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AbstractIn this paper we describe Magellan, an integrated architecture for mobile robotics. The system representsits spatial knowledge in terms of a topological network that connects a set of distinct places, each representedby evidence grids that contain probabilistic descriptions of occupancy. Magellan includes a module forplace recognition that determines its initial location and when it has reached a goal, a module for continuouslocalization that maintains accurate estimates of the robot's position, and a module for navigation that gen-erates path plans and executes them using reactive behaviors. Experiments in two laboratories with di�erentcharacteristics suggest that the system can operate robustly across a range of environments, including onesthat involve dynamic changes.
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An Integrated Architecture for Mobile Robotics Page 11. IntroductionMobile robots require many di�erent capabilities in order to perform useful tasks in real-world domains.Two of these capabilities are localization, determining the robot's own location, and adaptive navigation,the ability to move robustly from one location to another. Localization can be further divided into thetasks of place recognition and continuous localization. Place recognition is like waking up in a hotel room,looking out the window, and trying to determine what city one is in; in contrast, continuous localization islike trying to avoid getting lost while driving downtown. For a mobile robot, place recognition is necessarywhenever the robot is turned on in an unknown initial location, whereas continuous localization is neededas the robot moves through the world. Adaptive navigation refers to methods for moving around the worldthat are robust to dynamic changes, such as moving people or rearranged obstacles.In previous research, we have developed methods for place recognition (Langley & P
eger, 1995; Lan-gley, P
eger, & Sahami, 1997; Yamauchi & Langley, 1997), continuous localization (Schultz, Adams, &Grefenstette, 1996; Graves, Schultz, & Adams, 1997), and adaptive navigation (Yamauchi & Beer, 1996). Inthis paper we report on the Magellan project, in which the primary goal was to integrate these di�erenttechniques into a complete system that, given a map of its environment, can localize itself from an initiallyunknown position and then navigate through the world while maintaining an accurate position estimate.We start with an overview of the Magellan system architecture and its representation of spatial knowl-edge. After this, we describe place recognition, continuous localization, and adaptive navigation in detail.Next we present results from experiments in which we tested Magellan in two di�erent indoor environ-ments. Finally, we survey related work, present our conclusions, and consider directions for future research.2. The MAGELLAN SystemMagellan is an integrated architecture for mobile robotics. In this section, we describe the robot hardwareon which it operates and present an overview of the architecture's components. We then examine to theunderlying representation of spatial knowledge that these modules use in their processing. After laying thisgroundwork, we describe each of the architecture's three components in some detail.2.1 Robot Hardware and System ArchitectureWe have implemented Magellan on a number of Nomad 200 mobile robots, shown in Figure 1, at boththe Navy Center for Applied Research in Arti�cial Intelligence and at the Stanford University RoboticsLaboratory. The Nomad 200 is a wheeled robot with a zero-turning radius that has 16 sonar range sensorsand 16 infrared range sensors spaced evenly around the base. The robot also has a planar laser range�nderthat can collect high-resolution range data in a ten degree arc. All of these sensors are mounted on a turretthat can rotate independently of the base.As noted earlier, the Magellan architecture integrates three capabilities that seem necessary for a com-plete mobile robot: place recognition, continuous localization, and navigation. Figure 2 shows the high-levelarchitecture for the system, including these major components, their lines of communication, and the typeof information they pass to one another.As we detail in Section 2.3, the place recognition system provides an initial estimate of the robot's positionby building a description of the robot's current location and �nding the best match among the descriptionsassociated with places in the world. The identity of the room that contains the current place is then passedto the continuous localization system, along with the robot's inferred Cartesian position.
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Figure 1. The Nomad 200 mobile robot.
