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1. Introduction

This paper reports on experiences gained from a wide variety of applica-
tions of machine learning, data mining and scientific discovery. Lessons
are drawn from both successes and from failures, from the engineering
of representations for practical problems, and from expert evaluations
of solutions.

In drawing lessons from two different types of data mining and
machine learning applications, fielded commercial applications and ap-
plications in scientific discovery, we focus on lessons that are new or
have been under-emphasized in earlier articles (Langley & Simon, 1995;
Brodley & Smyth, 1995; Fayyad, Piatetsky-Shapiro, & Smyth, 1996;
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Saitta & Neri, 1998). However, we also outline the most important
lessons reported previously which should not be forgotten, as they still
hold true:

— the developer must formulate the problem in a way that is amenable
to existing learning algorithms,

— success often hinges on engineering the problem representation;
— it is often crucial to collect or select training data carefully, and

— the preceding steps are more crucial to success than decisions
about which learning algorithm to use.

In addition to the lessons learned from the applications of ma-
chine learning and scientific discovery, the paper also presents knowl-
edge management lessons learned in a collaborative setting involving
distributed data mining teams.

This paper is organized as follows. Section 2 summarizes two in-
vited talks at the workshop on Data Mining Lessons Learned (DMLL-
2002) organized at the Nineteenth International Conference on Ma-
chine Learning (ICML-2002) in Sydney in July 2002. These invited
talks concerned lessons learned from applications of machine learning
and the computational discovery of scientific knowledge. Section 3 dis-
cusses business lessons learned from large industrial projects. Section 4
discusses lessons learned from collaborative research and development
projects, in terms of the data mining process, the organization of team-
work and knowledge management. The paper concludes by outlining
some trends and directions for further work.

2. Lessons from applications of machine learning and
scientific discovery

Previously, lessons learned have emphasized commercial applications
of machine learning (Langley & Simon, 1995; Brodley & Smyth, 1995;
Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Saitta & Neri, 1998). A
novel contribution of this section is to combine that body of experi-
ence together with work on the machine-aided discovery of scientific
knowledge. As Langley 2000 has noted, there have been successful
applications of the latter kind in many scientific areas, including as-
tronomy, biology, chemistry, ecology, graph theory, and metallurgy,
and the lessons enumerated in the introduction are as valid for such
discovery tasks as for commercial applications. Successful developers
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of scientific discovery systems spend significant time formulating (and
reformulating) their problem, in engineering the problem representa-
tion, and in collecting and manipulating the data. Likewise, the lessons
that we discuss below apply equally to both commercial and scientific
applications.

2.1. MACHINE LEARNING WORKS

The first and most important lesson to be drawn from attempts to
apply machine learning to commercial and scientific problems is that
they often succeed, producing performance systems or knowledge bases
that had no previous counterparts or that improve on existing ones.
The examples that follow are representative of a much larger body of
successful applications.

Loan application screening. In the 1980s, American Express (UK)
used statistical methods to divide loan applications into three cat-
egories: those that should definitely be accepted, those that should
definitely be rejected, and those which required a human expert to
judge (Langley & Simon, 1995; Michie, 1989). The human experts could
correctly predict if an applicant would, or would not, default on the loan
in only about 50% of the cases. Machine learning produced rules that
were much more accurate—correctly predicting default in 70% of the
cases—and that were immediately put into use.

Printing press control. During rotogravure printing, grooves some-
times develop on the printing cylinder, ruining the final product. This
phenomenon is known as banding, and when it happens production
must be halted and the cylinder repaired or replaced before printing can
be resumed. The causes of banding are imperfectly understood, even
by experts. The printing company R.R. Donnelly hired a consultant
for advice on how to reduce its banding problems, and at the same
time used machine learning to create rules for determining the process
parameters (e.g., the viscosity of the ink) to reduce banding (Evans
& Fisher, 2002). The learned rules were superior to the consultant’s
advice in that they were more specific to the plant where the training
data was collected and they filled gaps in the consultant’s advice and
thus were more complete. In fact, one learned rule contradicted the
consultant’s advice and proved to be correct. The learned rules have
been in everyday use in the Donnelly plant in Gallatin, Tennessee, for
over a decade and have reduced the number of banding occurrences
from 538 (in 1989) to 26 (in 1998).
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Telephone technician dispatch. When a customer reports a telephone
problem to Bell Atlantic, the company must decide what type of tech-
nician to dispatch to resolve the issue. Starting in 1991, this decision
was made using a hand-crafted expert system, but in 1999 it was re-
placed by another set of rules created with machine learning (Provost
& Danyluk, 1999; Danyluk, Provost, & Carr, 2002). The learned rules
save Bell Atlantic more than ten million dollars per year because they
make fewer erroneous decisions. In addition, the original expert system
had reached a stage in its evolution where it could not be maintained
cost effectively. Because the learned system was built by training it on
examples, it is easy to maintain and to adapt to regional differences
and changing cost structures.

Laws of metallic behavior. A central process in iron and steel manufac-
ture involves removing impurities from molten slag, but metallurgists’
knowledge of the laws that govern it are incomplete. To improve this
situation, D. Sleeman and his colleagues developed DAVICCAND, an
interactive discovery system that lets its user select pairs of numeric
variables to relate and focus attention on some of the data, while it
searches for numeric laws that relate variables within a given region.
This procedure produced two new discoveries about metallurgy. The
first involves the quantitative relation between the amount of oxide
in slag and its sulfur capacity under different temperature ranges. The
second contribution concerned improved estimates for the oxide content
of slags that contain Ti0s and FeQO, along with the conclusion that
FeO has quite different basicity values for sulphur and phosphorus
slags. These results were deemed important enough to appear in a
respected metallurgical journal (Mitchell et al., 1997).

