traces will make them possible with- 
out the high cost typically required to build the supporting 
database by hand. 

3 Related Work 
At an abstract level, this paper addresses the problem of 
taking an existing knowledge structure, the digital map, 
and augmenting it with additional information, the lane 
models. If we view the digital map as a theory describing 
the actual roadways, then adding lane models refines the 
theory, making it more accurate and complete. Our approach 
combines the strengths of theory revision and automated 

mapping research to take advantage of existing knowledge 
while processing large amounts of unlabelled real-world 
data. 

3.1 Theory revision 

Much work in theory revision is framed as a companion 
to explanation-based learning. Since the latter typically 
requires a complete and correct theory, theory revision 
techniques rework an invalid theory into a form such 
algorithms accept. If an explanation module fails to 
generate an explanation of some examples, the theory 
revision module could inductively guess at a refinement or 
correction, allowing valid explanations and use of the theory 
on similar examples in the future. 

There are several research projects in the literature that 
apply this framework of “learning by failing to explain” to 
particular theory representations and tasks. Ourston and 
Mooney’s EITHER [9] uses theory revision on supervised 
learning problems. The system accepts a theory expressed in 
propositional Horn-clause notation and a number of labelled 
training examples. The theory evaluates the features and 
predicts a label. If the label is wrong, EITHER computes 
the minimal change to the theory that corrects the prediction, 
then continues making changes to the theory until all 
examples are correctly classified. Our problem differs in that 
it involves unsupervised learning, so the training procedure 
cannot estimate its own performance. 

A common knowledge representation for the diagnosis of 
complex machines is the fault hierarchy, which lets techni- 
cians proceed from a high-level description of symptoms to 
the identification of likely causes and malfunctions through 
a series of tests. Langley et al. [7] describe the A theory 
revision algorithm for correcting the fault hierarchy in case 
of diagnostical errors. Like EITHER, their system detects 
training cases that are mislabelled by the existing knowledge 
base. The revision procedure generates all possible trans- 
formations of the fault hierarchy and chooses the one that 
reaches the most correct diagnoses, continuing until there 
is no transformation that improves on the current fault hier- 
archy. Besides depending on labelled training examples, A 
has little relevance to our problem because it exhaustively 
generates theory transformations, which is not practical in 
continuous domains. 

Some planning-based systems that interact with an envi- 
ronment also demonstrate the use of theory revision to com- 
plete their tasks successfully. If Gil’s EXPO [3], or Pearson’s 
IMPROV [lo] fail to achieve a goal expected from planning, 
they attempt to correct their plan knowledge through inter- 
action with the environment. Both agents take a variety of 
actions in the world, then analyze the effects to determine 
how to perform better in the future. Our problem is fun- 
damentally different because our system cannot to perform 
experiments to test hypotheses. Instead, it is forced to pas- 
sively observe the environment and build knowledge struc- 
tures. Although Wang’s OBSERVER [ 141 also passively ob- 
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serves a series of expert execution traces, it also requires sen- 
sors to record the effects of the expert’s actions on goal con- 
ditions. A final distinction from all these planning systems 
is that, rather than accomplish any specific goal, our system 
attempts to augment current knowledge about the driving en- 
vironment. 

3.2 Automated mapping 

Researchers have reported some progress in automatically 
building maps from rich sensor data, but they have paid 
little attention to taking advantage of existing knowledge 
structures. Teller [ 131 reports on Argus, a system that also 
infers knowledge from unlabelled data, but that does not 
have the advantage of preexisting background knowledge. 
Argus constructs a 3D model of a scene from a series of 
digital images taken by a mobile camera platform. As in our 
effort, he acknowledges the need for an absolute reference 
system to build the database, and, like our system, Argus 
uses GPS traces. The system employs a GPS receiver on the 
camera platform to establish the absolute coordinate system. 
In this case, however, the positions themselves only provide 
a reference point for processing, and the principal algorithms 
operate on the images. 

Automated mapping approaches have also focused on 
special-purpose, labor-intensive efforts to exhaustively map 
a target area. For example, the GPSVan [4] combines 
many sensors, including multiple GPS receivers, laser 
cameras, and stereo vision, to capture detailed information 
about the roadways it travels. However, the system is 
prohibitively expensive and requires dedicated personnel to 
encode features as the vehicle drives. The fields of machine 
learning and data mining have examined techniques to 
extract useful knowledge from large data sets not specifically 
designed to support modeling a particular phenomenon, 
making up in volume what is lacking in focus and detail. 
This approach has the potential to reduce mapping costs, 
covering a target area roughly at first, then with higher 
precision as more data become available. 