The continuous localization system retrieves the description associated with the current room and buildsnew descriptions as the robot moves through the world, registering with the room description to updatethe robot's position estimate. In this way, the robot avoids the cumulative position error that usuallyaccompanies position estimation based on dead reckoning. Continuous localization directly sets the robot'sencoders, so no direct communication between localization and navigation is necessary.The navigation system guides the robot to its destination. This system carries out heuristic search througha topological network of places to generate a path plan and uses reactive behaviors to execute that plan. Thenavigation module is adaptive in that successes and failures in execution lead to changes in the topologicalnetwork. Thus, it can take advantage of stable structures in the environment but also deal with aspects thatvary over time.In the remainder of the section, we describe each of Magellan's component systems in more detail.However, one cannot characterize mechanisms without establishing the structures on which they operate.Thus, we will �rst consider the system's underlying representation of spatial knowledge.
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Figure 2. The Magellan system architecture.2.2 Spatial RepresentationTwo representational schemes have predominated in work on mobile robots. The �rst, topological maps ,represent the general structure of the environment in terms of place nodes and links that indicate adjacencybetween those nodes. The second, occupancy grids , represent the detailed structure of a region by dividingit into a Cartesian grid and indicating whether each cell is occupied. Topological maps have advantages forrapid navigation, whereas occupancy grids provide better spatial information for use in localization.Magellan incorporates both topological and grid representations. The system uses a topological mapcalled an adaptive place network (Yamauchi & Beer, 1996) for navigation. These networks di�er fromtraditional topological maps in that they support changes in their connections to re
ect changes encounteredin the world. Magellan uses occupancy grids to represent the local structure of each place (for placerecognition) and the larger structure of room regions (for continuous localization). By integrating these tworepresentations, the architecture obtains the advantages of both topological maps and occupancy grids.2.2.1 Evidence GridsThe Magellan system represents its local spatial knowledge in terms of evidence grids , a particular typeof occupancy grid developed by Moravec and Elfes (1985). These consist of Cartesian grids in which eachcell has a certain probability of being occupied. Initially, each cell probability is set to the estimated priorprobability of cell occupancy. For example, if one quarter of the space in a given area is occupied, one mightset the prior probability to 0.25. In practice, evidence grids tend to be insensitive to variations in the priorprobability, and we have found that an estimate of 0.5 generally works well.Each time the robot receives a sensor input, the evidence grid is updated using the corresponding sensormodel, which describes the probability that cells are occupied given the reading received. This modeldepends on the characteristics of the individual sensor. One of the major advantages of the evidence gridrepresentation is its ability to fuse sensor information from di�erent sources. Any number of sensor readingsfrom any number of sensors can be combined, as long as models exist for each sensor type.
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Figure 3. Room grids for an example environment.Accumulating multiple readings over time is an e�ective method of �ltering out transient changes. Considera person walking past the robot as it maps a particular region of space. This person's path will cover manygrid cells, but each only for a brief moment. Each sonar reading that re
ects from the person will increasethe occupancy probability of the corresponding cells, but each cell will only be occupied brie
y, so all of thesubsequent sonar readings incident on the cell will reduce its occupancy probability. As a result, the cellsalong this path will have a low probability despite the person's passage.In addition to providing an e�ective method for combining data from multiple sensor readings, evidencegrids have two other advantages for use in dynamic environments. First, they can be updated quickly; usingthe equations described by Moravec (1988), each cell update can be computed with a single addition. Second,small changes in the environment tend to result in small changes to the corresponding grid representation,which is important for dealing with lasting changes in the environment.One exception to the second property concerns specular re
ection, which occurs when a sonar pulse hits a
at surface and re
ects away from (rather than back to) the sensor. As a result, the sensor registers a rangethat is substantially larger than the actual range. In such cases, a small change in the angle of a surface canresult in a substantial change to the evidence grid. One response is to rotate the sonar sensors through arange of angles equivalent to the width of the sonar arc. If both specular and non-specular re