Reaction pathways in chemistry. A recurring problem in chemistry
involves determining the sequence of steps, known as the reaction path-
way, for a given chemical reaction. Because the great number of possible
pathways makes it possible that scientists will overlook viable alterna-
tives, R. Valdés-Pérez developed MECHEM, a system that carries out a
search through the space of reaction pathways that can account for a set
of chemical reactants and products provided by its user. This approach
has produced several novel reaction pathways that have appeared in
the chemical literature. For example, Valdés-Pérez (1994) reports a new
explanation for the catalytic reaction ethane+ Hy — 2 methane, which
chemists had thought was largely solved, whereas a later application
generated new results on acrylic acid. MECHEM produces pathways in
a notation familiar to chemists, and users can influence its behavior by
invoking alternative domain constraints.
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2.2. APPLICATIONS GENERATE NEW SCIENTIFIC DIRECTIONS

The second lesson is that applications often generate challenging new
questions and directions for scientific enquiry within machine learn-
ing. Typically, these issues are not fully investigated in the course of
developing the applied system, and much remains for the scientific
community to unravel. If these issues are properly communicated in
the scientific literature, the scientific community benefits tremendously
(Provost, 2003). For example, the following research issues all arose in
a single application effort (Kubat, Holte, & Matwin, 1998), and all are
still open questions:

— What are the best methods for learning and evaluating perfor-
mance when classes are highly imbalanced?

— What are the best methods for learning and evaluating perfor-
mance when data occurs in batches that differ systematically from
one another?

— What are appropriate methods for evaluating performance when
the training data are hand-picked, rather than sampled randomly
from the natural population ?

— What are the best methods for learning and evaluating perfor-
mance when objects are described and can be classified at multiple
levels of granularity?

— What are the most appropriate ways of developing, tuning, and
evaluating a system when very little training data is available?

The last point deserves some amplification, because the data min-
ing community takes as its starting point that we are deluged with
data, and the fundamental problem is dealing with the overwhelming
quantity of observations. While this may be true for some business
applications, for the scientific applications we have examined (Langley,
2000), this is the exception rather than the rule.

For example, in one project on ecosystem modeling (Saito et al.,
2001), some 14,000 observations could be extracted from satellite im-
ages for a few variables, but only 303 data points were available for
other variables that were needed to determine the relations of inter-
est. In another effort that involved modeling gene regulation, there
were thousands of measurements, since DNA microarrays can estimate
expression levels for many genes at the same time, but there were
only 20 distinct samples measured over five time steps, which provided
very few constraints on candidate models. Thus, the frequently heard
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rhetoric about the massive data sets generated by satellite imagery and
microarray technology is misleading at best.

2.3. THE DEPLOYMENT CONTEXT IS ALL IMPORTANT

The “deployment context” of a machine learning application refers to
the actual, final use to which the learned knowledge/system will be
put, and the real-world context and conditions in which that use will
take place. This context defines three important aspects of the machine
learning task. First, it determines the exact role that the learned system
will play; for example, will the system make final decisions? Is it allowed
to defer to a human? Is it ranking alternatives rather than selecting
among them? Second, it specifies the scope and distribution of the
inputs to which the learned system will be applied. Finally, it defines
the performance criteria and standards by which the learned system
will be judged.

For example, rarely in a commercial application will classification
accuracy be the performance criterion. Misclassifications have costs,
and performance is judged on the basis of these costs, not in terms
of predictive accuracy (Provost, Fawcett & Kohavi, 1998). Moreover,
these costs are usually not known in advance and they may change over
time. In both commercial and scientific applications, the deployment
context creates learning tasks that differ from ones typically studied by
the research community in the following key ways.

Interactive (man-machine) systems. Although the literature on ma-
chine learning and discovery emphasizes automated systems, applica-
tions often require systems that interact with a domain expert. Even
when the goal is to develop a commercial system that will replace a
human, an expert can usually provide crucial guidance in defining the
search space and evaluating results. In scientific applications, domain
experts have no desire to be replaced, and instead are eager for compu-
tational tools that can make their own data analyses more productive.
Both contexts point to the need for interactive environments that assist
humans in understanding data while letting them remain in control.!
This has been the fundamental premise of several learning systems,
including Structured Induction (Shapiro, 1987) and ProTOs (Porter,
Bareiss, & Holte, 1990), and it has been a key element in both com-
mercial (Evans & Fisher, 2002) and scientific (Mitchell et al., 1997)
applications.

! The data mining community has also developed such interactive environments,

but they are designed for use by professional data miners, not those who use the
knowledge.
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Comprehensible models. An interactive approach makes it imperative
that the learned model be comprehensible to the human expert. Even
for non-interactive systems, the resulting model is seldom accepted and
deployed unless it can be understood by people with decision-making
power. In many scientific domains, there are well established notations
for expressing knowledge. For example, structural models are used in
organic chemistry, systems of numeric equations are common in Earth
science, and qualitative causal models are typical in microbiology. A
minimum requirement for comprehensibility is that the learned model
be expressed in a notation that is familiar to the human expert. Unfor-
tunately, few scientific notations bear much relation to the formalisms
popular in machine learning and data mining. Other factors can also
accept comprehension and acceptability. For instance, Pazzani et al.
(2001) found that medical doctors were more likely to accept induced
rules that did not violate preconceived notions (e.g., that Alzheimer’s
is more likely in older patients).

