
Chapter 5Concept Formationin Structured DomainsKevin ThompsonPat Langley
1. IntroductionMost recent work on unsupervised concept learning has been limited tounstructured domains, in which instances are described by �xed sets ofattribute-value pairs. Many domains can be described in this simplelanguage. Frequently, however, instances have some natural structure;objects have components and relations among those components. Insuch domains, an attribute-value language is inadequate.This chapter describes Labyrinth, an implemented system that in-duces concepts from structured objects. We view Labyrinth as anapproach to incremental concept formation. Following Gennari, Lang-ley, and Fisher (1989), we de�ne this task as:� Given: a sequential presentation of objects and their associateddescriptions;� Find: clusterings that group these objects into concepts;� Find: a summary description for each concept;� Find: a hierarchical organization for these concepts.The goal of incremental concept formation is to �nd concepts that allowuseful predictions from partial information. Cobweb (Fisher, 1987),Unimem (Lebowitz, 1987), and Cyrus (Kolodner, 1982) all incorpo-rate approaches to this task, but these earlier systems are restricted toattribute-value languages. Labyrinth can make e�ective generaliza-tions by using a more powerful structured representation language.



128 K. Thompson and P. Langley
�������� �������� RightStack-2RightStack-1LeftStack-2LeftStack-1Figure 1. Four instances from a simple relational domain.Figure 1 shows a simple domain with four structured objects. Eachobject has three components, two Left-of relations, and a single On-Top relation. Each of the three component objects is in turn describedwith the two attributes Shape and Color. We will sometimes de-scribe each object as being \labeled" as a member of one of these twoclasses: RightStack (instances that have a two-high stack to the rightof another object), and LeftStack (instances with a stack to the left).These labels are for expository purposes; they play no part in classi�-cation or learning. We will use the domain in Figure 1 throughout ourdiscussion of related work and our sketch of Labyrinth's operation.A structured domain can sometimes be converted to one describedonly by �xed attributes and their values. However, as Quinlan (1990)has argued, using an attribute-value language simpli�es the learningtask, but may prevent the learning of concise, e�ective generalizations.For example, if we enforce a consistent ordering of components in thefour instances from Figure 1, one could in theory \atten" the repre-sentation of each instance to a �xed set of attributes. However, to �ndthe most concise representation of the two Stack concepts, the learnermust be able to consider di�erent bindings between the components ofeach object. With a structured representation, the learner can �nd aconcept of the form: \There are three objects, X, Y , and Z; X is ontop of Y , and both X and Y are to the left of Z". Moreover, a sys-tem that uses a structured representation has the potential to recognizea LeftStack in which the stack has three objects instead of two; alearner that is limited to a predetermined set of attributes would havelimited exibility in such situations.In the following section, we summarize related research on conceptlearning in structured domains. We then describe Labyrinth's rep-resentation of objects and concepts, along with its memory organi-zation. After this, we illustrate the system's classi�cation and learn-



Structured Concept Formation 129ing algorithm by tracing through a simple example, and then discussLabyrinth's mechanisms for matching structured objects against con-cepts in memory. We conclude with a discussion of open issues andplans for future research.2. Concept Learning in Structured DomainsLabyrinth carries out incremental, unsupervised concept learning instructured domains. It learns probabilistic concepts and uses them tomake predictions of missing attribute values, components, and relations.It also decomposes objects into sets of components to constrain match-ing. Many of these characteristics are found in earlier systems, but noone system has integrated all these traits. In this section, we reviewsix systems in detail. The review is not intended to be exhaustive,but to highlight previous work that has examined some of the issuesLabyrinth addresses, and to argue for the importance of integratingthese characteristics. Of the six systems we describe, two involve induc-tion over objects described as attribute-value sets, and are importantfor their contribution to the unsupervised learning literature. The otherfour are important for their contribution to the understanding of induc-tion in structural domains. For each system, we discuss its representa-tion language for instances and concepts, its classi�cation mechanism,and its learning algorithm.2.1 Sprouter: Incremental Learning with Structured ObjectsHayes-Roth and McDermott's (1978) Sprouter is representative ofseveral systems that carry out learning of maximally speci�c conjunctivedescriptions from examples (e.g., Vere, 1975; Winston, 1975). Thesesystems focus on �nding characterizations, or descriptions, of classesgiven by an external teacher. Dietterich and Michalski (1981) present acareful comparison of a number of such systems.Sprouter's representation language for both instances and conceptsis equivalent to quanti�er-free �rst-order predicate logic; the systemviews atoms as existentially quanti�ed variables denoting distinct ob-jects. In addition, the language allows organization of predicates thatare semantically related into case frames to reduce match costs. Forexample, the Color feature of each object in a scene would be put