ections arepossible from a given viewpoint, then both will be incorporated into the evidence grid.2.2.2 Integrated Spatial RepresentationMagellan's integrated spatial representation combines evidence grids with the topological framework of theadaptive place network. The system stores a single room grid for each room in the environment, along withone or more place grids that describe regions of that room. Each room grid contains its own local coordinateframe but also speci�es transformations that map the local frame to the frames of adjacent rooms. Each placegrid stores the coordinates of its center in the room coordinate frame, as well as its relative orientation. The
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Figure 4. An adaptive place network and place grids for an example environment.topological network takes the form of directional links between places, each of which speci�es the probabilitythat the robot can traverse the link. Taken together, the evidence grids and the place network describe boththe details of local places and the large-scale structure of the environment.Figure 3 shows the room grids for an example environment that consists of three rooms connected bythree doorways. Although these evidence grids are separate, they can overlap to a greater or lesser degree,as the �gure depicts. Naturally, a given room grid can be more or less complete, depending on the sensorydata that Magellan uses for its construction. In the studies reported later, in each room we positionedthe robot to collect readings from multiple viewpoints that we selected to guarantee reasonable coverage ofthat room.Figure 4 shows an adaptive place network and place grids for the same environment, with place unitsdenoted by black circles and place links by the lines connecting them. In this case, for each gatewaybetween adjacent rooms, Magellan has stored place units on both sides of that gateway, along with a linkthat connects these places. Other place units, connected by additional place links, occur elsewhere in therooms. In these �gures, the room and place grids have the same orientation, but the system can also handleenvironments in which they di�er. In our experiments, we had Magellan base its place grids on sensorreadings taken from one (manually selected) viewpoint, so that each grid describes the view from the centerof its associated region.2.3 Place RecognitionWhenever a robot is turned on in an unknown location, it needs some to way to determine that location.If the robot has a map of the world, it can accomplish this taskn by comparing its current perceptions tothose predicted by the map. We will refer to this generic process as place recognition, by analogy with thatactivity in humans.



Page 6 An Integrated Architecture for Mobile RoboticsMagellan's module for place recognition builds a new evidence grid at the robot's current location (therecognition grid) and matches it against all grids that have been previously associated with places in theworld (the stored grids). The system translates and rotates the recognition grid to �nd the best match witheach stored grid, using a hill-climbing algorithm to search the space of possible transformations. This searchprocess lets Magellan recognize a place despite variations in pose.Each step in the search algorithm relies on rotation and translation processes. The origin of the coordi-nate frame is located at the center of each grid, corresponding to the robot's position when the grid wasconstructed. Rotation involves turning the center of each cell in the recognition grid about that grid's origin,whereas translation shifts each center relative to the rotated coordinate frame. The system then compareseach recognition cell to the cell in the stored grid, computing a match score to evaluate the transformed grid.The hill-climbing algorithm applies this process iteratively to �nd the best transformation between therecognition grid and each stored grid. The system halves the hill-climbing step size when it reaches a localmaximum, in order to more precisely locate this maximum. When Magellan reaches a local maximumusing the minimum step size, it halts the search and uses the score for the current transformation as theoverall match score for the stored grid. The system repeats this process for each of the stored grids andselects the grid with the highest match score as the winner.The match score that directs the search process is computed in steps, one for each pair of correspondingcells in the recognition and stored grids. This match metric is given bys(i; j) =8>>>><>>>>: 1 if p(i) > p0 and p(j) > p01 if p(i) < p0 and p(j) < p01 if p(i) = p0 and p(j) = p00 otherwisewhere s(i; j) is the match score for corresponding cells i and j, p(i) is the probability that cell i is occupied,p(j) is the probability that cell j is occupied, and p0 is the prior probability that any cell is occupied. Thesum of this measure over all of the corresponding cells gives the total match score for the stored grid withthe current transformation.We developed this match metric, which di�ers from the one reported in our earlier work (Langley & P
eger,1995; Langley, P