Ezxplanatory models. In many cases, learned models must be more
than comprehensible, in the sense of being readable; they must also
“make sense” to human experts. Some fields of science desire more
than descriptive laws, and instead aim for explanatory accounts of
observations in terms of interactions among hypothesized components
and processes. The MECHEM system (Valdés-Pérez, 1994) has used
this approach to discover new reaction pathways in physical chemistry.
But even the induction of predictive models can benefit by exploiting
domain knowledge to ensure that the models it produces make sense
and that the conclusions it draws can be explained satisfactorily. The
need for explanatory models was the key driving force behind PROTOS
(Porter, Bareiss, & Holte, 1990) and the system of Clark and Matwin
(1993).

3. Business lessons learned from large industrial projects

Companies operate in a highly competitive environment. Part of the
competitive advantage of an organization is embodied in the knowledge
it has of its environment (Halliman, 2001; Berry & Linoff, 1997). Much
of this knowledge can be modeled, allowing the organization to select
those actions that maximize its profit, or minimize its loss.

Data mining in industry can be defined as the effort to generate
actionable models through automated analysis of their databases. In
order to be useful for industry, data mining must have a financial
justification. It must contribute to the central goals of the company
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by, for example, reducing costs, increasing profits, improving customer
satisfaction or improving the quality of service. Formulated in this way
it is clear that data mining in industry is quite an ambitious effort
(Adriaans, 2002a) as it is mainly the improvement in the return of
investment that counts.

From this perspective it is clear that data mining cannot be suc-
cessfully undertaken in all companies. Many companies simply lack
sufficient data, and their business depends almost completely on in-
formal human knowledge they have about their clients, products and
services. Companies that can benefit from data mining typically have
a considerable size and maintain extensive information systems with
large databases. Most promising for data mining are organizations that
automatically gather large quantities of data without human interven-
tion, such as web providers, call-detail records in telecommunications,
companies that process financial or credit transactions, and systems
that collect data from large automated systems. Companies of this
type operate in very dynamic environments and use data mining as
a continuously evolving process to update their models. The infras-
tructure needed by such companies is completely different from the
infrastructure one needs for isolated short-term projects to solve an
individual problem.

3.1. CRITERIA FOR SUCCESS

Most business people (marketing managers, sales representatives, qual-
ity assurance managers, security officers, and so forth) who work in
industry are only interested in data mining insofar as it helps them
do their job better. They are uninterested in technical details and do
not want to be concerned with integration issues. A successful data
mining application has to be integrated seamlessly into a marketing
application, a CRM tool, a service management environment, an in-
ventory system or a prognostic and health management tool. Bringing
an algorithm that is successful in the laboratory, even on real life data,
to an effective data mining application in industry can be a very long
process. Issues like cost effectiveness, manageability, maintainability,
software integration, ergonomics and business process re-engineering
come into play.

Introducing a data mining application into an organization is not
essentially very different from any other software application project;
the same basic principles hold.? For every software project one has to

2 This specific form of metrics was used to manage about 200 projects in Syl-

logic between the years 1990 and 2000. It is not fundamentally different from other
techniques (Garmus & Herron, 2001).
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form a project team that acts as an agent of change in an organization.
If ¢ is the size of the team and d is the duration then (¢ - d) is a good
indication of the costs involved. Now one can evaluate the risks of a
software application project along the following four dimensions:

Duration d of the project,
— Size s of the project in person months,

— Internal Complexity C; of the project, and

External Complexity C, of the project.

C; is a measure for the amount of learning and mutual communica-
tion that is involved inside the team. C. is a comparable measure for
the impact that the project has on the organization as a whole. How
many employees are affected and how fundamentally is their work en-
vironment changing? Especially the measure C; can be estimated quite
accurately. Let [ be the average time needed to learn the necessary skills
for the project for each team member. Let ¢ be the fraction of time each
team member needs to communicate with one of their direct colleagues
and let m be the fraction of the total number of team members a team
member needs to communicate with. Then we have:

l S
C; = (1—8)71-(1—c-m-(8—1))71

Here the first term (1 — 4)~! is an indication of the loss of efficiency
as a result of time spent learning on the job. The second term (1 —
c-m-(5—1))"" is an indication of the loss of efficiency as a result
of internal communication in the team. This analysis makes clear that
there are some conditions under which any team will collapse: as soon
as [ approaches d or when c-m - (5 — 1) approaches 1. In the first case
all the time is spent doing nothing but learning; in the second case
all time is consumed in communications. Seasoned project leaders will
recognize the situations. People in top management invariably tend to
make the following mistake. They formulate a strict deadline, so d is
fixed and then take t = 3 to be the size of the team necessary to finish
the project where in fact it is ¢t = 5 - C; - C.

The importance of this analysis for data mining lies in the fact
that for data mining projects the values of C; and C, are somewhat
higher than for normal projects whereas it is not uncommon for top
management to expect a return on investment within 6 months. Data
mining projects typically have a higher complexity than most other
software projects, so [ is usually inherently high. Data mining projects
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are knowledge intensive. Remember that data mining can only be de-
ployed successfully when it generates insights that are substantially
deeper than what the company already knows about its business. De-
signers and analysts have to learn a good deal about the situation of the
client before they can assess the viability of a data mining approach.
This implies that successful data mining projects in industry preferably
should be done by consultants who already have a deep understanding
of the client’s business. The same holds for the employees of the com-
pany. They should have a feel for the possibilities of data mining®. For
the same reasons internal communication in the data mining team has
to be quite intensive. This creates higher values of ¢ and m. Finally,
the deployment of data mining results in an organization can have
considerable consequences for the structure of business processes. This
creates a higher value for Ce.
From this analysis we can draw several pieces of advice:

— Data mining projects should be carried out by small teams with a
strong internal integration and a loose management style.

— Pilot projects with a steep learning curve are of vital importance.

— A clear problem owner should be identified who is responsible for
the project. Preferably this is not a technical analyst or a consul-
tant but someone with direct business responsibility, e.g., someone
in a sales or marketing environment. This will benefit the external
integration.

