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1. Introduction

Most recent work on unsupervised concept learning has been limited to
unstructured domains, in which instances are described by fixed sets of
attribute-value pairs. Many domains can be described in this simple
language. Frequently, however, instances have some natural structure;
objects have components and relations among those components. In
such domains, an attribute-value language is inadequate.

This chapter describes LABYRINTH, an implemented system that in-
duces concepts from structured objects. We view LABYRINTH as an
approach to incremental concept formation. Following Gennari, Lang-
ley, and Fisher (1989), we define this task as:

e (wen: a sequential presentation of objects and their associated
descriptions;

e [und: clusterings that group these objects into concepts;
e [ind: a summary description for each concept;

e Find: a hierarchical organization for these concepts.

The goal of incremental concept formation is to find concepts that allow
useful predictions from partial information. COBWEB (Fisher, 1987),
UNIMEM (Lebowitz, 1987), and Cyrus (Kolodner, 1982) all incorpo-
rate approaches to this task, but these earlier systems are restricted to
attribute-value languages. LABYRINTH can make effective generaliza-
tions by using a more powerful structured representation language.
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Figure 1. Four instances from a simple relational domain.

Figure 1 shows a simple domain with four structured objects. Each
object has three components, two LEFT-OF relations, and a single ON-
TopP relation. Each of the three component objects is in turn described
with the two attributes SHAPE and COLOR. We will sometimes de-
scribe each object as being “labeled” as a member of one of these two
classes: RIGHTSTACK (instances that have a two-high stack to the right
of another object), and LEFTSTACK (instances with a stack to the left).
These labels are for expository purposes; they play no part in classifi-
cation or learning. We will use the domain in Figure 1 throughout our
discussion of related work and our sketch of LABYRINTH’S operation.

A structured domain can sometimes be converted to one described
only by fixed attributes and their values. However, as Quinlan (1990)
has argued, using an attribute-value language simplifies the learning
task, but may prevent the learning of concise, effective generalizations.
For example, if we enforce a consistent ordering of components in the
four instances from Figure 1, one could in theory “flatten” the repre-
sentation of each instance to a fixed set of attributes. However, to find
the most concise representation of the two STACK concepts, the learner
must be able to consider different bindings between the components of
each object. With a structured representation, the learner can find a
concept of the form: “There are three objects, X, Y, and Z; X is on
top of Y, and both X and Y are to the left of Z”. Moreover, a sys-
tem that uses a structured representation has the potential to recognize
a LEFTSTACK in which the stack has three objects instead of two; a
learner that is limited to a predetermined set of attributes would have
limited flexibility in such situations.

In the following section, we summarize related research on concept
learning in structured domains. We then describe LABYRINTH’S rep-
resentation of objects and concepts, along with its memory organi-
zation. After this, we illustrate the system’s classification and learn-
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ing algorithm by tracing through a simple example, and then discuss
LABYRINTH’s mechanisms for matching structured objects against con-
cepts in memory. We conclude with a discussion of open issues and
plans for future research.

2. Concept Learning in Structured Domains

LABYRINTH carries out incremental, unsupervised concept learning in
structured domains. It learns probabilistic concepts and uses them to
make predictions of missing attribute values, components, and relations.
It also decomposes objects into sets of components to constrain match-
ing. Many of these characteristics are found in earlier systems, but no
one system has integrated all these traits. In this section, we review
six systems in detail. The review is not intended to be exhaustive,
but to highlight previous work that has examined some of the issues
LABYRINTH addresses, and to argue for the importance of integrating
these characteristics. Of the six systems we describe, two involve induc-
tion over objects described as attribute-value sets, and are important
for their contribution to the unsupervised learning literature. The other
four are important for their contribution to the understanding of induc-
tion in structural domains. For each system, we discuss its representa-
tion language for instances and concepts, its classification mechanism,
and its learning algorithm.

2.1 SPROUTER: Incremental Learning with Structured Objects

Hayes-Roth and McDermott’s (1978) SPROUTER is representative of
several systems that carry out learning of maximally specific conjunctive
descriptions from examples (e.g., Vere, 1975; Winston, 1975). These
systems focus on finding characterizations, or descriptions, of classes
given by an external teacher. Dietterich and Michalski (1981) present a
careful comparison of a number of such systems.

SPROUTER’s representation language for both instances and concepts
is equivalent to quantifier-free first-order predicate logic; the system
views atoms as existentially quantified variables denoting distinct ob-
jects. In addition, the language allows organization of predicates that
are semantically related into case frames to reduce match costs. For
example, the COLOR feature of each object in a scene would be put
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in the same frame.! SPROUTER’s representation of the RIGHTSTACK-2
instance from Figure 1 would be:

{{grey:a,blue:b,red:c}
{square:a,odd:b,circle:c}
{on-top:a,below:c}

left:b,right:c
g

left:b,right:a
g

This representation asserts that there is a structured object composed
of three component objects, a, b, and ¢, that the object labeled a has
properties of being GREY, SQUARE, and so on. Because SPROUTER
induces only conjunctive generalizations, its concepts are represented in
the same language as the instances. Generalization arises from dropping
terms and replacing constants with variables.

SPROUTER uses an incremental algorithm to carry out a heuristic
beam search? through the space of hypotheses using a specific-to-general
scheme. It uses the first instance as an initial hypothesis set and creates
new sets of conjunctive generalizations (e.g., concepts) in response to
later instances. The system conducts an interference match between
each generalization and each new instance. This match identifies com-
mon properties, and replaces the current hypothesis with one or more
new generalizations. SPROUTER constrains its search through the hy-
pothesis space by limiting the number of partial matches stored and
pruning those with low utility; the evaluation function that guides this
search is defined to increase with the number of relations in a match
and to decrease with the number of objects related.

To match a structured instance I and concept C', SPROUTER selects
an arbitrary case frame F7 from I and then finds bindings between Fj
and a case relation F¢ from C with identical case labels. As we noted,
the system uses its case frames to guide its selection of Fo. SPROUTER
uses F1 and F¢ and the bindings between them to form an initial partial
match; it then selects a new case frame from I and repeats the process.
If the bindings between the frames are consistent with the previous

1. This case frame representation appears to play a role similar to that of the “at-
tributes” used by many inductive learning systems. Hayes-Roth and McDermott
(1978, p. 402) use this idea of defining certain shared properties. In addition,
SPROUTER appears to use the case frames to direct matching between properties
that other systems would represent as n-ary predicates (e.g., ABOVE, BELOW).

2. In contrast, Vere’s THOTH (1975) considers all maximal generalizations.
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partial match, SPROUTER adds the case frames and their bindings into
the previous hypothesis. If the bindings conflict, the system forms a
new generalization that contains only the bindings between the current
case frames. In this way, each instance causes the system to extend or
revise its set of hypotheses.?

SPROUTER is important because it is one of the most sophisticated of
the early inductive systems able to learn in structured domains. It forms
plausible characterizations in complex structured domains, using simple
heuristic methods to limit an inherently exponential search problem for
a maximal characterization. However, it is limited to a conjunctive con-
cept language, and, like many early inductive learning systems, lacks a
clear performance component. One can imagine SPROUTER being used
in a recognition task in which the system uses a complete matcher to
determine if a test instance matches any of the hypotheses. Most impor-
tantly for our current discussion, SPROUTER is a supervised algorithm,
and therefore does not address issues of cluster formation and memory
organization. We turn now to classification and learning in situations
where the objects are unlabeled.

2.2 CLUSTER/2: Conceptual Clustering

In many situations, a learner cannot rely on direct labeling of each
object; in these cases, one must autonomously organize observations
into categories. Older work in this area, known as numerical taxonomy
(Everitt, 1980), concentrates on what Fisher and Pazzani (Chapter 1,
this volume) call the clustering task, that of determining useful subsets
of an unclassified set of objects. With their system CLUSTER/2, Michal-
ski and Stepp (1983) introduce the conceptual clustering paradigm. This
task includes not only clustering, but also characterization: the forma-
tion of intensional concept descriptions from each extensionally defined
cluster. This latter subtask is the focus of supervised learning systems
such as SPROUTER,; it is the combination of the clustering and charac-
terization problems that distinguishes conceptual clustering.