eger, & Sahami, 1997), to deal with the problem of nonindependent sensor readings. Sincethe sonar cones overlap, their sensor readings are not independent. As a result, the occupancy probabilitiesin the evidence grid do not accurately re
ect the precise probability that each cell will be occupied. However,what is reliable is whether each cell is more likely or less likely to be occupied than the prior probability (orwhether it has not been sensed at all, in which case it will be equal to the prior probability). Thus, the matchmetric increases the match score whenever two corresponding cells are both more likely to be occupied, lesslikely to be occupied, or unsensed in both the recognition grid and the stored grid.In addition to providing the robot's initial location, Magellan also uses the place recognition moduleto con�rm the robot's location during the navigation process, which we will discuss shortly. Whenever therobot moves to a new place along its path to the goal, the system invokes place recognition to con�rm thatthe robot has successfully arrived at the desired place.2.4 Continuous LocalizationThe place recognition system provides Magellan with an accurate estimate of the robot's initial position,but, as the robot moves through the world, wheel slippage introduces errors into dead reckoning. As a result,any localization system that relies exclusively upon dead reckoning for pose updates will become increasingly
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Figure 5. Magellan's procedure for continuous localization.inaccurate over time. The method for place recognition described above works well for initialization, but itrequires that the robot stop to construct a detailed map of its surroundings, which makes it impractical forcontinuous localization.In order to support localization without stopping, Magellan incorporates a method for correcting poseestimates incrementally (Schultz et al., 1996). Using this technique, the system builds a series of short-termgrids based on localized sensor readings and the current odometry, and then registers the short-term andlong-term grids. The registration process invokes the hill-climbing algorithm described earlier but uses aslightly di�erent match function in which matching against unknown cells does not add to the match score.This registration produces an o�set that the system uses to correct the odometry.The short-term evidence grid represents the immediate temporal and spatial environment of the robot.Only recent sensor readings of the robot contribute to this structure. Several short-term grids of the robot'senvironment may exist at the same time, each with a di�erent amount of sensor data contributing to thegrid's \maturity", as depicted in Figure 5. Magellan considers a short-term perceptual grid to be matureafter the robot has traveled 96 inches. The expected dead reckoning error accumulated over this distancecorresponds to the maximum pose error allowed in the grid.After a short-term grid has matured, the system registers it to correct the pose error and then discardsthe grid. The registration process carries out a hill-climbing search to align the mature short-term gridand the global grid. This process gives an o�set in position and rotation that Magellan uses to updatethe odometry of the robot. Since the relocalization occurs incrementally and regularly, about once everyten seconds, the search involved in the registration can be constrained to �6 inches and �2 degrees, andtherefore is rapid.



Page 8 An Integrated Architecture for Mobile RoboticsUnlike place recognition, continuous localization cannot determine the robot's position from a completelyunknown initial pose; however, once the system has determined a pose, it can maintain the accuracy of thatpose as the robot moves through the world. In recent experiments, Magellan accumulated an averageof only �ve inches of translational error during inde�nite operation. Moreover, continuous localization setsthe encoder positions directly, so its operation is transparent to other processes controlling the robot (likenavigation and place recognition).2.5 The Navigation ProcessMagellan's navigation system incorporates both topological path planning, to determine the general shapeof the robot's course, and reactive behaviors, to avoid collisions and navigate around unexpected obstacles.The �rst process operates once for each navigation problem, whereas the second operates once on every timestep. However, as we explain below, navigation may be reinvoked if the system encounters di�culties duringits execution of the path plan.The system refers to the adaptive place network when planning a path to its destination. In the network,each link between adjacent places includes a con�dence value that represents the robot's estimate of howlikely that link is to be traversable. The cost of each link is inversely proportional to this con�dence value.Using these cost assignments,Magellan uses Dijkstra's algorithm (Bondy & Murty, 1976) to �nd the pathwith least cost from the current place C to the desired place D.Each path consists of a series of places connected by place links. At each step along the path, reactivebehaviors attempt to move the robot toward the center of the next place N , while also attempting to avoidcollisions with any