— The positive return on investment should be realized within 6 to
12 months.

— Since the roll-out of the results a data mining application mostly
involves larger groups of people and is technically less complex, it
should be a separate and more strictly managed project.

— The whole project should have the support of the top management
of the company.

Before starting a long term data mining project it is wise to carry
out one or more small pilot projects with a relatively small data set and
a small team consisting of a data mining expert and a domain expert
with some technical support. In order to use data mining techniques

3 An interesting observation from tool vendors is that clients often discover new

unexpected application areas of their software of which the vendor is unaware. The
learning curve of experienced users is very steep.
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in an industrial setting the following conditions (Chapman et al., 2000;
Adriaans & Zantinge, 1996) have to be satisfied.

1. The data must be available. This point may seem trivial, but data
are not always available and ready for data mining. Data sets may
be scattered over an organization, stored in legacy database systems,
probably in different formats. Sometimes manual codification and edit-
ing is necessary. In some cases, legal constraints may prevent sensitive
data from being shared with a third party. In some cases, the decision
to start a data mining project may even be the first time the company
has committed to gathering historical data in a systematic way. Such
impediments may cause a substantial delay before tangible results are
obtained.

2. The data must be relevant, adequate and clean. By relevant we
mean that the data must be sufficient to support analysis and for
drawing conclusions for the domain of interest. By adequate we mean
that all the attributes that we need are available and filled to an
acceptable degree. By clean we mean free of noise and errors. Most
infrastructure databases in a company were not designed with data
mining applications in mind, so only data that have direct relevance
for the day-to-day operation are stored. To test these criteria, it is very
useful to engage in a small preliminary pilot project to analyze a data
sample. Companies often over-estimate the quality of their data. The
pilot study will make clear what data quality issues exist, from which
an estimate can be made of how much time and effort must be spent
in data pre-processing and cleaning. It is very useful to warn clients
about this.

3. There must be a well-defined problem. Data mining should be a
goal-directed activity. Data mining companies often get datasets from
clients with the directive that they simply “find any interesting pat-
terns” in them. But there are always patterns in data; without knowing
what to look for the data miner cannot judge their value. The client
must provide a well-defined goal, without which there is no measure for
success and no way to assess the value of data mining results. In some
cases, a data miner may be faced with an open-ended assignment; for
example, to do a feasibility study for a bank to investigate the possible
uses of data mining in the organization. This is a valid undertaking,
but the best way to approach it is to discuss possible applications (for
example, detecting fraud, improving quality of customer service, or
reducing mail costs) with the management. A series of tests should be
done on these possible application areas. The entire problem definition
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process may take the form of a “negotiation” between data miner and
client.

4. The problem should not be solvable by means of ordinary query or
OLAP tools. In order to start a data mining project some kind of
data storage with query facilities must be in place. This is a necessary
condition for the success of any data mining project. If the problem
can be solved with this basic infrastructure alone then there is no
need to start an advanced data mining effort. Ideally an organization
that begins to implement data mining solutions should already have
experimented extensively with more traditional query and reporting
tools and, on the basis of these experiments, should have concluded
that the traditional solutions do not work or are too labor intensive.
Many companies start a data mining project on the basis of the belief
that their databases form a real asset. Even if this is true, they might
be helped substantially with some clever reporting from a query tool
rather than an advanced data mining effort. In some cases we have
seen data mining projects called off because traditional reporting tools
already produced more interesting information than the organization
could cope with.

5. The results must be actionable. 'This point recurs throughout many
of the articles in this special issue. Data mining can usually produce
new knowledge, but the results of the data mining process should lead
to actions that really can be implemented by the organization to further
its financial goals. What constitutes “actionable” varies from organiza-
tion to organization. In a direct marketing company, for example, one
could deploy the results of a data mining effort in a number of ways:

— Making the discovered knowledge accessible to other (less experi-
enced) users via dedicated interfaces to existing software applica-
tions.

— Optimizing outbound marketing campaigns. With direct mail one
can reach a 20-40% cost reduction.

— Deploying results in other channels, e.g., the call center. On-line
data mining results can be used for dialog-control. If we combine
content data of a dialogue with back-end data from operational
systems we get a very powerful marketing system.

Summary. Given these five criteria, it is clear that not every company
will satisfy them. Having a lot of data, even if the quality is good, is
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certainly not a guarantee for success. A number of data mining projects
have failed in the past years because one or more of these criteria were
not met. On the other hand, if a data mining project satisfies these
criteria it is likely that the project can lead to substantial improvements
and cost reductions for the company.

3.2. DATA MINING AS A BUSINESS

On the basis of these issues it is also clear under what conditions data
mining as a business can be successful. Data mining companies vary
considerably, but in general a company either sells consultancy, tools or
a combination of the two. If one takes point four of the previous section
into account then it is clear that a vendor that only offers horizontal
data mining tools will always be in competition with vendors of data
base management environments, OLAP, reporting and query tools.
They have per definition a bigger potential market then data mining
tool vendors. For vendors of horizontal database management systems
and query tools it is relatively easy to enhance their product with data
mining capabilities or to buy a small innovative data mining company
in order to get access to data mining expertise. Furthermore, the data
mining vendor is probably the last one to enter the client’s site and will
find a database environment that is already up and running. This is
one of the main reasons that it is almost impossible for a company to
survive on the basis of sales of horizontal data mining tools only. There
is no room in the market for independent vendors of horizontal data
mining tools. In this light there are a number of strategies that a data
mining company can follow: find a vertical market and specialize, sell
to a strong vendor of horizontal solutions, or simply quit the business.