3. Dietterich and Michalski (1981) divide the SPROUTER algorithm into two sepa-
rate steps: finding all possible bindings between identical case frames, and finding
consistent unions of them. Although this appears to be identical in principle to
the description by Hayes-Roth and McDermott (1978), the latter argue (p. 405)
that finding all possible bindings initially would be prohibitively expensive.
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We review CLUSTER/2 here because it constitutes an early example
of a machine learning approach to conceptual clustering, and is an im-
portant component of CLUSTER/S, which we describe in Section 2.3.
However, we emphasize that the system does not carry out structured
concept learning, since its representation language has only unary predi-
cates. Both objects and concepts are represented in the annotated pred-
icate calculus, an extension of the predicate calculus with additional
operators for internal disjunction (e.g., [shape(block) = odd V square])
and internal conjunction (e.g., [shape(block1&block2) = odd]). Each
predicate, variable, and function in this language has an associated an-
notation, giving “domain knowledge” about the type of the value set
and related descriptors in a value hierarchy (e.g., ODD and SQUARE are
subsumed by the value ANY-SHAPE).

CLUSTER/2 is nonincremental, using a divisive technique to generate
a disjoint hierarchy of concepts. It starts with a root node consisting of
all objects in the data set. It then splits that node into a set of mutually
exclusive clusters and recurses to construct subhierarchies below each
node. CLUSTER/2 is a complex algorithm, with several levels of nested
search, each using a similar (user-supplied) evaluation function but using
different search techniques. At the highest level, the algorithm searches
through partitions consisting of different numbers of clusters k, from two
up to a user-specified parameter K,q;, finding a “best” partition for
each value of k£ and then selecting the best of these K,,,, — 1 partitions.

The CLUSTER/2 system operates by transforming its unsupervised
learning task into a series of supervised learning tasks. To find a par-
tition for a single value of k, it begins by randomly selecting k “seed”
objects for each seed, treating that seed as a positive instance and all
others seeds as negative instances. For each seed, CLUSTER/2 uses
the star-generating algorithm described by Michalski (1983) to find the
set of alternative most general descriptions that distinguish the cluster
based on that seed from those of the other seeds; it selects the best of
these as the cluster for that seed.* These descriptions form a disjoint
clustering over the original set of objects. If this iteration produces a set
of clusters superior to the previous one, seeds are selected from the cen-
tral tendency of each of these clusters; otherwise, seeds are selected from
instances at the borders of the clusters. This new set of seeds is used to

4. Because they are the most general definitions, the clusters can overlap; an addi-
tional search is used to make them disjoint.
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generate a new clustering, with the algorithm terminating when some
predefined number of consecutive iterations generate no improvement.

CLUSTER/?2 is interesting to our current discussion primarily because
it introduces the task of conceptual clustering, and aids the discussion
of CLUSTER/S below. The algorithm is computationally expensive and
relies on several user-supplied thresholds to control its search. One
would prefer the algorithm to determine the proper number of cluster-
ings without a complete search for each value of k. In addition, like
most early inductive learning systems, CLUSTER/2 lacks a performance
mechanism with which to evaluate its clusterings, and instead relies on
metrics like “quality of discovered classes” and “quality of fit to data”
to evaluate the system’s performance. However, as with SPROUTER,
one can imagine using the induced concepts and a complete matcher to
recognize test instances.

2.3 CLUSTER/S: Clustering with Structured Objects

CLUSTER/S (Stepp, 1984; Stepp & Michalski, 1986) extends CLUS-
TER/2, combining a supervised learning algorithm for structured do-
mains with the earlier work on attribute-based conceptual clustering to
form concept hierarchies from structured objects. CLUSTER/S repre-
sents objects and concepts in the annotated predicate calculus, as with
CLUSTER/2, but includes n-ary predicates along with simple attributes.
The RIGHTSTACK-2 object in Figure 1 would be represented as:

3 pl,p2,p3 [color(pl)=grey] [shape(pl)=square]
[color(p2)=blue] [shape(p2)=o0dd]
[color(p3)=red] [shape(p3)=circlel
[on(p1,p3)]

[Left-of (p2,p3)]
[Left-of (p2,p1)]

Like its predecessor, CLUSTER/S effectively reduces an unsupervised
learning problem to a series of supervised learning subproblems. The
system breaks the problem of structured object clustering into two seg-
ments: reducing each object description to an attribute-value represen-
tation using a supervised learner, then using an attribute-based method
to cluster these redescribed instances. It thus circumvents the complex-
ity of clustering structural descriptions by clustering only those parts of
each object expressible in a common language of fixed attributes.



134 K. THOMPSON AND P. LANGLEY

CLUSTER/S first finds a maximally specific generalization, or tem-
plate, of the set of structured objects, using a characterization algorithm
adapted from INDUCE/2 (Hoff, Michalski, & Stepp, 1983). This gen-
eralization M expresses the common substructure of all the instances,
covering all objects while preserving enough information from each ob-
ject to identify correspondences between objects. Using M, CLUSTER/S
can extract a subset of the literals from each instance in a common lan-
guage of quantifier-free attributes. In this way, a structured domain is
converted to an attribute-value language by a search for common struc-
tural properties. The re-defined objects, described by a fixed set of
literals, are then clustered with the CLUSTER/2 algorithm, and these
clusters can easily be converted back to a structured form using M.
A postprocessing step augments each cluster with those parts of each
instance “left out” in the conversion to the template language.

Stepp (1984) describes how the matching of two objects in structured
domains can be viewed as a graph-matching problem, and notes its
computational complexities. The algorithm used to generate M appears
to employ a beam search through a space of partial matches for the
instances, starting with a single attribute and gradually extending the
set of template hypotheses by adding more attributes. The algorithm
contains a “trimming” step to limit the combinatorial explosion of match
hypotheses, but Stepp fails to describe clearly the evaluation function.

Many of the comments applicable to CLUSTER/2 are applicable to
CLUSTER/S as well. The latter system is important as the first machine
learning approach to unsupervised induction of concepts from structural
data. However, because it uses CLUSTER/2 as a main subroutine, it
shares the disadvantages of being computationally expensive and non-
incremental. Like CLUSTER/2, it lacks a clear performance component.
In addition, because it clusters only over those relations and attributes
that are found in the template M, it cannot find generalizations that
use features shared only by a subset of the instances.

2.4 Levinson’s Incremental Self-Organizing Memory

Levinson (1985) describes a database retrieval system for concepts rep-
resented as graphs. He applies his system to the domain of organic
chemistry, but argues that it is widely applicable, and demonstrates it
briefly on chess. In contrast to the other systems we review, Levinson’s
system does not learn at the knowledge level (Dietterich, 1986), but
aims to acquire efficient indices for retrieving specific cases.
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Instances are represented as labeled graphs. For example, a hydro-
carbon molecule would be represented as a graph with edges for bonds
and vertices for individual atoms. Concepts are described as logical con-
junctions of relations that share arguments, as in most work on struc-
tured concept learning. Naturally, concepts are partially ordered by
generality, but Levinson’s system uses this ordering for memory orga-
nization, not just to constrain search. The system stores all concepts
in a graph partially ordered by the relation SUBGRAPH-OF. The most
general nodes are individual literals; the most specific concepts (termi-
nal nodes) represent actual objects. If one concept (S) is more specific
than another (G), then S is connected to G by a SUBGRAPH-OF link,
unless there is some other concept that is more general than S and more
specific than G.

Levinson’s system uses this memory organization to retrieve efficiently
the best matches in memory to a presented object. A new instance I is
sorted “in paralle]” down all paths in the concept hierarchy, starting at
the most general node. If I matches the concept C, then the instance
is recursively sorted to C’s children. This continues until I reaches a
concept that it fails to match, or until it reaches a terminal node.