nearby obstacles. If Magellan thinks the robot has arrived at place N , it halts andinvokes the place recognition module to con�rm its location. If this process determines that the robot hassucceeded at moving from C to N , the system increases con�dence on the link from C to N , which mayalter navigation decisions in the future.If Magellan thinks the robot has failed to move from place C to place N , or if the traversal processexceeds a speci�ed time limit, it also stops and invokes place recognition to determine its location. If thesystem �nds that, indeed, it has not reached N , then it decreases con�dence on the link from C to N andreinvokes the search algorithm to �nd a path from its revised place to the desired place D. Again, thisadaptive process may change the system's future route choices.Of course, if the robot is still in place C, search may again return N as the next place along the pathto D, in which case Magellan will try again to move from C to N . If the failure was due to transientobstacles or similar problems, then this attempt may well succeed. But if the failure resulted instead fromlong-term changes, such as the introduction of a permanent obstacle, then repeated attempts will eventuallyreduce con�dence from C to N enough that the search algorithm will select an alternative path from C todestination D.Another important type of event occurs when the robot crosses into a new room. When place recognitiondetermines that this has happened, Magellan activates the corresponding room grid for use in continuouslocalization and transforms the Cartesian location to the new room's coordinate frame. This lets the contin-uous localization process maintain an accurate pose estimate as the robot moves from room to room, eventhough there is a separate grid for each room.Thus integrated with place recognition and continuous localization, the navigation system lets the robotstart at an unknown position, recognize its current location, and navigate to anywhere in its global mapwhile keeping track of its location. This integrated set of abilities makes Magellan considerably moreadaptive than many existing systems for mobile robotics.
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Figure 6. Layout of the NCARAI robotics laboratory.3. Experimental ResultsMost mobile robot systems are tested within a single environment or a single set of closely related environ-ments. ForMagellan, we wanted to demonstrate a more general capability, so we tested the system in twocompletely di�erent settings: the Navy Center for Applied Research in Arti�cial Intelligence (NCARAI) inWashington, DC, and the Robotics Laboratory at Stanford University. In this way, we could test whetherMagellan's capabilities would be robust to changes in the shapes of rooms and halls, the number and typesof obstacles, and the number and frequency of humans in the vicinity.3.1 Navy Center for Applied Research in Arti�cial IntelligenceIn the �rst study, performed at NCARAI, we arranged the furniture in the robotics lab to form three distinctrooms, dubbed the library, the o�ce, and the lounge. Figure 6 shows the layout of the NCARAI roboticslab. Each of the numbers in the �gure labels a place unit, whereas the lines indicate the place links thatconnect the place units.Figure 7 shows the room grids that Magellan constructed for the NCARAI robotics laboratory. Each ofthese grids consists of 128�128 cells covering a 50 foot � 50 foot area. The system constructed these grids bytaking sonar and laser readings at a number of di�erent viewpoints (four to six), which we selected to ensurethat the robot mapped the entire room. Eleven sets of 16 sonar readings were taken at each viewpoint, attwo degree intervals over a 22 degree range (the approximate width of each sonar cone). Some 36 sets oflaser readings were taken at each viewpoint, at ten degree intervals over a 360 degree range. The amount oftime required to gather sensor information from each viewpoint was approximately 90 seconds.
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Figure 7. Room grids constructed for the NCARAI robotics laboratory (a) lounge, (b) o�ce, and (c) library.Figure 8 shows the place grids for the six places we de�ned in the environment. Magellan constructedeach of these grids from a single viewpoint at the center of the corresponding place, to which we moved therobot manually. These grids are the same size (50 feet � 50 feet) and resolution (128 � 128) as the roomgrids. The procedure for obtaining sensor information was the same as for the room grids (11 sets of sonarreadings at two degree intervals, 36 sets of laser readings at ten degree intervals), but taken from a singleviewpoint, so the total amount of time required to build each place grid was approximately 90 seconds.The six places in this environment de�ne 15 distinct navigation tasks that involve moving from one placeto another. We ran Magellan on all of these tasks, which ranged from traversing a single room to movingthrough all three rooms. There were no failures in either place recognition or navigation on any of thesetasks, including a demonstration trial that had several observers stationed throughout all three rooms. Theseresults suggest that our approach has the robustness we had anticipated.