In selling data mining consultancy, it is not easy to find a market
that sustains a healthy business in the long run. The problem is that
data mining per se deals with finding deep knowledge that is specific to
an organization (points 3 and 5). Also, as Kohavi et al. (2004) observe,
every problem is different. The client usually knows his business better
than the consultant. Only by building up specific expertise concerning
the application of data mining techniques in a vertical segment the data
mining business can survive.

3.3. QUALITY OF THE DATA

Traditionally most database systems have been designed to fulfill a
specific (mostly administrative) need. All the data are gathered with
a specific application in mind. Data mining, in contrast, is generally
an open-ended process. Any subset of the data, any combination of
attributes or any derived attribute in the database can be of interest at
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some point in time. This sets much higher qualitative criteria for the
data.

Often the quality of the data in commercial databases is very uneven.
Attributes that are vital for the business are of high quality. Other at-
tributes are heavily polluted. A lot of companies have made disturbing
discoveries about the quality of their data after starting data mining
projects. There is a hidden problem of legacy databases in industry.
Often it is impossible to cleanse the data in a cost-effective way. It
is clear that in such cases an organization needs to install business
processes that ensure the production of data of high quality. This may
even include a redesign of applications and their underlying databases.
Ergonomic application design is becoming important in this respect.

Designing databases with potential data mining applications in mind
is very important. This is a matter of detailed analysis of the context in
which the applications are to be used. Software ergonomics is becoming
more and more important in this respect. In a lot of cases poor design
of a database leads to polluted useless data. Industries have made this
disappointing discovery over and over in the past years.

4. Lessons learned from collaborative research and
development projects

The core of data mining is the extraction of useful patterns or models
from data (Hand et al., 2001). However, to reach actionable results from
data usually requires a long and non-trivial process (Berry & Linoff,
1997) involving aspects of business and technology (Pyle, 1999), as well
as human skill; the human factor is one of the most important suc-
cess factors, including project management and control. A well defined
process is of importance to achieving successful data mining results,
particularly if the number of participants involved in carrying out the
data mining tasks is large, involving teams of individuals with different
expertise, skills, habits and cultural backgrounds.

Many authors have suggested broadly defined process models to
perform data mining (Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Adri-
aans & Zantinge, 1996). The emerging standard data mining process
model is the CRoss Industry Standard Process for Data Mining (CRISP-
DM) (Chapman et al., 2000). CRISP-DM subdivides a data mining
project into the six, interrelated phases of: 1) business understanding,
2) data understanding, 3) data preparation, 4) modeling, 5) evaluation,
and 6) deployment. Like the alternative data mining processes, there
are numerous feedback loops connecting the phases in CRISP-DM.
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As data mining is multidisciplinary it often requires the expertise of
numerous individuals. The business understanding phase requires com-
munication skills to work closely with the data mining client (the orga-
nization interested in the data mining results). The modeling phase—
which requires the use of statistics or machine learning—can be under-
taken largely independently of others, making it possible to perform
parts of a data mining process in a remote e-collaboration setting.
To ensure that collaborative data mining is successful, well defined
collaboration principles and support tools are required (Jorge et al.,
2003; Mladeni¢ et al., 2003; Mladeni¢ & Lavraé¢, 2003).

A data mining project that is collaborative involves more complexity
than one that is small and local, but there are benefits to combining
expertise. To realize such benefits it is vital that all collaborating parties
share their results, either complete or intermediate. For example, in
the data preparation phase, any data transformations should be made
available, while in the modeling phase, the models should be made
available in a standardized format. Information needs to be securely
but easily shared using an appropriate e-collaboration knowledge man-
agement system. The evaluation phase is important in the data mining
process for it is in this phase that the key results—the models—are
evaluated against the initial project objectives. When working in a
collaborative setting it is important that all models be evaluated fairly
and consistently. This is best done by centralizing the model evaluation
as much as practical.

4.1. LESSONS FROM MANAGING LARGE DATA MINING PROJECTS
INVOLVING BUSINESS AND ACADEMIA

In Europe, US and Japan, the collaboration between academic, business
and industrial teams has been supported by collaborative Research and
Development projects performed at the national or international level.
Examples of such collaborative data mining projects are the European
project Data Mining and Decision Support: A Furopean Virtual En-
terprise (SolEuNet) (Mladeni¢ et al., 2003; Mladeni¢ & Lavrac, 2003),
the European project Enabling End-User Datawarehouse Mining (Min-
ingMart) (Morik & Scholz, 2003), the US project Evidence Extraction
and Link Discovery, and the Japanese project Active Mining (Motoda,
2002; Motoda & Washio, 2002).

All these practice-oriented research efforts in data mining have rec-
ognized the need for methods and tools that include a larger part of the
problem solving process than data mining. Based on the CRISP-DM
methodology that covers the process from problem definition to delivery
of the resulting patterns, the MiningMart project developed methods
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and tools that include the preprocessing stage and support the con-
struction and use of a database of solutions. The Active Mining project
extended the scope to the active acquisition of data, emphasizing the
role of a domain expert in all stages of the data mining process, and
demonstrated a spiral modeling of knowledge discovery. The project on
Evidence Extraction and Link Discovery addressed similar issues but
in the context of specific applications such as military decision making
and terrorist network discovery. The SolEuNet project aimed at the
integration of data mining and decision support processes in a remote
collaborative problem solving setting, resulting in numerous pilot data
mining and decision support solutions.

Such projects result in the formation of a dynamic network of ex-
pert teams with long term experience in data mining, frequently in-
volving partners from academia, business and industry. For the man-
agement of geographically distributed research teams, the SolEuNet
project investigated a new organizational model—a virtual enterprise
model (Camarinha-Matos, Afsarmanesh, & Rabelo, 2000)—as a basis
for establishing dynamic links between experienced data mining experts
and customers in need of solutions. This model proposes a flexible
association of academic institutions and business entities who, although
they may having different motivations for this partnership, share the
objective of promoting and selling advanced services offered by the pool
of partners. The definition upon which a virtual enterprise is modeled
is “a temporary aggregation of core competencies and associated re-
sources collaborating to address a specific situation, presumed to be a
business opportunity” (Goranson, 1999).