If an instance I reaches and matches a terminal node during sorting
through memory, no learning occurs. However, if I has matched a con-
cept G but does not match any of G’s children, the system considers
forming generalizations based on I and each of those children. For each
child S, it finds all maximal partial matches between I and S, then
selects the best match according to efficiency concerns. It creates a new
intermediate level concept L that is more general than S and more spe-
cific than G, inserting the appropriate SUBGRAPH-OF links. The system
also determines whether L should be inserted between any other pair of
concepts that are directly connected by SUBGRAPH-OF links. Note that
the system can create multiple concepts for a given instance I, since 1
is sorted down multiple paths in the hierarchy. However, the algorithm
does not move beyond the input data, but only summarizes the observed
instances. The algorithm forms general concepts, but only uses them as
an efficient indexing scheme for retrieving specific cases. Wogulis and
Langley (1989) use different mechanisms to acquire a similar memory
structure, and point out that such systems lead to more efficient clas-
sification by storing intermediate concepts; in Levinson’s system, the
subgraphs allow more efficient indexing of structured objects.



136 K. THOMPSON AND P. LANGLEY

2.5 MERGE: Organizing Structured Objects into Components

Wasserman (1985) describes MERGE, a system that carries out incre-
mental concept acquisition and organization for structured objects. Like
Levinson’s system, it uses a memory organization to facilitate incremen-
tal update of memory in response to new objects. In contrast to Levin-
son’s work, MERGE moves beyond the data, making generalizations that
summarize instances and using those generalizations to fill in missing
information.

MERGE’s instance representation is most interesting to the current
discussion. The standard representation for structured objects, a pred-
icate calculus formalism, is equivalent to arbitrary directed graphs. De-
termining a match between two structured objects represented as graphs
is equivalent to the NP-complete subgraph isomorphism problem. In re-
sponse to this combinatorial problem, both SPROUTER and the Cr.us-
TER programs use heuristics to control the search for a characteriza-
tion. Wasserman takes an alternate approach: representing objects in
a language in which generalizations are more easily found. MERGE is
described as a system for learning from hierarchies, rather than from
arbitrary structured objects. An instance hierarchy is represented as a
tree of nodes partially ordered by a fundamental relation. This relation
is used to decompose the structured object into smaller “components”,
which in turn can have components, and so on. The representation
bottoms out with primitive objects described only by associated object
properties. To distinguish these instances from concept hierarchies, we
refer to instance hierarchies as partonomies.

In the domain of physical objects, the fundamental relation would
be the PART-OF relation, but in other applications, Wasserman uses
relations like REPORTS-TO (for human organization charts) and Is-A
(for biological taxonomies). Wasserman notes that there are several
possible organizational concepts, or fundamental relations, for any given
domain, but argues that a single outstanding relation gives a complete
partonomy of each object. This basic partonomy is augmented by non-
fundamental relations, which are predicates other than the specified
fundamental relation,” and which take as arguments any object in the
instance tree. The RIGHTSTACK-2 object would thus be represented as:

5. It appears that MERGE is restricted to binary relations, although Wasserman
never clearly states this constraint, and the extension to n-ary predicates seems
straightforward.
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(Rightstack-2 (component; (color blue) (shape odd))
(componenty, (color red) (shape circular))
(components (color grey) (shape square))
((Left-of component; components)))
((Left-of component; components))

((on components components))

Wasserman uses a graphical notation for instances; we have substituted
an equivalent syntax for purposes of comparison.

Generalizations are essentially the logical intersection of the instances
from which they are made; the system avoids the extra search required
to make disjunctive generalizations. Abstractions are made over the
structural information (relations); Wasserman deemphasizes the impor-
tance of abstractions over object properties, although an unspecified
algorithm does generalize the object properties.

MERGE incrementally forms abstraction hierarchies from a sequence
of instance partonomies. The system classifies not only the entire struc-
tured object, but each of its subhierarchies® as well. Each of these sub-
hierarchies is classified into a separate concept hierarchy, thus giving a
forest of concept hierarchies, one for each “type” of object (apparently,
each level of an instance is a different type). Like UNIMEM (Lebowitz,
1987), MERGE explicitly represents differences and similarities between
a child and its parent with the use of inheritance to add, subtract, or
substitute features. To classify each subhierarchy I of the instance,
MERGE starts at the root of the concept hierarchy for that type of ob-
ject and recurses through the tree. At each parent P, it finds the best
candidate child C of that node. If C’s score is no better than that of P,
the algorithm stops and makes the object a new child of P. Otherwise,
it incorporates [ into C' and recurses. MERGE’s evaluation function is
a scoring scheme relying on several heuristics. Two components that
have a common ancestor in a concept hierarchy are rewarded if that
ancestor is low in the partonomy, and components are scored based on
their literal similarity. In addition, components are weighted less in the
overall score than the object itself.

Wasserman (1985) downplays the computational difficulties of match-
ing structured objects. The augmented partonomy representation of
MERGE lends itself to decomposition of the match problem into a series

6. Remember that these are PArT-0F hierarchies that represent individual instances,
not concept hierarchies.
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of component-matching problems, unlike the arbitrary graph represen-
tation used by earlier systems. However, Wasserman does not promote
this as an advantage of using partonomies. Although the system classi-
fies each subtree of the instance, it does not use the results of component
classifications in classification of instances. It thus faces the problem of
generating abstractions from arbitrary trees. The MERGE matcher com-
pares two trees by working its way bottom up through each partonomy,
finding “best” matches at each level and recursing. It appears to use
an exhaustive matcher that matches m instance components against
n concept components, with a computational complexity of O(n!). In
addition, the matcher has operators for “level hopping” that involve
checking whether a component at level x of the one partonomy matches
well against a component at a different level y of another partonomy.

2.6 COBWEB: Probabilistic Concepts

Because the COBWEB system (Fisher, 1987; McKusick & Thompson,
1990) forms the basis for LABYRINTH, we review it in some detail.
COBWESB is an incremental, unsupervised concept learner, like CYRUS
(Kolodner, 1983) and UNIMEM (Lebowitz, 1987). It differs from its
predecessors in its use of probabilistic concepts (Smith & Medin, 1981)
and its use of a principled evaluation function that favors clusters that
maximize the potential for inferring information. In addition, Fisher
emphasizes the use of concept formation systems in the context of a per-
formance task — missing attribute prediction — and explicitly evaluates
his system using this task. This contrasts with most earlier unsuper-
vised learners, which have been evaluated only in light of the concepts
formed and their “comprehensibility”.

COBWEB represents each instance as a set of nominal” attribute-value
pairs, and it summarizes these instances in a hierarchy of probabilis-
tic concepts. Each concept Cj is described as a set of attributes A;
and their possible values Vj;, along with the conditional probability
P(A; = Vj;|Cy) that a value will occur in an instance of a concept. The
system also stores the overall probability of each concept, P(C}). Thus,
whereas CLUSTER /2 can represent an attribute color with alternate val-
ues blueVred, a COBWEB concept can represent the observed conditional

7. Gennari, Langley, and Fisher (1989) describe CLASSIT, a variant of COBWEB
that accepts real-valued attributes. LABYRINTH’s mechanisms are independent
of the feature types of primitive object attributes.
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probabilities, P(color = blue|Cy) = 0.6 and P(color = red|Cy) = 0.4.
The use of probabilistic concepts is crucial to COBWEB’s design. As
Hanson and Bauer (1989) point out, many categories are better repre-
sented as probabilistic concepts than as sets of common features. For
incremental systems with a restricted hypothesis memory, probabilis-
tic concepts are crucial to avoid brittleness in the face of noisy or ap-
proximate concepts. Probabilistic concepts allow gradual updating of
descriptions and recovery from misleading training orders because they
store more information about the instances that form the concept.

COBWEB organizes its acquired concepts in a probabilistic concept
hierarchy, in which each node is indexed by Is-A links from its parents,
rather than difference links as with UNIMEM and MERGE. Specific in-
stances are stored as leaves of the concept hierarchy, and the root node
summarizes all instances seen in the domain. Such hierarchies are cru-
cial for focusing attention and allowing small local changes to memory
during incremental processing.