4 Problem analysis 

The lane-sensitive applications described in Section 2 re- 
quire a comprehensive, detailed database of roads for the 
targeted area. Since there are hundreds of thousands of road 
miles, it is prohibitively expensive and logistically challeng- 
ing for cartographers to measure the entire road network. 
Our approach is to track probe vehicles as they sample the 
road network and invoke unsupervised learning techniques 
to induce the lane structure without error-correcting feed- 
back. This section describes the problem and some possible 
approaches. 

4.1 Observable data characteristics 

To sample the road network, we equip a fleet of cars with 
absolute position sensors, and they record traces of their 
trips. Each record in the trace includes the latitude and 

longitude of the vehicle, as well as the estimated standard 
deviations on the latitude and longitude. The probe cars 
record positions at regular intervals. These probe cars 
require two main components: accurate position sensing, 
usually built around a GPS receiver, and communications 
with a centralized aggregator. The cost of GPS devices is 
rapidly decreasing, to the point where most new cars sold 
will have at least one GPS receiver in the next few years. 
Wireless technology is also advancing rapidly, and position 
communications may be “piggybacked” on other content, 
such as route update requests. In the near future, cars 
with these capabilities will become commonplace, making 
it possible to build a database of raw position traces with 
little cost. 

Figure 1 plots two sample position traces in the San 
Francisco Bay Area. Some parts of one trace coincide 
with the other trace while other parts are solitary. The plot 
overlays the traces on a rough digital map available from 
Navigation Technologies, Inc. These maps divide the road 
network into portions of road between two intersections, 
called segments. For example, at a standard highway 
interchange, the segments are the part of the highway before 
the exit, the part between the exit and the entrance, and the 
part after the entrance. Each segment has a unique identifier 
and associated attributes, including the segments to which 
each end connects and a rough approximation of its shape. 

The problem with such a database is that it provides no 
direct data regarding the information of interest: the lane 
a car occupies at a given time. The database also does 
not provide the a priori number of lanes on a segment. 
Another problem is that the positioning systems will not 
be perfectly accurate. Generating lane models from such 
data requires the use of background knowledge about the 
domain to structure the input and statistical techniques to 
accommodate the noise. 

4.2 Possible approaches to finding lane models 

We implemented a map-matching module that takes position 
traces and a digital map, then finds the most likely sequence 
of segments taken by the vehicle, along with the points in 
the trace where the vehicle transitioned from one segment 
to another. The module uses a modified shortest path 
algorithm to find a minimum-error path from the nearest 
starting intersection to the nearest ending intersection. The 
error at each intersection in the path is the closest distance 
between the intersection and the position trace. Since the 
intersection locations and the position traces are inaccurate, 
the map matcher will not necessarily give correct results, but 
in practice it met our needs. 

The map matcher lets the system focus on a single 
segment at a time, but the problem of modeling the lane 
structure for that segment remains. If we assume that 
vehicles in the center of different lanes will always be a 
certain distance apart, we can use a clustering technique 
to separate positions into lanes. Spatially clustering the 
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Figure 1: TWO sample traces of raw GPS positions in the San Francisco Bay Area with a digital map superkposed. 

positions using an algorithm such as k-means will not work, 
because two points in the same lane may be spatially distant. 
However, if two points are less than half a lane apart, they 
are probably in the same lane. Similarly, if a point is within 
half a lane of any point in a lane cluster, it is probably in that 
lane. 

We could use this intuition to “grow” lanes by initializing 
each point to be its own lane, then merging lanes where 
a point from one lane is within half a lane of a point 
from the other. This algorithm is similar to hierarchical 
agglomerative clustering 161, but it represents the clusters 
by their constituent points instead of a statistical average. 
However, this algorithm does not take advantage of the 
knowledge that lanes are constrained to be parallel to 
each other and the segment centerline. Figure 2 shows a 
representative road segment and its parallel lanes. If we 
had an accurate representation of the segment centerline, 
the perpendicular distance, or offset, between a lane and 
the centerline should be constant. This allows us to 
represent a lane with a single value, substantially reducing 
the dimensionality of the space of lane models. 

The challenge in this approach lies in finding a sufficiently 
accurate segment centerline. The Navigation Technologies 
digital map includes shape information on segments, repre- 
sented as a sequence of two or more points consisting of 
latitude/longitude pairs. If we use the piecewise linear curve 
connecting these points as the road centerline, we can com- 
pute offsets and cluster them. Unfortunately, experimental 
evidence shows that lanes are far from parallel to this curve, 
because the digital map is not sufficiently accurate. For ex- 

ample, an analysis of a sample trace with no lane-changing 
shows offsets from -20 to 10 meters from the digital map 
centerline. 