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Figure 8. Place grids constructed for the NCARAI robotics laboratory (a) lounge, (b) o�ce, and (c) library.
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Figure 9. Layout of the Robotics Laboratory at Stanford University.Continuous localization did not play a prominent role in the NCARAI runs because it requires a certainamount of motion within a room before appreciable pose error accrues and before enough sensor dataaccumulates to perform localization. For most trials, the robot did not travel enough in any single room forcontinuous localization to take e�ect. In a few cases, we gave the system extra motion tasks and for thesecases continuous localization worked well, limiting the robot's pose error to about six inches and one degree.Although this study demonstrated that Magellan could operate robustly in an o�ce environment inthe NCARAI robotics laboratory, we wanted to test the generality of our approach to integrating placerecognition, continuous localization, and navigation. To this end, we conducted another study, to which wewill now turn.3.2 The Stanford Robotics LaboratoryWe performed a second set of runs in the Robotics Laboratory at Stanford University. Unlike many labora-tories, which are isolated from outside interference, the Stanford Laboratory is a public space in the centerof an academic building. The rooms in this area are subject to constant human tra�c, as researchers andstudents wander from o�ces to classrooms, often stopping to chat in the hallways or directly in front of therobot. In addition, the lab is used by several di�erent robotics groups, each of which frequently rearrangesthe furniture to suit its own needs. As such, this lab provides a particularly challenging environment forrobot localization and navigation.We de�ned three rooms within this environment: the main lab area, the adjoining lounge, and an adjacenthallway. Magellan learned seven places within these three rooms and connected these places to form theadaptive place network shown in Figure 9. The corresponding room grids appear in Figure 10. Like thegrids used at NCARAI, these consist of 128�128 cells covering an area 50 feet � 50 feet. As in the previousstudy, we positioned the robot at a number of di�erent viewpoints (four to �ve), which we selected to supportviewing the entire room using sonar and laser sensors.
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Figure 10. Room grids for the (a) hallway, (b) lounge, and (c) main lab in Stanford University Robotics Laboratory.Figure 11 (a) shows the two place grids created for the hallway, Figure 11 (b) depicts the two place gridsconstructed for the lounge, and Figure 12 gives the four place grids for the main lab. As in the previous studyat NCARAI, these grids are the same size and resolution as the room grids, and Magellan constructedthem from 11 sets of sonar readings and 36 sets of laser readings, which it collected after we moved the robotto the center of each place.As before, we selected 15 navigation tasks, some of which required traversal of a single room and othersinvolving movement to other rooms. In each of these trials, Magellan recognized its initial place correctlyand it navigated successfully to its speci�ed destination, despite the presence of moving people and rearrangedfurniture. For each task, we initially put the robot near the center of one of the places and gave it anapproximate (plus or minus �ve degrees) estimate of its heading.33. We provided this information because the current hill-climbing search used during place recognition has problems handlingrotations larger than �ve degrees. However, we could reduce this problem, at greater computational expense, by startingmultiple searches from di�erent initial rotations.