The system integrates classification and learning, sorting each in-
stance through its concept hierarchy and simultaneously updating mem-
ory. Upon encountering a new instance I, COBWEB incorporates it into
the root of the existing hierarchy and then recursively compares the
instance with each new partition as I descends the tree. At a node NV,
the system considers incorporating the instance into each child of N
as well as creating a new singleton class, and evaluates each resulting
partition. If the evaluation function prefers adding the instance to an
existing concept, COBWEB modifies the concept’s probability and the
conditional probabilities for its attribute values and then recurses to
the children of that concept. If the system decides to place the instance
into a new class, it creates a new child of the current parent node, and
the classification process halts. COBWEB also incorporates two bidirec-
tional operators, splitting and merging, that make local modifications to
the hierarchy structure. These mitigate sensitivities to instance order-
ings, giving the effect of backtracking in the space of concept hierarchies
without the memory overhead required by storing previous hypotheses.

To choose among these operators, COBWEB uses the probabilistic in-
formation stored in memory in an evaluation function  category utility
— which favors high intra-class similarity and high inter-class differ-
ences. Gluck and Corter (1985) derive this function from information
theory, and Fisher modifies it slightly to control classification and learn-
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ing behavior in COBWEB. Given a set of n categories, category utility is
defined as the increase in the expected number of attribute values that
can be correctly guessed over the expected number of correct guesses
without such knowledge. The version used by COBWEB is

ZkK:1 P(Ck) 3, Zj P(A; = Vij|Ck)2 -2 Zj P(A; = Vij|C)2
K b

(1)

where k varies over categories, ¢ over attributes, and j over values for
each attribute. This function evaluates a partition  defined as a parent
node C and its immediate children Cy. The term P(C}) refers to the a
priort likelihood that an instance is a member of the child C}, whereas
P(A; = V;;|Cy)? is a measure of within-class similarity, that is, how well
the instances summarized by C} resemble one another. The subtraction
of the parent’s within-class similarity P(A; = V;;|C)? lets category util-
ity measure the information gained by partitioning the parent class into
a set of children. Dividing by K. the number of C’s children, biases the
system against proliferation of singleton classes.

COBWEB has many positive characteristics, many of which will be
important to the design of LABYRINTH. Its well-defined performance
task, tightly integrated with its learning component, allows evaluation
of the concepts learned. Its use of probabilistic concepts and a single
evaluation function allows more robust performance than earlier concept
formation systems. Its simple local reorganization operators give it the
partial ability to overcome misleading orders of training instance with
minimal reprocessing of previous instances. However, COBWEB can only
learn in domains in which there are a finite number of unstructured
attributes; LABYRINTH builds on COBWEB to overcome this limitation.

2.7 Issues in Structural Learning

Table 1 summarizes the six systems we have just reviewed, as well as
LABYRINTH, across five important characteristics. LABYRINTH is the
only system that exhibits all five characteristics: it is an incremental,
unsupervised learning method that acquires probabilistic concepts from
relational data, using the heuristic of breaking the instance into compo-
nents for classification. From our review, we can see the origins of these
ideas. SPROUTER and related systems were the earliest to face the prob-
lem of learning in structured domains. These programs are supervised,
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Table 1. Issues addressed by LABYRINTH and its predecessors.

System Probabilistic | Incremental | Unsupervised | Relations | Components
SPROUTER &) 53]

CLUSTER/2 )

CLUSTER/S ) &

Levinson &) &) <)

MERGE &) <) 53] 3]
COBWEB &) <3) 53]

LABYRINTH S) 53] 53] 3] b

and learn only a single conjunctive concept at a time, avoiding issues of
memory organization but explicitly proposing algorithms to form gen-
eralizations from multiple objects described in a structured language.

We have seen that CLUSTER/2 differs from most earlier inductive
learning algorithms in that it is unsupervised; it discovers object classes
and characterizes these classes as well. Its successor, CLUSTER/S, in-
corporates the advances of CLUSTER/2, but uses a structured object
and concept language. Unfortunately, both these systems are nonincre-
mental, requiring all instances in order to generate classes. Levinson
is among the first® to propose a method for incrementally generating a
memory organization containing structured concepts from unclassified
instances. However, his system, in using what is in effect a complete
matcher, fails to go beyond the data and to enlarge the deductive closure
of its knowledge base. Wasserman’s MERGE can be viewed abstractly
as a version of Levinson’s system that uses a partial matcher, and thus
makes accurate classifications of previously unseen instances. In ad-
dition, Wasserman introduces the heuristic of decomposing structured
objects into a tree, thus using one fundamental relation to organize
memory and direct learning.

The basic classification mechanism and memory structure of COBWEB
anticipates that of the current work. This system’s use of probabilistic
concepts gives it power to make more effective predictions than earlier

8. EPAM (Feigenbaum, 1963) also acquires concepts from hierarchically decomposed
objects, but this system does not handle relations among components.
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systems. In addition, COBWEB adopts prediction as a performance task
for unsupervised learning systems. We have noted that COBWEB has
many good characteristics, but is limited to attribute-value languages.

3. Representation and Organization in LABYRINTH

Having described earlier systems that address many of the issues faced
by LABYRINTH, we are ready to discuss the current system at length.
We will see that LABYRINTH has distinct ties to COBWEB, adopting its
basic principle of probabilistic concepts organized in a disjoint hierar-
chy, and its divisive concept formation algorithm. However, the current
system extends the representation language for objects and concepts.
As we have seen, a central obstacle to learning in structured domains
is that of characterizing structured concepts. LABYRINTH uses a rep-
resentation for structured objects that reduces search by decomposing
structured objects into a partonomy of components,? supplemented by
additional relations among those components. In this section, we de-
scribe the system’s representation for objects and concepts, and how
these concepts are organized in long-term memory.

3.1 Instances in LABYRINTH

Following Wasserman (1985), we argue that in many domains the in-
stances passed to a concept learner are naturally decomposed by a fun-
damental relation. For example, Marr (1982) has argued that the visual
system parses physical object descriptions into a partonomy organized
by PART-OF relations. Similarly, McNamara, Hardy, and Hirtle (1989)
have found that memory for large-scale spatial environments has a hi-
erarchical component. Many forms of sequential data also can be rep-
resented as an ordered set of components; Rubin and Richards’ (1985)
work on elementary motion boundaries presents evidence that humans
perceive motion in distinct segments that are invariant with respect to
speed and viewpoint. For continuity, we use physical objects for our
example instances, but we will discuss alternative domains and funda-
mental relations in Section 5.3.

9. Recall from Section 2.5 that we use the term partonomy for object hierarchies,
to distinguish them from concept hierarchies (taxonomies).
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LABYRINTH treats one relation as fundamental and structures both
objects and concepts by that relation. A structured object is represented
as a partonomy whose constituents are linked together by the fundamen-
tal relation. Fach object can be augmented by non-fundamental rela-
tions whose arguments are components of that object. Consider again
the domain shown in Figure 1. We represent the rightmost instance in
Figure 1 as:

(Rightstack-2 (component; (color blue) (shape odd))
(componenty, (color red) (shape circular))
(components (color grey) (shape square))
((Left-of component; components)))
((Left-of component; components))
((on components component,))

Note that the PART-OF relation is implicit in this representation and is
used to organize the object into a partonomy, as in MERGE.

We distinguish between two types of objects. Primitive objects are
leaves of an instance partonomy. They are represented as ordered sets
of attributes whose values are directly observable object features, as
in COBWEB. For example, RIGHTSTACK-2 has three primitive com-
ponents: COMPONENT;, COMPONENT9, and COMPONENT3. Structured
objects are represented as unordered sets of attributes (components)
whose values can additionally be either primitive objects or other struc-
tured objects. Here, RIGHTSTACK-2 is a structured object with three
attributes, each of which has a value that is a primitive object. In addi-
tion, this object has three associated binary relations, ON and two dif-
ferent instances of LEFT-OF, which are treated as additional attributes
during classification. LABYRINTH treats components, non-fundamental
relations, and descriptive features as different forms of “attributes”. It
exploits the isomorphism among them to classify both primitive and
structured objects using a similar algorithm.