It may also be possible to use one of the position traces 
itself as a sufficiently accurate approximation of the segment 
centerline. For our purposes, the centerline does not need 
to follow the center of the pavement. Instead, any curve 
parallel to all the lanes suffices. To select the best trace, we 
could try all available traces and select the one that scores 
best on an evaluation metric of the resulting clusters. The 
standard deviation of each cluster is a plausible metric. The 
standard deviation for a correct clustering should be near the 
position accuracy, because all the points, except for points 
during lane changing, center around a lane. Clustering on 
uniformly distributed points produces the highest possible 
standard deviation, because points are just as likely to be 
far from as cluster as near. However, even the best trace 
for clustering according to this metric may not be suitable, 
because all traces may change lanes at some point, or all 
traces may be noisy. Clearly, a superior approach will 
take advantage of the parallel structure of lanes without 
relying exclusively on an inaccurate digital map or a single 
inaccurate position trace. 

5 A task-decomposition approach to map 
refinement 

Since all the approaches covered in the previous section are 
inadequate, this section describes a new approach to road- 
modeling that we did implement and evaluate. Although 
the centerline in the digital map is not accurate enough 
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Figure 2: A generalized roadway model that, instead of modeling each lane independently, specifies the center of the road and 
describes each lane as a constant offset from the center. 

to compute constant lane offsets, any line parallel to the 
true lanes is, by definition, a constant distance from the 
lanes. We have devised a procedure to bring the centerline 
from the original digital map into alignment with the traces. 
The procedure computes the “average” between the current 
centerline and a new trace, weighted by the confidence in 
the centerline and in the trace. As the system incrementally 
incorporates more traces, it averages out errors in the traces 
to find a centerline more accurate than any of the traces 
that went into it. With this centerline refinement procedure, 
our approach to finding a lane model for a target segment 
S, covered by a set of position traces P, is to decompose 
the task into first finding an accurate centerline for S using 
P, then clustering P’s offsets from the centerline into lanes. 
Next we describe how the system combines new traces into 
segment centerlines and clusters offsets into lanes. 

5.1 Finding an accurate road centerline 

Existing digital maps represent the centerline geometry of a 
road segment as a widely spaced sequence of latitude and 
longitude points, with an advertised accuracy of 15 meters, 
connected by line segments. We also represent geometry 
as a sequence of points, but at a much higher density of 
10 meters to allow finer control. We also add estimated 
standard deviations for longitude and latitude to represent 
confidence in the point. We connected the points by linear 
interpolation. This is sufficient for low-curvature highways, 
but for roads with higher curvature, for better accuracy, or 
to reduce storage requirements, higher-order interpolation is 
possible. We have not addressed the issue of space efficiency 
of map representation. 

The geometry refinement procedure iteratively improves 
the road geometry of a segment by performing a weighted 
average on the digital map with each trace. The map 
improvement process takes the current description of a map 
segment and a position trace corresponding to that segment, 

and produces a new and improved segment. Figure 3 
illustrates the map improvement process for a short segment 
of map points. For each map point m with standard deviation 
m,, the procedure first finds the nearest point n on the trace 
by linearly interpolating between the GPS trace points. The 
standard deviation no is the weighted average of the standard 
deviations of the surrounding GPS points. The new map 
point p is the average of m and n weighted by ma and no, 
and the new standard deviation is 

m2 en2 
PO = 

r 
-* 
m$+ni 

The net effect of these calculations for each point in 
the digital map is a weighted “averaging” of the map with 
a position trace. If the mean of the error distribution 
for the probe vehicle positions is zero, as assumed, then 
the weighted average will become more accurate as the 
number of traces increases. An interesting property of this 
procedure is that it does not compute the centerline of the 
road pavement, but instead weights the centerline toward 
the most-traveled lane. For example, if most vehicles travel 
along a segment in lane two and some in lane one, the 
centerline will be closer to lane two. Since the centerline is 
still parallel to the lanes, this property is not a serious issue. 

5.2 Clustering offsets into lanes 

To induce a lane model of a particular segment, we assume 
the system has an accurate geometrical representation of 
the centerline of the road, and that all lane centerlines are 
parallel to the centerline.’ Since the lanes are parallel, the 
only parameter for each lane is the perpendicular distance to 
the centerline, which we call the ofSset. 