National and international research and development projects can
thus be viewed as virtual enterprises emerging from a single business op-
portunity (a call for project proposals). Successful partner collaboration
in such projects shows that strong motivation and well-defined common
goals allow individuals to successfully collaborate across organizational
boundaries (Moyle, McKenzie & Jorge, 2002). The problem encoun-
tered by partners of such projects and networks is that of identity
and long term viability (Lavra¢ & Urbanéi¢, 2003). During the project
financing period many joint results are achieved, much information is
gathered and disseminated, and many working relationships and work-
flows are established. However, briefly after the end of the financing
period, the gathered information risks becoming inaccurate and work-
flows risk being dissolved because the established working relationships
are not viewed as intellectual capital that should be further cultivated
and exploited (Edvinsson & Malone, 1997).

Project partner relationships are usually regulated by a contract.
Since some important relationships between partners cannot be for-
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malized contractually, social and communication aspects of the col-
laboration should be managed carefully. A lesson from the SolEuNet
project is that establishing trust is an important goal in cooperative
projects, since the possibility of opportunistic behavior of partners
cannot be eliminated by formal contracts. Means for trust building
include regular communication, sharing of information and knowledge,
and stable rules of the game. The principal-agent theory (Furubotn &
Richter, 1997) provides many answers to problems arising from infor-
mational asymmetries between partners in a business relationship. In
the SolEuNet project, this theory provided a better understanding of
the gap between business and academic project partners, which was
mainly due to different backgrounds and motivations for entering the
project partnership.

The partnership model developed in the SolEulNet project aimed to
alleviate this problem of partnership discontinuation after the end of
the project funding period. Helped by the analysis of the principal-
agent theory, different models of academia-business collaboration were
proposed in SolEuNet. A lesson learned is that the virtual enterprise
model (Camarinha-Matos, Afsarmanesh, & Rabelo, 2000) with multi-
ple marketing agents (Lavra¢ & Urbanci¢, 2003) turned out to be the
most appropriate model for handling the difficult business relationship
between remote e-collaborating data mining partners. In addition to
the virtual enterprise organizational model developed, the collaborating
data mining teams learned a number of lessons concerning the data
mining process, organization of team work and knowledge management,
outlined in the rest of this section.

4.2. INCORPORATING BUSINESS AND COLLABORATIVE PROBLEM
SOLVING ASPECTS INTO CRISP-DM

The collaboration of remote teams is feasible due to recent technologi-
cal developments. However, as learned in SolEuNet, e-collaboration is
non-trivial: while the CRISP-DM data mining phases are well under-
stood, data mining team-work in an e-collaborative setting has only
recently been investigated (Jorge et al., 2003; Mladenié¢ et al., 2003).
Remote collaborative data mining enables the exploitation of available
complementary skills at different geographic locations, and benefits or-
ganizational memory. Some aspects of the remote e-collaborative data
mining setting are outlined below (Jorge et al., 2003).

Prior to the collaborative data mining phase, a local team gathers in-
formation about the business and data mining problems from the client
by following the business understanding and data understanding phases
of CRISP-DM. Negotiation terms, privacy and intellectual property
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issues need to be addressed at this point. The outcomes of this phase
include the data mining specification and an initial database. Further
steps include appointing a project coordinator, setting up the data base
and the knowledge repository, and agreeing upon the communication
media for remote collaborative work.

While the database usually resides within a centralized server, the
knowledge generated by the data mining experts can be stored in other
systems and accessed remotely. The virtual expert team is now formed,
consisting of data miners and possibly including domain experts. Each
member must be aware of the legal implications of joining the project
and must have access to the database, the knowledge repository, and
other project resources.

Although most of the work can be done remotely, an initial face-
to-face meeting of a significant part of the team with a representative
of the client should occur. This meeting should preferably result in a
pilot data mining project conducted on samples of data. The goal of
this pilot study should be a good understanding of the data mining
problem.

Having defined the tasks and the deadlines, remote collaborative
data mining proceeds by following the CRISP-DM data preparation
and modeling phases. New questions about business and data under-
standing can be posed directly to the client or through the local team.
Team members have online discussions, publish all produced knowl-
edge in the repository, and can use the knowledge produced. Frequent
summaries of the developments, both scheduled and spontaneous, are
important. At each milestone, intermediate results are delivered to
the client as described in the project plan (a CRISP-DM output of
the business understanding phase) and agreed in the specification. For
each of the intermediate results, tasks in the CRISP-DM evaluation
and deployment phases can start, which is accomplished by the local
team and the project coordinator. At the end of the project, before
the virtual team dissolves, it is useful to gather the lessons learned
from this project and to produce an experience documentation report.
Afterwards, the knowledge repository becomes read-only but remains
accessible to team members.

A lesson learned from reporting in the process of developing a so-
lution is that people usually do not want to discuss their failures or
dead ends, even though such information would be useful to others.
They prefer to first solve the problem themselves and then report on
the success. Collaborating groups should thus be encouraged to share
all investigations, whether fruitful or not. Another benefit is that a
great deal can be learned by observing other group’s working styles;
for example, seeing diverse approaches to problem solving, cultural
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differences, work habits, etc. Such knowledge can be very useful in
future collaborations with experts from different institutions.