3.2 Concept Representation and Organization in LABYRINTH

Like COBWEB, LABYRINTH represents concepts by storing an associated
set of attributes, their values, and associated conditional probabilities;
it differs by the types of data that can be tied to those attributes.
We define a primitive concept as a concept whose attributes have di-
rectly observable values. In contrast, a structured concept is one whose
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attributes correspond to “components”.!® Because these components
are themselves objects, a structured concept’s “attributes” have asso-
ciated values that point at other concepts summarizing those objects.
In this way, a single structured concept is defined in terms of other,
possibly structured, concepts. A structured concept is thus stored not
as a monolithic structure, but as many concepts distributed through
memory, decomposed by the fundamental relation for that domain.

Because of this distributed representation, a single component con-
cept can take part in several structured concepts. The concepts “pointed
to” are themselves acquired by LABYRINTH, so that one can view the
system as learning new terms; only primitive concepts are represented
with values present in the original instance language. In addition, be-
cause all the concepts are changing over time in response to new in-
formation, LABYRINTH can manage concept drift with respect to both
structured object concepts and component concepts.

Figure 2 shows a snapshot of LABYRINTH’s memory after it has in-
corporated three instances into memory: LEFTSTACK-1, LEFTSTACK-
2, and R1IGHTSTACK-1. The two singleton children of the LEFTSTACK
concept, as well as the mixed root, are omitted for brevity. Each con-
cept has been given a name for expository purposes, and each has an
associated probability P(N) with respect to its parent, along with a set
of attributes. Each of these attributes in turn has a set of values and
associated conditional probabilities. Note that for some of the concepts
these associated values are in italics to indicate that they are the names
of other concepts in memory. Thus, the hierarchy of Figure 2 contains
thirteen primitive concepts, which represent stack components, and five
structured concepts (of which three are shown), which represent stacks.
Concepts for both are indexed in the same memory structure. The root
concept thus summarizes both stacks and stack components, and is used
only as an index for the hierarchy.

In addition to components, structured concepts can have arbitrary
relations associated with them. LABYRINTH represents these relations
as ternary-valued attributes, with associated conditional probabilities
for each of the possible situations CONFIRMED, NEGATED, and MISS-
ING. If a relation is not found in an object description, the system

10. Some concepts are “mixed”, in that they generalize both primitive and structured
objects; for example, the root of the tree will always be mixed. Because primitive
and structured objects never have values in common, these mixed concepts rarely
appear below the first level of the tree in LABYRINTH runs.
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P(RightStack=2/4  P(V|C)
Comp, [Circle-2 0.50
Qdd-4 0.50
Comp |Odd-2 0.50
Circle-4 0.50
P(Stack9=4/16 P(VIC) Comps |Square 1.00
Compy | Block 1.00 Left-of Comp, Comg | 1.00
Left-of Comp; Comp | 1.00
Comps| Block 1.00

Left-of Compr Comp |1.00)\  |p(LeftStacky=2/4 P(VIC)

Left-of Comp; Comp | 0.50
Left-of Comp, Comg [0.50| \ [Comp |Square 1.00
On Comp Comg (0.50 Comp, |Odd-1 0.50
On Comp Comp| 0.%0 Circle-3 0.50
Comp, (Odd-3 0.50
Circle-1 0.50

Left-of Comp, Comp | 1.00
Left-of Comp; Comg | 1.00

On Comp Comp |1.00

P(Odd=4/12 P(V|C)
Color [Blue | 1.00
|Shapelodd | 1.00

P(Block)=12/16  P(V|C

Color gfgy 0331/ |Psquarg=4/12P(viC
Blue 0.33 Color |Gray | 1.00
Shapg Circle 0.33
Square 0.33 Shape|Squarg 1.00
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P(Circle )=4/12P(V|C
Color |Red 1.00
Shape|Circle |1.00

Figure 2. LABYRINTH’s memory after processing three instances from Figure 1.
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increments its MISSING probability. For brevity, we include only the
CONFIRMED probability in our figures, but all three values are used for
classification decisions. Note that there can be several different instanti-
ations of the same relation at a concept; both (LEFT-OF COMPONENT;
COMPONENT3) and (LEFT-OF COMPONENT; COMPONENT,) are asso-
ciated with the RIGHTSTACK concept.

4. Classification and Learning in LABYRINTH

Having described LABYRINTH’s memory structures, we can now describe
how it classifies objects and updates its concept hierarchy. As in COB-
WEB, classification and learning are intertwined, with each instance be-
ing sorted through a concept hierarchy and altering that hierarchy in
its passage. The system initializes its hierarchy to a single node based
on the first instance. It then enters a loop of accepting new instances,
classifying them and updating memory along the classification path.
LABYRINTH differs from COBWEB in two important ways. It adds an
outer loop to classify each component of a structured object. In ad-
dition, it introduces a new subroutine, COBWEB', to form predictive
characterizations of structured concepts.

4.1 The LABYRINTH Algorithm

Table 2 shows the top-level LABYRINTH algorithm for classifying and
learning with structured objects. To classify a single instance, the sys-
tem uses a divide-and-conquer technique, breaking up the overall clas-
sification problem into a series of simpler classifications, one for each
subtree of the instance partonomy. LABYRINTH processes structured
objects in a “component-first” style, performing a complete postorder
traversal of the partonomy. To classify a structured object in the parton-
omy, the system first classifies each of the object’s components, re-
turning the node in memory that the component most closely matches.
LABYRINTH then “re-labels” the structured object, using each returned
node as a label for a component. By performing this re-labeling op-
eration, LABYRINTH reduces a structured object to a simple one with
attributes and corresponding values; however, the values in this case are
pointers to nodes in memory. The system then classifies this re-labeled
object and recurses, until all the structured objects of the instance,
including the instance itself, are classified.
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Table 2. The basic LABYRINTH algorithm.

Input: OBJECT is a composite object, with substructure given.
ROOT is the root node of the concept (is-a) hierarchy.
Side effects: Labels OBJECT and all its components with class names.

Procedure Labyrinth(0OBJECT, ROOT)

For each primitive component PRIM of composite object OBJECT,
Let CONCEPT be Cobweb(PRIM, ROOT);
Labyrinth’' (OBJECT, PRIM, CONCEPT, ROOT).

Procedure Labyrinth’ (OBJECT, COMPONENT, CONCEPT, ROOT)

Label object COMPONENT as an instance of category CONCEPT.
If COMPONENT is not the top-level object OBJECT,
Then let COMPOSITE be the object that contains COMPONENT.
If all components of COMPOSITE are labeled,
Then let COMPOSITE-CONCEPT be Cobweb’ (COMPOSITE, ROOT).
Labyrinth’' (OBJECT, COMPOSITE, COMPOSITE-CONCEPT, ROOT).

LABYRINTH uses two principal subroutines. The first of these is
Fisher’s COBWEB, which we have described in Section 2.6. LABYRINTH
uses COBWEB to classify primitive components, treating it as a black
box that returns the best match in memory to the object passed to it;
we refer to this match as the label for that component. LABYRINTH re-
lies on a second subroutine, COBWER’, to classify non-primitive objects.
This routine is based on COBWEB; it uses the same evaluation function,
basic control structure, and learning operators. However, COBWEB’
incorporates additional mechanisms for finding the characterization of
structured concepts.

We first illustrate LABYRINTH’S processing on a simple two-level in-
stance, RIGHTSTACK-2, from Figure 1. We then describe COBWEB' and
its mechanisms for characterizing structured concepts.