21f the parallel assumption is not correct, this will become clear in 
subsequent analysis and the segment can be subdivided until the assumption 
is valid or the model can be changed. 
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Figure 3: “‘Averaging” a map and a position trace. In this case, the map is the baseline digital map with points interpolated 
every 10 meters. In general, the map line segments may not be collinear. The new map point is the average of the current map 
point and the closest trace point, weighted by the confidence in the map and the trace. 

We assume drivers generally are in a lane, so the perpen- 
dicular distance from most positions to the road centerline 
is an estimate of the offset for the lane. Since GPS is noisy 
and drivers are not always in the center of the lane, the mean 
of many samples should give a more accurate estimate of 
the true offset. Once the system has calculated an offset for 
each position in the position trace, the problem is to group 
these offsets into lanes and average them to find the lane cen- 
terline. Since the centerline is now accurate, we expect the 
hierarchical agglomerative clustering on offsets described in 
Section 4.2 to behave correctly. 

Although our agglomerative clustering method is slow 
(0(n3) in the number of offsets), it has two important 
properties: 

1. It will never merge two lanes into one, because the 
procedure will terminate if the closest clusters are farther 
apart than the minimum lane width. 

2. It makes no prior assumptions on the number of lanes. 

If the system incrementally builds the lane models from 
the same centerline, we can dramatically improve the speed 
of the algorithm for each iteration with the results of the 
previous traces. If the previous iteration processed m offsets 
and found N lanes, with N < m, and the current iteration 
is processing n offsets, the original algorithm creates one 
lane for all m + n offsets. Instead, the incremental algorithm 
creates one lane for the N known lanes and the n new 
points. This version essentially integrates new offsets into 
the lane structure, instead of recomputing the lane structure 
from scratch. To avoid spurious lanes (e.g., from very 
noisy position data), we require that each cluster represent 
a certain percentage of the data. For our experiments, the 
threshold was one percent. 

6 Evaluation of the approach 

Evaluating our algorithms is a challenge, because ground 
truth is difficult or impossible to find. We decided to carry 
out a number of complementary evaluations. Since the sys- 
tem consists of two independent procedures, centerline re- 
finement and lane clustering, we can determine the weak- 
nesses and strengths of our overall system by examining the 
two components separately. The overall performance of the 
system is important for evaluating its commercial viability 
and the interaction of its components. 

If our approach to learning lane models is viable as a 
cost-saving alternative to manually encoding lane structure, 
it must achieve “acceptable” performance without needing 
“excessive” training data. Although these terms depend on 
particular business assumptions regarding cost and profit, 
we can use learning curves to estimate how performance 
improves as more training data becomes available. Since 
our training data are fairly accurate and our algorithms are 
based on plausible geometric assumptions, we expect the 
learning curves to show that the system approaches its best 
performance on a segment after only processing a few traces 
that pass over the segment. 

To test our algorithms and empirically investigate their be- 
havior, we collected 44 position traces along a 15 kilometer 
section of Interstate Highway 280 between Redwood City 
and Palo Alto, California. The positions were calculated 
twice a second from a differential GPS system using a No- 
vatel DGPS receiver and a CSI differential corrections unit 
obtaining corrections from the U. S. Coast Guard beacon 
network. The data were then matched to the commercially- 
available digital map to determine what segments each trace 
traversed. Since the traces did not follow the same path, dif- 
ferent segments received different numbers of passes. Each 
of the 42 total segments of Interstate 280 in the target region 
received between 9 and 35 passes. We did not consider the 

109 



0.5 

0 
5 IO 15 20 25 30 

Number of Traces 

Figure 4: Centerline convergence. After an initial average error of 7 meters, the road centerline slowly converges to the final 
estimate. 

difference in coverage to have a significant impact, so the re- 
sults are averaged over all segments. All segments had four 
lanes, but all four lanes were not covered by any trace for a 
few segments. The traces generally stayed in one lane for the 
entire duration, and each point was tagged with the current 
lane, an integer from one to four. 

6.1 Centerline refinement alone 

Since lane prediction involves two concurrent processes, we 
first tested each process in isolation. Centerline refinement is 
the most difficult algorithm to evaluate. The only objective 
evaluation is a comparison with the true centerline, but 
there are no means of measuring this centerline. Traditional 
surveying is impractical for busy public highways. Geo- 
referenced aerial or satellite photographs are alternative 
sources of raw data, but the data may be noisy, and the vision 
processing algorithms may not be reliable. Construction 
blueprints are available, but there is no guarantee that the 
road is actually built according to the plan. Additionally, 
all of these alternatives measure the center of the pavement, 
whereas our technique produces a centerline “weighted” 
toward the most common lane sampled. So even if the 
independent centerline measurement is very different from 
our own centerline, it is not clear if that makes a difference 
in the performance of the overall task. 