130 K. Thompson and P. Langleyin the same frame.1 Sprouter's representation of the RightStack-2instance from Figure 1 would be:ffgrey:a,blue:b,red:cgfsquare:a,odd:b,circle:cgfon-top:a,below:cgfleft:b,right:cgfleft:b,right:agg .This representation asserts that there is a structured object composedof three component objects, a, b, and c, that the object labeled a hasproperties of being Grey, Square, and so on. Because Sprouterinduces only conjunctive generalizations, its concepts are represented inthe same language as the instances. Generalization arises from droppingterms and replacing constants with variables.Sprouter uses an incremental algorithm to carry out a heuristicbeam search2 through the space of hypotheses using a speci�c-to-generalscheme. It uses the �rst instance as an initial hypothesis set and createsnew sets of conjunctive generalizations (e.g., concepts) in response tolater instances. The system conducts an interference match betweeneach generalization and each new instance. This match identi�es com-mon properties, and replaces the current hypothesis with one or morenew generalizations. Sprouter constrains its search through the hy-pothesis space by limiting the number of partial matches stored andpruning those with low utility; the evaluation function that guides thissearch is de�ned to increase with the number of relations in a matchand to decrease with the number of objects related.To match a structured instance I and concept C, Sprouter selectsan arbitrary case frame FI from I and then �nds bindings between FIand a case relation FC from C with identical case labels. As we noted,the system uses its case frames to guide its selection of FC . Sprouteruses FI and FC and the bindings between them to form an initial partialmatch; it then selects a new case frame from I and repeats the process.If the bindings between the frames are consistent with the previous1. This case frame representation appears to play a role similar to that of the \at-tributes" used by many inductive learning systems. Hayes-Roth and McDermott(1978, p. 402) use this idea of de�ning certain shared properties. In addition,SPROUTER appears to use the case frames to direct matching between propertiesthat other systems would represent as n-ary predicates (e.g., ABOVE, BELOW).2. In contrast, Vere's THOTH (1975) considers all maximal generalizations.



Structured Concept Formation 131partial match, Sprouter adds the case frames and their bindings intothe previous hypothesis. If the bindings conict, the system forms anew generalization that contains only the bindings between the currentcase frames. In this way, each instance causes the system to extend orrevise its set of hypotheses.3Sprouter is important because it is one of the most sophisticated ofthe early inductive systems able to learn in structured domains. It formsplausible characterizations in complex structured domains, using simpleheuristic methods to limit an inherently exponential search problem fora maximal characterization. However, it is limited to a conjunctive con-cept language, and, like many early inductive learning systems, lacks aclear performance component. One can imagine Sprouter being usedin a recognition task in which the system uses a complete matcher todetermine if a test instance matches any of the hypotheses. Most impor-tantly for our current discussion, Sprouter is a supervised algorithm,and therefore does not address issues of cluster formation and memoryorganization. We turn now to classi�cation and learning in situationswhere the objects are unlabeled.2.2 Cluster/2: Conceptual ClusteringIn many situations, a learner cannot rely on direct labeling of eachobject; in these cases, one must autonomously organize observationsinto categories. Older work in this area, known as numerical taxonomy(Everitt, 1980), concentrates on what Fisher and Pazzani (Chapter 1,this volume) call the clustering task, that of determining useful subsetsof an unclassi�ed set of objects. With their system Cluster/2, Michal-ski and Stepp (1983) introduce the conceptual clustering paradigm. Thistask includes not only clustering, but also characterization: the forma-tion of intensional concept descriptions from each extensionally de�nedcluster. This latter subtask is the focus of supervised learning systemssuch as Sprouter; it is the combination of the clustering and charac-terization problems that distinguishes conceptual clustering.3. Dietterich and Michalski (1981) divide the SPROUTER algorithm into two sepa-rate steps: �nding all possible bindings between identical case frames, and �ndingconsistent unions of them. Although this appears to be identical in principle tothe description by Hayes-Roth and McDermott (1978), the latter argue (p. 405)that �nding all possible bindings initially would be prohibitively expensive.