4.2 LABYRINTH Classifying a Structured Object

We start with memory as in Figure 2, after three instances (two of LEFT-
STACK and RIGHTSTACK-1) have been processed. To process the new
instance RIGHTSTACK-2, LABYRINTH passes the description of CoMm-
PONENT; to COBWEB, which classifies and returns a label (the concept
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ODD-4) for that component. The same procedure leads LABYRINTH
to label COMPONENTs as a member of CIRCLE-4, and COMPONENTj3
as a member of SQUARE-4. So far, LABYRINTH has done no more
than use COBWEB’s existing mechanisms to “label” three primitive ob-
jects and update memory accordingly. However, whereas COBWEB stops
there, LABYRINTH uses this information to classify the structured ob-
ject. These labels are inserted into the structured object description, so
that the instance now has the form:

(Rightstack-2 (component; odd-4)
(componenty, circle-4)
(components square-4)
((Left-of component; components)))
((Left-of component; components))

((on components components))

LABYRINTH treats these labels from previous classifications as nominal
values, enabling it to classify the structured object as though it were a
primitive object (with the exceptions described in Section 4.3). In this
case, LABYRINTH labels the structured object as a member of the struc-
tured concept RIGHTSTACK, resulting in the memory structure found
in Figure 3. Here, we see that the concepts labeled BLOCKS, SQUARE,
OpD, and CIRCLE have been updated in response to the components
of RIGHTSTACK-2, and new leaves have been added to the concept tree
for ODD-4, CIRCLE-4, and SQUARE-4. In addition, the stack itself has
passed through the STACKS and RIGHTSTACK concepts, updating them
accordingly. As in Figure 2, we omit the singleton concepts for the indi-
vidual stacks, indexed by the LEFTSTACK and RIGHTSTACK concepts.

4.3 Integrating a Structured Object into a Concept

As we have seen in Section 2, the primary difficulty in learning from
structured data is finding adequate characterizations of the concepts.
LABYRINTH has a simplified characterization task because it learns from
trees, not from the arbitrary graphs used by programs like SPROUTER
and CLUSTER/S. However, LABYRINTH’s subroutine COBWEB' still faces
two extra searches to form characterizations. First, as we have noted,
in many structural domains the components are unordered; in addition,
whereas each object in Figure 1 has an identical number of components,
some domains have objects with varying numbers of components. A
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Figure 3. LABYRINTH’s memory after processing four instances from Figure 1.



150 K. THOMPSON AND P. LANGLEY

Table 3. Incorporating a structured object into a structured concept.

Variables: NODE is a node in the hierarchy.

INST is an unclassified structured object.

Incorporate (NODE, INST)

Update the probability of category NODE.
Let BINDINGS be all possible bindings between NODE and INST.
For each possible set of bindings BIND in BINDINGS,
For each relation REL in instance INST,
Bind the arguments of REL according to BIND.
If there is an equivalent relation N-REL in NODE,
Then update the probability of N-REL;
Else add REL to the characterization of NODE.
For each attribute ATT in instance INST,
Let I-VAL be the value of ATT.
Let N-ATT be the corresponding attribute in NODE.
For each value VAL of N-ATT,
Update the probability of VAL given category NODE.
Let VALS be the value list of N-ATT.
Let the VALS be Attribute-Generalize (I-VAL, N-VALS, NIL).
Evaluate the resulting node.
Choose the best possible BIND and use it to store INST.

Attribute-Generalize (0BJ-VAL, NODE-VALS, CHECKED)

For each VALUE in NODE-VALS,
Let ANCESTOR be the common ancestor of OBJ-VAL and VALUE.
Let REST be NODE-VALS with VALUE removed.
If it is appropriate to replace 0BJ-VAL and VALUE with ANCESTOR,
Then call Attribute-Generalize (ANCESTOR, REST, CHECKED) ;
Else call Attribute-Generalize (0BJ-VAL, REST, CHECKED).

characterization algorithm for structured concepts must thus determine
a set of bindings between components in the object and those in the
concept.

The second search arises from the nature of objects that COBWEB’
processes. The routine classifies objects that are “re-labeled”, in that
their values are labels returned by earlier classifications. COBWEB' takes
advantage of the hierarchical relationships between these labels to search
for more predictive characterizations of structured objects. In this sec-
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tion, we describe the approach COBWEB' takes to searching for the best
characterization. Table 3 summarizes the function for incorporating an
object into a concept in memory. This function replaces the simpler one
used in COBWEB (see Gennari et al., 1989).

4.3.1 MATCHING COMPONENTS AND BINDING RELATIONS

Structured objects have unordered attributes; they lack role informa-
tion that helps the learner match components from different objects.
Whereas for primitive objects there is a unique maximal generalization
for any pair of objects, structured objects require an extra matching
process in order to determine the best match between the components
and relations in the object and those in the concept. COBWEB' must
bind the arguments of object relations to determine if they match with
one of the concept relations. Once it has bound the arguments of each
object relation, COBWER' can update the correct probability (either
CONFIRMED, NEGATED, or MISSING) of each concept relation based on
the bound object. These concept relations are then treated as additional
attributes of the concept in classification decisions.

We describe here an exhaustive algorithm to find the best mapping
between a structured object and a structured concept.!'' CoBwWEB’
matches a structured object with each concept in memory using a four-
step process. First, it finds all mappings of components in the object
to components in the concept. Second, for each mapping, the system
rewrites the n-ary relations in the object by substituting each object
component for its corresponding concept component. Third, COBWEB’
compares the resulting instantiated relations to the relations in the con-
cept description, treating each one as a Boolean attribute that may
or may not match the concept. Finally, the system considers apply-
ing the attribute generalization operator described in Section 4.3.2 to
each attribute. The resulting concept, with fully bound relations and
attributes, is evaluated with a reduced form of category utility that
evaluates the quality of a single concept:

Atts Values

Z Z P(4; = Vij|Cr)* . (2)
i j

11. For n components, this algorithm is O(n!). Clearly, such a solution is impractical,
and fails to take advantage of the simpler matching problem faced by COBWEB'.
We discuss some less expensive solutions in Section 5.1.
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This expression rewards matches that reinforce values already found in
a node. The system selects the mapping that produces the node with
the best score.

For example, when COBWEB' matches the fourth instance against
the RIGHTSTACK concept from Figure 2, there are 3! = 6 mappings be-
tween the three components of the instance and the three components
of the concept. Some of these mappings reinforce the values in the
components but not the associated relations in the concept; others rein-
force the relations but not the components. LABYRINTH includes both
components and relations as attributes in Equation 2. For the RiGHT-
STACK concept, the system chooses an instantiation that reinforces all
three relations found in the instance. This generates bindings for both
the components and relation arguments in the object, producing the
characterization found in the RIGHTSTACK concept of Figure 3.

4.3.2 ATTRIBUTE GENERALIZATION IN LABYRINTH

COBWEB' uses an additional mechanism to determine appropriate ab-
stractions. For COBWEB, in which attributes take on only symbolic
values, updating an attribute A; after inspecting a new object is a sim-
ple matter of updating the correct conditional probability P(A4; = Vj;).
However, in COBWEB/, the values in the object are concepts stored else-
where in the hierarchy (the results of previous classifications). In order
to determine the best generalization between this structured object and
an existing structured concept, COBWEBR' uses the hierarchical relation-
ships between the values in the object and those in the existing concept
to determine the best values for the updated concept.