One final lesson concerns the cost of collaborative data mining. In
our experience, only some parts of the data mining process can be
done remotely, and the initial business and data understanding phases
are best done through personal communication between the client and
the data mining experts. One needs to be aware of the costs and the
resulting benefits of a collaborative problem solving approach, con-
sidering the criteria for success discussed in Section 3.1. For simple
applications, collaboration is usually not cost-effective; however, for
complex and difficult applications, such as the ones in e-science where
costs are less important than the quality of solutions, a collaborative
approach may produce superior results.

4.3. MODEL FORMALIZATION AND VISUALIZATION USING THE
PREDICTIVE MODEL MARKUP LANGUAGE STANDARD

As pointed out in the lessons reported by (Wettschereck, Jorge, &
Moyle, 2003), models induced by a team of collaborating data miners
should be made available in a standardized format. The emerging stan-
dard for the platform- and system-independent representation of data
mining models is the Predictive Markup Model Language (PMML).
PMML is the result of an ongoing standardization efforts of the Data
Mining Group?, an independent, vendor-led group which develops data
mining standards. PMML is intended for the representation of the re-
sults of knowledge discovery tasks. The primary purpose of the PMML
standard is to separate model generation from model storage in order
to enable users to view, post-process, and utilize data mining models
independently of the data mining tools that generated the model.

Different data mining methods typically produce syntactically and
semantically different models. The current PMML standard (version
2.0) is currently supported by a number of data mining tools. It sup-
ports separate document type definitions (DTDs) for decision trees,
neural networks, center and density based clusters, general and poly-
nomial regression, Naive Bayes and association and sequence rules.
The representation language is XML. All DTDs have certain common
elements (such as a header with common information and a data dic-
tionary), but the XML elements describing actual data mining models
can differ significantly.

Experience from the SolEuNet project taught us that use of the
PMML standard has significant advantages for collaborative data min-
ing. Because it is a declarative representation, it separates analysis

4 http://www.dng.org
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results from the details of the systems used to generate them (imple-
mentation, platform, operating system, and so forth). It allows conve-
nient exchange of data mining results among systems and researchers.
For example, consultants or researchers can produce models, and cus-
tomers can import models into their own tools. Finally, the use of
PMML for standardized model description enables the tools for the
visualization of PMML models to be developed independently of par-
ticular data mining software employed, providing a great advantage
for team-work in a remote collaborative data mining problem setting
(Wettschereck, Jorge, & Moyle, 2003).

4.4. KNOWLEDGE MANAGEMENT FOR DATA MINERS

Every organization possesses a considerable body of knowledge that
is important to retain and reuse without relying on the presence of
its members (Armistead & Meakins, 2002). Organizational knowledge
tends to be tacit, and distributed, so only a small part of it is likely to
be acquired and retained.

Since knowledge can only be explicitly kept as information, it is
necessary to design effective ways of representing the knowledge as
information, collecting it from members of the organization, storing it
in an understandable, computationally accessible and flexible way, and
finally disseminating it to different audiences. This effort can be referred
to as knowledge management (Turban & Aronson, 1998), and is related
with the setup of an organizational memory (Dieng, 2000). Collections
of definitions of what is and what was knowledge management can be
found in the literature (Malhotra, 2001).

Jorge et al. (2003a) point out that the knowledge gathered by a
team of data miners throughout its activity is too valuable an asset
to be kept volatile, always dependent on those who produced it. In a
data mining team, knowledge management needs to focus on particular
tangible aspects such as expertise, resources, finished projects, solved
problems and products, and on making the relations between them
as explicit as possible. To identify the relevant types of knowledge, it
is useful to restate the aims of the knowledge management enterprise
being described in more detail:

— Linguistic standardization. Key terms and concepts should be fully
understood by all data miners. To ensure this, an online glossary

is a useful asset.

— Document sharing. Reports may be produced by several authors,
in several iterations. A lesson learned is that collaborating teams
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need a central repository for all communal documents, maintained
within a workgroup support system.

— Awareness of common resources. The collaborating teams should
collect information about tools authored by their members, about
contact persons, and other important resources; a lesson learned
is that this can be done through a well-designed Web-based infor-
mation collection system (Jorge et al., 2003a).

— Collaborative problem solving. A team addressing a particular
problem needs to share knowledge. To achieve this goal, a method-
ology and tools for handling problems remotely and collabora-
tively need to be proposed (Jorge et al., 2003a; Mladeni¢ et al.,
2003; Mladeni¢ & Lavrac, 2003).

— Reuse. Summary information about completed projects and solved
problems is frequently provided in different formats, using differ-
ent terms. Information collection templates that unify seemingly
different types of knowledge have to be defined. A set of common
descriptors, useful for data mining projects, is proposed in (Jorge
et al., 2003a).

— Dissemination. A common Web site, serving as the image to the
outside world, can also be used as a portal for the integration of
services and for the internal presentation of organizational knowl-
edge.

5. Conclusions and directions for further work

Reported lessons point to some obvious conclusions about directions
for additional work in machine learning and scientific discovery. First,
researchers should explore methods that generate knowledge in es-
tablished domain formalisms rather than focusing entirely on those
invented by the machine learning community. They should also employ
standards (e.g., PMML) for model sharing, use and visualization. We
also need increased concern with methods that produce good mod-
els from small data sets, whether through incorporation of domain
knowledge or statistical techniques for variance reduction, and with
methods that generate explanatory models to complement the existing
emphasis on purely predictive ones. Finally, the field should expand its
efforts on interactive environments for learning and discovery, rather
than continuing its emphasis on automated methods.
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These recommendations do not contradict earlier lessons drawn from
successful applications. Developers should still think carefully about
how to formulate their problems, engineer the representations, ma-
nipulate their data and algorithms, and interpret their results. But
they do suggest that, despite some impressive successes, we still require
research that will produce a broader base of computational methods for
discovery and learning. These will be crucial for the next generation of
applications in machine learning and scientific discovery.