Besides the final accuracy of the centerline, the rate 
of convergence is also of interest. Since the system is 
incremental, it can measure the difference between the 
centerline at each iteration and a reference centerline. If we 
plot the average difference between the current and reference 

centerlines for each iteration, the learning curve describes 
how quickly the centerline approaches the reference. This 
is of interest because it lets us estimate how many passes 
are necessary over a given segment before the centerline 
stops changing significantly. Ideally the reference centerline 
would be the true road centerline, but since the true 
centerline is unavailable we need an approximation. The 
best approximation available is the final centerline after the 
system has processed all traces. The rate of convergence in 
this case describes how quickly the centerline approaches 
the final result. 

Figure 4 plots the difference between the centerline before 
each trace and the final centerline for a representative 
highway segment. The original map database was provided 
by NavTech, Inc., and had an average error of about 7 
meters. The plot shows that the major adjustment occurs 
on the first pass, where the baseline estimate is corrected 
by a GPS estimate with 1 to 2 meter accuracy. Processing 
the successive traces slowly improves accuracy by averaging 
out the noise in the GPS readings. Although there is no 
ground truth to measure the final accuracy, later processing 
critically relies on an accurate centerline, so good results in 
those evaluations imply a sufficiently accurate centerline. 

6.2 Offset clustering alone 

A detailed evaluation of the lane models is also problematic, 
since it is difficult to measure a vehicle’s true position 
within a lane, but a rough evaluation of the lane models 
is possible. Although regular training data from the field 
will be unlabelled, we labelled our data for testing purposes 
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Figure 5: A learning curve for clustering offsets from an accurate centerline. Accuracy is high at the beginning stages (since 
there is generally only one cluster), drops as more clusters are seen, and rises again as the clusters become more accurate. 

only. The label indicates the lane that the vehicle occupied 
for the given position. The system can find which cluster 
is closest to the position, and test if the cluster matches the 
label. For example, if a position’s perpendicular distance 
to the centerline is 2.1 meters, and the closest cluster is 
centered at 2.0 meters, the system predicts that the vehicle 
is in the lane corresponding to that cluster. Although overall 
accuracy is important, the learning curve is also important 
here, because we want to know the minimum number of 
passes over a segment that yields acceptable results. For this 
experiment, instead of a fixed testing set evaluated against 
increasing amounts of training data, we incrementally treat 
each position trace first as testing data against the current 
lane models, then as training data to refine the lane models. 

The remaining issue is matching clusters with labels. In 
our tests, we used integer labels starting at one for the 
rightmost lane. In our coordinate system, offsets increase 
as they move left, so smaller offsets correspond to lower 
lane numbers. Therefore, the evaluation matches the cluster 
with the smallest offset to the smallest lane label seen so far 
in training. It matches the cluster with the second-smallest 
offset to the second-smallest lane label seen so far, and so 
on. For example, if all the training data have come from 
lanes two and four, the system maps the smallest cluster to 
lane two and the second-smallest to lane four. If an offset 
is closest to any other cluster, it is automatically wrong. 
This means that if there is a spurious cluster with a very 
small offset, all other clusters will be “bumped” to the next 
lane label, probably making them all incorrect. Fortunately, 
this is not likely to happen, because the clustering algorithm 

deletes all clusters representing less than one percent of the 
data. 

We evaluated the lane clustering process by assuming the 
best centerline model we have- the result of centerline re- 
finement on all 44 traces. With this centerline for all high- 
way segments, we tested the cumulative lane prediction ac- 
curacy. For each trace, the system calculated the offsets from 
the centerline, then integrated the offsets into the current lane 
clusters using the incremental clustering algorithm presented 
in Section 5.2. For example, if all the offsets in the current 
trace were between 5.0 meters and 5.5 meters, and clustering 
previous traces had produced a lane at 5.1 meters, the system 
would predict that the vehicle was in this lane for all posi- 
tions in the trace. The system would then update the lane by 
agglomerating the offsets into the lane cluster. 