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Figure 11. Place grids for the Robotics Laboratory (a) hallway and (b) lounge at Stanford University.In these trials, place recognition typically determined the robot's position to within three inches and twodegrees. The recognition process required approximately two minutes on a Silicon Graphics Indy workstation,including 15 seconds for the sonar sweep, 45 seconds for the laser sweep, and 60 seconds for the grid matching.Continuous localization was rarely invoked, due to the relatively short distances between adjacent places.When the robot moved without place recognition, continuous localization determined the robot's positionto within ten inches and four degrees. This error was slightly larger than in the NCARAI study, probablydue to the more dynamic nature of the Stanford environment.Magellan's successful performance in the Stanford Robotics Laboratory showed that the system's com-petence was not limited to a single environment. Moreover, this study demonstrated the additional abilityto recognize familiar places and to navigate robustly even when the robot was situated within a highly dy-namic environment that was substantially di�erent from the NCARAI o�ce environment, where we initiallydeveloped the Magellan architecture.
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Figure 12. Place grids for the main lab area at the Stanford University Robotics Laboratory.4. Related WorkThere has been considerable research on localization and navigation for mobile robots. Our work onMagel-lan di�ers from most of these e�orts in integrating techniques for place recognition, continuous localization,and adaptive navigation { all of which are robust to changes encountered in dynamic, real-world environ-ments. However, we should brie
y consider this earlier work on mobile robotics and its relation to the currentarchitecture.Moravec and Elfes (1988) have used evidence grids for mobile robot navigation, but their approach di�erswidely from our own. Their systems use evidence grids as the only representation of space, and they draw ontraditional search methods (such as A* and relaxation) to �nd paths through the environment at the level ofindividual grid cells. Position uncertainty is handled by blurring the robot's sensor readings over time, withthe amount of blur corresponding to the uncertainty in the robot's position. In contrast, Magellan plans



Page 16 An Integrated Architecture for Mobile Roboticspaths through its topological network, leaving the low-level details of navigation to its reactive behaviors.Moreover, our system can maintain an accurate position estimate using continuous localization and it canlocalize from a completely unknown position using place recognition.Kuipers and Byun (1993) have developed a spatial learning system that identi�es distinctive places, asde�ned by a set of pre-de�ned criteria (e.g., equal range readings in three directions), and links these placeswith edges specifying transit behaviors that take the robot from one place to another. Like Magellan,it generates path plans using search through this topological network and invokes its transit behaviors toexecute them. One di�erence is that their system describes its `places' in terms of sensor readings, whereasours uses inferred evidence grids, which lets it represent the detailed structure of each place. We believethis provides a more general approach to place recognition that, as we have shown elsewhere (Yamauchi &Langley, 1996), is robust even to substantial changes in the environment. On the other hand, Magellancurrently relies on humans to identify useful places, whereas Kuipers and Byun's system invokes heuristicsto learn places in an unsupervised manner.Mataric (1992) reports a learning system for mobile robotics which combines a reactive controller witha distributed representation that re
ects the topological structure of the environment. The system alsouses the reactive controller to deal with transient changes, a feature that it shares with Magellan. Onesigni�cant di�erence is that Mataric's approach represents places in terms of a �xed set of simple landmarktypes, whereas our system relies on the richer formalism of evidence grids to support place recognition andcontinuous localization. Magellan can also respond to topological changes by modifying the con�dencevalues on links that connect the place units. In addition, it uses a more 
exible method for arbitratingbehaviors, similar to the one in Langer, Rosenblatt, and Hebert's (1994) DAMN architecture, that allows acompromise between commands from di�erent behaviors.Schiele and Crowley (1994) take yet another approach to position estimation. Their methods involvematching surfaces in a stored geometric map against line segments extracted from evidence grids usingHough transforms and Kalman �ltering. Clearly, our work on Magellan di�ers by matching evidencegrids against one another directly, which should work well in a broader range of indoor settings. Anotherdistinction is that, to date, Schiele and Crowley's research has focused on static environments, whereas wehave shown our approach is robust in dynamic environments.Burgard, Fox, Hennig, and Schmidt (1996) have developed a localization technique that compares currentsensor readings to a stored evidence grid. Their approach generates a probability