When incorporating an object into a concept, COBWEB' first adds the
label from the object to the corresponding attribute A; (as found by a
step of the match process) in the concept, resulting in a set of values
Vi. The system then evaluates whether to apply attribute generaliza-
tion to the values on each attribute. We define attribute generalization
as replacing a subset of the values V; stored at attribute A; with their
common ancestor, resulting in a smaller set of values. Attribute gen-
eralization chooses between two possibilities. In the simple case, the
operator can leave V; intact, as would COBWEB. The COBWEB’ routine
also considers replacing a subset W; of V; with its common ancestor
W . This results in a structured concept that can match more objects
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Figure 4. Generalizing the values of an attribute.

because of its more general values. For example, in Figure 3, we can
see that for the attribute COMPONENTy in the concept RIGHTSTACK,
CoBWEB' has simply added the object label CIRCLE-4 to the previ-
ous label ODD-2. In contrast, note that COMPONENT3 has the single
value SQUARE, the common ancestor of the two values SQUARE-4 (from
RIGHTSTACK-2) and SQUARE-2 (from RIGHTSTACK-1). This reflects
the fact that the two objects of RIGHTSTACK that LABYRINTH has
classified to this point have a square stacked on another item. Figure 4
illustrates the application of this operator.
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Determining when to apply the attribute generalization operator re-
quires evaluating a tradeoff. Equation 2 favors a single value with high
probability over several values with lower probability. Its application
to attribute generalization would result in storing each attribute with
a value V;* (the common ancestor of all the disjuncts) and probability
of 1. While this would result in a higher score for Equation 2, it would
result in less predictive power for the partition, because it would be dif-
ficult to discriminate such a node from other overgeneralized concepts.
CoBWEB' evaluates the tradeoff between forming concise characteriza-
tions with few values at one extreme, and over generalizing values so
that concepts cannot be distinguished at the other extreme. It replaces
a value set V; with a shorter set W; if doing so increases the information
gain between a child C and its parent C. For an attribute A; in C,
COBWEB' replaces a set of values V; with a new set of values W; iff:

Siew, [P(Ai = Wy|Cp)? — P(A; = Wy|C)?] >
Yjevi[P(Ai = Vij|Cy)? = P(A; = Viy|C)?] . (3)

The left side of this equation measures the information gain if the val-
ues are generalized at both the child C} and the parent C'. The right
side measures the gain if the values are left as an internal disjunct.'?
CoBWEB' considers all new value sets W; that are strictly more general
than the original set V;, and stores with CY}, the first set it finds for which

Equation 3 holds.

In one sense, this attribute generalization process is simply an incre-
mental approach to learning with structured attributes through climbing
a “generalization tree”, as described by Michalski (1983), Mitchell, Ut-
goff, and Banerji (1983), and others. However, recall that LABYRINTH
is constantly revising the structure of its concept hierarchy and intro-
ducing new symbols as it acquires new concepts. Since the descriptions
of structured concepts refer to other concepts in the concept hierarchy,
which LABYRINTH has acquired, the attribute generalization process
operates over different knowledge structures at different points in the
learning process. In effect, LABYRINTH is dynamically changing the
representation used to describe its structured concepts.

12. Doug Fisher (personal communication) suggested the use of Equation 3.
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5. Discussion

We believe that LABYRINTH constitutes a promising approach to con-
cept learning in structured domains. However, the existing system has
a number of limitations that we plan to remedy in future efforts. In
addition, we must demonstrate the system on a variety of domains. We
discuss these issues below, along with some related work.

5.1 LABYRINTH, Partial Matching, and Analogy

We have described an exhaustive algorithm to match components of an
object to those of a concept in memory. Although this O(n!) algorithm
is guaranteed to find the optimal match according to Equation 2, more
efficient alternatives exist. We plan to examine the Hungarian algorithm
(Papademetriou & Steiglitz, 1982), a guaranteed matching algorithm
that uses additional space to save partial solutions. Given a bipartite
graph with 2n concepts, along with some function for evaluating the
quality of a match, the Hungarian method finds the best match in O(n?)
time. The algorithm works by creating an n x n cost matrix for all
possible pairs of components and then solving an “n rooks” problem
over this matrix. We are also studying the use of a heuristic beam
search (e.g., as used by SPROUTER) guided by Equation 2. We plan
to use background knowledge about the data types of components to
constrain this search as well.

LABYRINTH can be viewed as an approach to partial matching (Hayes-
Roth, 1978). This task is usually defined as a comparison of two descrip-
tions to identify their similarities, and is thus typically used in systems
that use a specific-to-general search for hypotheses. SPROUTER (Hayes-
Roth & McDermott, 1978) and its relatives (Winston, 1975; Vere, 1975)
all use partial matchers as a principal subroutine in their search for
generalizations. Some additional work has focused on partial match-
ing outside the context of a concept learner. Kline (1981) emphasizes
ordering the space of possible partial matches to reduce computation.
In contrast, Watanabe and Rendell (1990) reduce computation by find-
ing branches of the search tree that can be eliminated without loss of
information by pruning redundant paths.

In determining the best match between a structured object and a
structured concept, LABYRINTH is performing a crucial subtask in ana-
logical reasoning. Falkenhainer, Forbus, and Gentner (1989) have de-
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veloped the Structure-Mapping Engine (SME) for determining this best
match, emphasizing structural integrity of the structured object over ob-
ject similarity. Matching is constrained in structure mapping by higher-
order relationships that are included as part of the instance. In contrast,
LABYRINTH treats relations and object attributes as two contributors to
the same evaluation function, rather than treating relations as preemi-
nent. This should allow it to find some generalizations based on surface
features that SME would not consider. However, the current version of
LABYRINTH uses a far less constrained matcher than SME and will thus
require far more computation in complex situations.

5.2 Using Context in Classifying Components

The current version of LABYRINTH takes a purely “component-first” or
“context-free” approach to structured classification. An alternative ap-
proach would be to take context as the primary criterion, classifying a
component only with respect to the role it plays in the greater whole.
Clearly, a better approach would involve a combination of these two ex-
tremes (Fisher, 1986). We are investigating an extension to LABYRINTH
in which the concept learner determines dynamically whether to clas-
sify an object based on its descriptive attributes only (as in the current
system), or whether to consider its role as well.

The approach involves storing a container link with each object com-
ponent. This link points from the component to the object of which it
is a component (the partonomy parent) and is treated as an additional
attribute for that object. Handa (1990) has explored one version of this
approach. His system extends LABYRINTH to learn context-sensitive
concepts by classifying each component twice: first to get a label used
in classifying its container, and again after the container has been classi-
fied, using the container link as an additional attribute. In contrast, we
plan to use ideas from Gennari’s (1989) model of selective attention to
determine dynamically whether to use the container attribute or others
in classifying the object.

Another interesting extension to LABYRINTH involves forming con-
cepts for the roles in its hierarchy. Consider the LEFTSTACK concept
in Figure 3. The two values in COMPONENTy (ODD-1 and CIRCLE-1)
are grouped by a simple kind of functional similarity; they play the
same role in a structured concept. This grouping might occur in several
structured concepts (although not in the STACK domain); however, the
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current system has no means of recognizing this similarity across roles.
We plan to investigate mechanisms through which LABYRINTH could
recognize such shared structures.

5.3 Domains for LABYRINTH

We claim in Section 3.1 that a hierarchical organization is natural for
many domains; we plan to demonstrate LABYRINTH’s effectiveness in
such domains. We have designed LABYRINTH as the fundamental mem-
ory organization scheme for ICARUS (Langley, Thompson, Gennari, Iba,
& Allen, in press), an integrated architecture that treats storage and
retrieval as central issues. Two components of ICARUS use structured
object descriptions, and we plan to integrate each of these other systems
with LABYRINTH.

D &pALus (Langley & Allen, 1990), the planning component of the ar-
chitecture, uses plan knowledge stored in a probabilistic concept hierar-
chy to guide operator selection. We are currently integrating LABYRINTH
into DAEDATLUS; in this domain, a means-ends trace is represented as a
hierarchical object linked by a SUBGOAL relation. In addition, we plan
to apply LABYRINTH to the motor schemas formed by MAEANDER (Iba
& Gennari, this volume), which represents limb motions as temporal
sequences of joint positions and velocities. Each state corresponds to a
LABYRINTH component, with joints serving as primitive objects.

6. Summary

In this chapter, we have described a system that learns concepts in
structured domains. We have explained why the study of structured
domains is important, and we have described six related systems that
form a historical background for the current work. We have emphasized
that all of the characteristics of LABYRINTH have been found in at least
one of these systems. However, no single system shares all five features:
the use of probabilistic concepts; an incremental algorithm; learning
from unclassified instances; learning with objects that have relations;
and using component structure to constrain matching.