In addition to the above directions drawn from applications of ma-
chine learning and scientific discovery, there are a number of develop-
ments in the data mining research that illustrate in which direction
the applications are moving. We mention a few challenges observed
already (Adriaans, 2000; Lavrac¢, 2001; Mitchell, 1997) and add some
of the recent challenges.

Analysis of data mining lessons learned. Technical literature reports
only on successful machine learning techniques and data mining appli-
cations. To increase our understanding of machine learning techniques
and their limitations, it is crucial to analyze successful and unsuccessful
applications. Published accounts rarely discuss the steps leading to
success, failed attempts, or critical representation choices made; and
rarely do scientific papers include expert evaluations of achieved re-
sults. Challenge competitions, such as the KDD Cup, COIL and PTE
challenges, provide one of the means for deeper analysis of successes and
failures. Specialized workshops and journal special issues may further
pave a way towards publishing successful paths to solutions as well as
failures or dead ends, which also provide valuable input for machine
learning and data mining research.

Analysis of comprehensibility. It is often claimed that for many appli-
cations comprehensibility is the main factor if the results of learning are
to be accepted by the experts. Despite these claims and some initial
investigations of intelligibility criteria for symbolic machine learning
(such as the standard Occam’s razor and minimal description length
criteria) there are few research results concerning the intelligibility
evaluation by humans. Pazzani (2000) makes this point as well, and
he points out that much of what researchers commonly assume about
comprehensibility is unfounded or contradictory.

From batch to on-line. 'Traditional data mining solutions are batch
oriented. Large collections of data are stored in a data warehouse and
once a week or once per month a set of data mining algorithms is
processed to see if any interesting patterns emerge. With applications
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such as fraud detection and production control, this has serious draw-
backs. If there is a flaw in the production process a company should
take immediate action. The same holds for fraud detection. There is
a tendency to apply data mining techniques directly to production
databases. In this case one does not have the benefits of an optimized
data warehouse architecture, and this calls for new solutions.

From single table to multi-relational. Data mining algorithms such as
decision trees and association rules presuppose that data are propo-
sitional and stored in a single table. Most data mining applications
operate on a single flattened table in which the semantic structure
given by the data schema of the original application is lost. Because
of this transformation, the mining process is less effective: it might
miss patterns that could easily be detected if the original structure
was still available. At the same time, it might find patterns that are
trivial artifacts of the flattening process. Currently research in inductive
logic programming and relational data mining is focusing on creating
variants of data mining algorithms that can operate directly on the
original relational data (Dzeroski & Lavra¢, 2001).

Text, Web mining, automated ontology construction and the semantic
Web. Text and Web mining deal with unstructured data: documents
and information available on the Web. The main applications in both
areas are aimed at creating a better understanding of the content
of documents and a better understanding of Web users dealing with
documents or services. Current applications of text and web mining
include document search based on the content, automatic document
summarization, document authorship detection, identification of pla-
giarism of documents, web-log analysis, user profiling, etc. The most
popular text mining application is document categorization which aims
at classifying documents into pre-defined taxonomies/categories based
on their content. A challenging new ares are automatic construction
of document hierarchies, and automated ontology construction in the
context of the emerging semantic Web (Maedche, 2002).

From general data mining tools to specialized learners and data libraries
for e-science. Particular problem areas have particular characteristics
and requirements, and not all learning algorithms are capable of dealing
with these. This is a reason for starting to build specialized learners
for different types of applications. In addition, libraries of “cleaned”
data, background knowledge and previously learned knowledge should
be stored for further learning in selected problem areas. Notice that
such libraries are currently being established for selected problem areas
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such as molecular biology. This approach will lead to the reusability
of components and to extended example sets, achieved also through
systematic query answering and experimentation (active mining).

Active mining. Most current data mining algorithms do a great job
in classification. They detect that a certain production process is in an
error state, or that certain transactions might be fraudulent. In such
cases a company would like to take direct automated action. In system
management, for example, one might want to increase the paging space
of a certain server or redirect queries to a different data base server.
If a system detects credit card fraud the owner of the card must be
warned as soon as possible. This desire leads to the merging of data
mining technology with agent technology. Such active mining may re-
quire learning from local datasets, referential datasets and case bases
collected and maintained by the world’s best experts in the area, as
well as data that is publicly available through the Web. This type of
“continuous global” learning will require human intervention, as well as
learning agents for permanent learning (through theory revision) from
updated world-wide data, and query agents that will (through dynamic
abductive querying) be able to access additional information from the
Web via query answering. Query answering may be invoked either by
experts or by automatically extracting answers from Web resources,
possibly invoking learning and active experimentation.

From single medium to multimedia. Current data mining algorithms
work on data that is stored in tables of a database, textual databases
and the information on the Web. One also would like to be able to mine
databases containing images, sounds, speech, music and movies. More
advanced techniques need to be developed for this. The combination of
mining techniques operating on different media will lead to fascinating
new applications, e.g., forensic solutions that mine a database with
photos, movies, speech fragments and emails of suspects.

Industrial needs. The development of a separate data mining industry
induces a shift in focus of the research. The basic data mining technol-
ogy developed in the past 15 years is sufficiently powerful to support
industrial needs. There is no direct need for a vast investment for
research into incremental improvement of data mining algorithms. On
the other hand, a number of issues that would be useful for industrial
applications have been generally neglected by the data mining research
community. Among these are the maintenance of data mining models;
feedback on and incremental improvement of models; the ability to
deploy models on a regular basis more efficiently with less people; fast
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construction and verification of models; using models for simulation;
and the ability to create more robust models.
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