distribution over all possiblepositions, rather than a single position estimate. However, their method requires a full minute to localize ina small o�ce, so the time required to localize in a large environment may be prohibitive due to its relianceon a single global grid. In contrast, our place recognition system uses a separate grid for each place and hasscaled e�ectively to large environments (Yamauchi & Langley, 1996).Thrun and B�ucken (1996) have integrated topological and grid representations for use in localizationand navigation, but their approach assumes that walls will only be parallel or perpendicular to each other.Although this may be true in most indoor environments, obstacles can make it di�cult to determine theactual orientation of walls. Our approach di�ers in using all detected features of the environment duringlocalization, and by making no a priori assumptions about the structure of the world. Also, Thrun andB�ucken's technique generates a topological map from a single global evidence grid, whereasMagellan usesa separate grid for each node in the topological map.Koenig and Simmons (1996) have used partially observable Markov decision processes for localization in adynamic, real-world environment. Their system uses a simple set of perceptual features (walls and openingsto either side of the robot) and localizes by determining the sequence of positions most likely to havegenerated those features. Our approach concentrates on the detailed spatial structure of the environment,whereas theirs focuses on information obtained from sequences of simple spatial features observed over time



An Integrated Architecture for Mobile Robotics Page 17as the robot moves through the world. As a result, Magellan should be more useful in environments withcomplex local features, such as o�ces containing furniture, where there is substantial information in theimmediate view of the surroundings, whereas their method should fare better in environments that containfew distinctive local features (such as empty hallways) but more high-level structure (such as patterns ofinterconnecting corridors).5. Concluding RemarksIn summary,Magellan is an integrated architecture for mobile robotics with the ability to recognize placesand navigate through the world while maintaining an accurate estimate of its position. The place recognitionmodule builds an evidence grid { a probabilistic representation of occupancy { that describes the robot'scurrent surroundings and matches this structure against grids stored for previously visited places. A hill-climbing registration process translates and rotates the current grid to �nd the best match with a grid storedin memory.The system passes the current location to the module for continuous localization, which repeatedly updatesthe robot's position as it moves through the world. Continuous localization incrementally modi�es the robot'sencoder position to re
ect the best match between recent perceptions, stored in short-term evidence grids,and the room layout, represented in the long-term map. This process di�ers from place recognition in that,already knowing the robot's approximate location, it can operate in real time.Adaptive navigation lets the robot move to a speci�ed destination within a topological network thatrepresents the environment. This process combines topological route planning to provide high-level directionwith reactive behaviors to provide robust execution. Based on the success or failure of the executed plan,Magellan increments or decrements the con�dences on links in its topological network, which eventuallyleads the system to plan alternative paths to its goal if the original path is blocked by unexpected obstacles.We have tested Magellan in two environments with substantially di�erent characteristics. The �rst wasa simulated o�ce setting within a research laboratory, relatively isolated from human interference; the secondenvironment was a large area within an academic building, subject with constant human tra�c and frequentlyrearranged furniture. In both cases,Magellan was able to robustly recognize places, continuously localize,and navigate to its destinations even when the environment was in 
ux.We are currently developing Magellan's successor, ARIEL (Autonomous Robot for Integrated Explo-ration and Localization) (Yamauchi et al., 1997), which incorporates both the continuous localization systemdescribed in this paper and a new method for autonomously exploring and mapping unknown environments.This technique { frontier-based exploration (Yamauchi, 1997) { directs exploration toward the boundariesbetween known open space and unknown territory. The initial version of ARIEL has successfully exploredreal-world o�ce environments while using continuous localization to maintain an accurate estimate of itsposition. In the future, we plan to integrate the place recognition system from Magellan into ARIEL,thus creating a system that can localize itself within an existing map or build a map from scratch, and thennavigate within that environment while exploring new frontiers.AcknowledgementsThis work was funded by the O�ce of Naval Research under Grant No. N00014-94-1-0505. We thank HansMoravec for sharing his software, and we thank Nils Nilsson and Barbara Hayes-Roth for providing accessto their Nomad mobile robot.
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