LABYRINTH is an implemented system that extends COBWEB to struc-
tured domains. The system demonstrates a method for learning from
hierarchically decomposed objects, using the results of component clas-
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sifications to guide object classification. It learns in the presence of ar-
bitrary relations in the object and concept language. LABYRINTH also
introduces a new method for learning with hierarchically structured at-
tributes. It demonstrates a form of representation change, in that it not
only forms new terms as in previous concept formation systems, but
also uses those terms in describing new concepts. In future work, we
hope to establish LABYRINTH’s applicability in a wide range of domains
and to test its abilities in systematic experiments.

Acknowledgements

We thank Kathleen McKusick, Wayne Iba, Deepak Kulkarni, John Gen-
nari, John Allen, and Doug Fisher for lengthy discussions that have in-
fluenced many of the ideas in this paper. All of the above and Sally
Mouzon provided useful comments on an earlier draft.

References

Allen, J. A., & Langley, P. (1990). Integrating memory and search in
planning. Proceedings of the 1990 DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control (pp. 301-312).
San Diego, CA: Morgan Kaufmann.

Dietterich, T. G. (1986). Learning at the knowledge level. Machine
Learning, 1, 287 316.

Dietterich, T. G., & Michalski, R. S. (1981). Inductive learning of
structural descriptions. Artificial Intelligence, 16, 257 294.

Everitt, B. (1981). Cluster analysis. London: Heinemann.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-
mapping engine: Algorithm and examples. Artificial Intelligence,
41, 1-63.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior.
In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought.
New York: McGraw Hill.

Fisher, D. (1986). A proposed method of conceptual clustering for struc-
tured and decomposable objects. In T. M. Mitchell, J. G. Carbonell,
& R. S. Michalski (Eds.), Machine learning: A guide to current re-
search. Boston: Kluwer.



STRUCTURED CONCEPT FORMATION 159

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2, 139 172.

Fisher, D. H., & Langley, P. (1990). The structure and formation of nat-
ural categories. In G. H. Bower (Ed.), The psychology of learning

and motivation: Advances in research and theory (Vol. 26). Cam-
bridge, MA: Academic Press.

Gennari, J. H. (1989). Focused concept formation. Proceedings of the
Sizth International Workshop on Machine Learning (pp. 379 382).
Ithaca, NY: Morgan Kaufmann.

Gennari, J. H., Langley, P., & Fisher, D. (1989). Models of incremental
concept formation. Artificial Intelligence, 40, 11 61.

Gluck, M., & Corter, J. (1985). Information, uncertainty and the util-
ity of categories. Proceedings of the Seventh Annual Conference of
the Cognitive Science Society (pp. 283-287). Irvine, CA: Lawrence
Erlbaum.

Handa, K. (1990). Crix: Concept formation by interaction of related
objects. Proceedings of the Pacific Rim International Conference
on Artificial Intelligence. Nagoya, Japan.

Hanson, S. J., & Bauer, M. (1989). Conceptual clustering, categoriza-
tion, and polymorphy. Machine Learning, 3, 343 372.

Hayes-Roth, F., & McDermott, J. (1978). An interference matching
technique for inducing abstractions. Communications of the ACM ,
21, 401-410.

Hayes-Roth, F. (1978). The role of partial and best matches in knowl-
edge systems. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-
directed inference systems. New York: Academic Press.

Hoff, W., Michalski, R. S., & Stepp, R. E. (1983). A program for learn-
ing structural descriptions from ezamples (Tech. Rep. No. UIUCDCS-
F-83-904). Urbana: University of Illinois, Department of Computer
Science.

Kline, P. J. (1981). The superiority of relative criteria in partial match-
ing and generalization. Proceedings of the Seventh International
Joint Conference on Artificial Intelligence (pp. 296 303). Vancou-
ver, BC: Morgan Kaufmann.

Kolodner, J. L. (1983). Reconstructive memory: A computer model.
Cognitive Science, 7, 281-328.



160 K. THOMPSON AND P. LANGLEY

Langley, P., Thompson, K., Iba, W., Gennari, J. H., & Allen, J. A.
(in press). An integrated cognitive architecture for autonomous
agents. In W. Van De Velde (Ed.), Representation and learning in
autonomous agents. Amsterdam: North Holland.

Lebowitz, M. (1987). Experiments with incremental concept formation:
UNIMEM. Machine Learning, 2, 103 138.

Levinson, R. A. (1985). A self-organizing retrieval system for graphs.
Doctoral dissertation, Department of Computer Sciences, Univer-
sity of Texas, Austin.

Marr, D. (1982). Vision: A computational investigation into the human
representation and processing of visual information. San Francisco:
W. H. Freeman.

McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective
hierarchies in spatial memory. Journal of Exzperimental Psychology:
Learning, Memory, and Cognition, 15, 211 227.

Mervis, C., & Rosch, E. (1981). Categorization of natural objects. An-
nual Review of Psychology, 32, 89 115.

McKusick, K. B., & Thompson, K. (1990). COBWEB/3: A portable
implementation (Tech. Rep. No. FIA-90-6-18-2). Moffett Field,
CA: NASA Ames Research Center, Artificial Intelligence Research
Branch.

Michalski, R. S. (1983). A theory and methodology of inductive learn-
ing. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning: An artificial intelligence approach. San Mateo,
CA: Morgan Kaufmann.

Michalski, R. S., & Stepp, R. E. (1983). Learning from observation:
Conceptual clustering. In R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach. Los Altos, CA: Morgan Kaufmann.

Mitchell, T. M., Utgoff, P., & Banerji, R. B. (1983). Learning problem
solving heuristics by experimentation. In R. S. Michalski, J. G.
Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach. San Mateo, CA: Morgan Kaufmann.

Nordhausen, B., & Langley, P. (1990). An integrated approach to em-
pirical discovery. In J. Shrager & P. Langley (Eds.), Computational
models of scientific discovery and theory formation. San Mateo,
CA: Morgan Kaufmann.



STRUCTURED CONCEPT FORMATION 161

Papademetriou, C., & Steiglitz, K. (1982). Combinatorial optimization.
Englewood Cliffs, NJ: Prentice Hall.

Quinlan, J. R. (1990). Learning logical definitions from relations. Ma-
chine Learning, 5, 239 266.

Rubin, J. M., & Richards, W. A. (1985). Boundaries of visual mo-
tion (Al Memo 835). Cambridge, MA: Massachusetts Institute of
Technology, Laboratory for Artificial Intelligence.

Smith, E., & Medin, D. (1981). Categories and concepts. Cambridge,
MA: Harvard University Press.

Stepp, R. E. (1984). Conjunctive conceptual clustering: A methodology
and ezxperimentation. Doctoral dissertation, Department of Com-
puter Science, University of Illinois, Urbana.

Stepp, R. E., & Michalski, R. S. (1986). Conceptual clustering of struc-
tured objects: A goal-oriented approach. Artificial Intelligence, 28,
43 69.

Vere, S. A. (1975). Induction of concepts in the predicate calculus. Pro-
ceedings of the Fourth International Joint Conference on Artificial
Intelligence (pp. 281-287). Thilisi, USSR: Morgan Kaufmann.

Wasserman, K. (1985). Unifying representation and generalization: Un-
derstanding hierarchically structured objects. Doctoral dissertation,
Department of Computer Science, Columbia University, New York.

Watanabe, L., & Rendell, L. (1990). Effective generalization of rela-
tional descriptions. Proceedings of the Fighth National Conference

of the American Association for Artificial Intelligence (pp. 875
881). Boston, MA: AAAT Press.

Winston, P. H. (1975). Learning structural descriptions from examples.
In P. H. Winston (Ed.), The psychology of computer vision. New
York: McGraw-Hill.

Wogulis, J., & Langley, P. (1989). Improving efficiency by learning
intermediate concepts. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 657 662). Detroit,
MI: Morgan Kaufmann.