The accuracy of the trace is the percentage of positions in 
the trace whose nearest cluster matches its lane label. As the 
lanes get more data, the lane centers become more accurate 
and lane prediction accuracy improves. Figure 5 plots the 
average accuracy of the clustering algorithm over 50 random 
orderings of the traces. Surprisingly, the results are initially 
quite good, then drop slightly for a few. traces. By the 
44th trace, the performance is at or slightly higher than 
the initial level, We believe the initial good performance 
is due to our procedure for matching clusters to lanes. 
Since there are often samples of only one lane early in the 
experiment, the clustering algorithm will probably create 
only one cluster, and the mapping guarantees that the only 
cluster maps to the only tag, giving 100% accuracy. As 
more data become available, there are more clusters and 
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Figure 6: A learning curve for interleaved clustering and centerline refinement. Accuracy is low for the first few traces, then 
the centerline becomes accurate enough to provide correct offsets for the clustering algorithm. 

more possibility of error. Overall accuracy probably never 
reaches 100% because of noisy GPS data and mislabelled 
points. These results encourage us to believe that, given an 
accurate centerline for a segment traversed by several traces, 
our system can confidently predict a vehicle’s lane. 

6.3 Combined performance 

The final study combined the centerline refinement and the 
lane clustering processes. This experiment is most similar 
to how we expect to actually deploy the system, because the 
system initially generates lane models with no information 
beyond the baseline digital map. The procedure was similar 
to lane clustering alone, except the system computed the 
offsets of the first trace from the NavTech baseline. After 
computing the offsets and evaluating the predictions for each 
trace, the system refined the digital map centerline with the 
trace. We expected the results to be poor at first because of 
the inaccurate centerlines,.but quickly approach levels in the 
previous experiment as the centerline improved. Figure 6 
plots the average accuracy of the interleaved processes 
over 50 random orderings of the traces. As expected, the 
early results were poor, although somewhat above chance.3 
Starting at the fifth trace, the combined algorithm performed 
comparably to clustering on the most accurate centerline. 

The results of this experiment show that, starting with 
baseline geometry that is commercially available, it is 
possible to generate an accurate road centerline and lane 
models after a few high-precision GPS passes. Our position 

3Guessing one of four lanes is correct 25% of the time, although the 
clustering algorithm was not constrained in the number of clusters it could 
generate. 

recorder is compact and robust enough to operate unattended 
in any car, and our algorithms make no assumption regarding 
particular route or lane changing characteristics, so an entire 
city highway network could be modeled by distributing a 
number of recording units to vehicles. The vehicles, acting 
as probes during their normal driving patterns, accumulate 
information about the highway network. Once a vehicle 
has sufficiently sampled its driving patterns, it can relay 
its data to a centralized mapping service. The speed at 
which coverage and accuracy of the digital map improves is 
proportional to the number of recording units in operation. 
This is a low-cost technique for automatically mapping 
highways with high geometric accuracy. 

7 Directions for future work 

This paper presents a realization of our methodology: to 
provide support for safety and convenience applications via 
unsupervised learning algorithms operating on anonymous 
probe vehicle traces. Our results are good for the limited 
data sample we collected, but we need to study and improve 
the robustness and autonomy of our algorithms. Our final 
goal is to let the centerline refinement and lane clustering 
processes operate unattended, receiving GPS data from 
probe vehicles and refining digital maps. However, we need 
more analysis of different types of driving conditions, such 
as curved roads, and tools to measure data quality in the 
absence of labels to have sufficient confidence in our models. 

We also plan to make more comprehensive evaluations 
of our lane models using prototype vehicular applications. 
These applications will indicate the commercial viability and 
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effectiveness of our approach. Our initial application is a 
simple lane position task that recognizes the position of the 
vehicle relative to the lane structure of its current road seg- 
ment. This application is simple enough for rapid develop- 
ment, but relevant to complete deployable applications such 
as lanekeeping and lane departure warning. 

This study focused on road centerlines and lane models, 
but data mining over position traces can yield many more 
types of geospatially specific knowledge, particularly when 
paired with a geographic information system. Virtually 
any database with a geographic component, such as records 
about how often a vehicle comes near different types of 
locations, can benefit from a suitably large set of position 
traces. Elsewhere we have reported work on predicting 
traffic controls [12] and travel times [5]. Since position 
traces are inherently individual, we are also developing 
methods to construct personal digital maps, with features 
such as preferred routes and typical speeds. It is now 
possible to quickly and cheaply accumulate volumes of 
position traces that let one annotate objects in a geographic 
database with real-world behavior. This capability has the 
potential for impact on many applications areas, from safety 
to navigation to marketing. 
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