132 K. Thompson and P. LangleyWe review Cluster/2 here because it constitutes an early exampleof a machine learning approach to conceptual clustering, and is an im-portant component of Cluster/S, which we describe in Section 2.3.However, we emphasize that the system does not carry out structuredconcept learning, since its representation language has only unary predi-cates. Both objects and concepts are represented in the annotated pred-icate calculus, an extension of the predicate calculus with additionaloperators for internal disjunction (e.g., [shape(block) = odd _ square])and internal conjunction (e.g., [shape(block1&block2) = odd]). Eachpredicate, variable, and function in this language has an associated an-notation, giving \domain knowledge" about the type of the value setand related descriptors in a value hierarchy (e.g., Odd and Square aresubsumed by the value Any-Shape).Cluster/2 is nonincremental, using a divisive technique to generatea disjoint hierarchy of concepts. It starts with a root node consisting ofall objects in the data set. It then splits that node into a set of mutuallyexclusive clusters and recurses to construct subhierarchies below eachnode. Cluster/2 is a complex algorithm, with several levels of nestedsearch, each using a similar (user-supplied) evaluation function but usingdi�erent search techniques. At the highest level, the algorithm searchesthrough partitions consisting of di�erent numbers of clusters k, from twoup to a user-speci�ed parameter Kmax, �nding a \best" partition foreach value of k and then selecting the best of these Kmax�1 partitions.The Cluster/2 system operates by transforming its unsupervisedlearning task into a series of supervised learning tasks. To �nd a par-tition for a single value of k, it begins by randomly selecting k \seed"objects for each seed, treating that seed as a positive instance and allothers seeds as negative instances. For each seed, Cluster/2 usesthe star-generating algorithm described by Michalski (1983) to �nd theset of alternative most general descriptions that distinguish the clusterbased on that seed from those of the other seeds; it selects the best ofthese as the cluster for that seed.4 These descriptions form a disjointclustering over the original set of objects. If this iteration produces a setof clusters superior to the previous one, seeds are selected from the cen-tral tendency of each of these clusters; otherwise, seeds are selected frominstances at the borders of the clusters. This new set of seeds is used to4. Because they are the most general de�nitions, the clusters can overlap; an addi-tional search is used to make them disjoint.



Structured Concept Formation 133generate a new clustering, with the algorithm terminating when someprede�ned number of consecutive iterations generate no improvement.Cluster/2 is interesting to our current discussion primarily becauseit introduces the task of conceptual clustering, and aids the discussionof Cluster/S below. The algorithm is computationally expensive andrelies on several user-supplied thresholds to control its search. Onewould prefer the algorithm to determine the proper number of cluster-ings without a complete search for each value of k. In addition, likemost early inductive learning systems, Cluster/2 lacks a performancemechanism with which to evaluate its clusterings, and instead relies onmetrics like \quality of discovered classes" and \quality of �t to data"to evaluate the system's performance. However, as with Sprouter,one can imagine using the induced concepts and a complete matcher torecognize test instances.2.3 Cluster/S: Clustering with Structured ObjectsCluster/S (Stepp, 1984; Stepp & Michalski, 1986) extends Clus-ter/2, combining a supervised learning algorithm for structured do-mains with the earlier work on attribute-based conceptual clustering toform concept hierarchies from structured objects. Cluster/S repre-sents objects and concepts in the annotated predicate calculus, as withCluster/2, but includes n-ary predicates along with simple attributes.The RightStack-2 object in Figure 1 would be represented as:9 p1,p2,p3 [color(p1)=grey] [shape(p1)=square][color(p2)=blue] [shape(p2)=odd][color(p3)=red] [shape(p3)=circle][on(p1,p3)][Left-of(p2,p3)][Left-of(p2,p1)] .Like its predecessor, Cluster/S e�ectively reduces an unsupervisedlearning problem to a series of supervised learning subproblems. Thesystem breaks the problem of structured object clustering into two seg-ments: reducing each object description to an attribute-value represen-tation using a supervised learner, then using an attribute-based methodto cluster these redescribed instances. It thus circumvents the complex-ity of clustering structural descriptions by clustering only those parts ofeach object expressible in a common language of �xed attributes.



134 K. Thompson and P. LangleyCluster/S �rst �nds a maximally speci�c generalization, or tem-plate, of the set of structured objects, using a characterization algorithmadapted from Induce/2 (Ho�, Michalski, & Stepp, 1983). This gen-eralization M expresses the common substructure of all the instances,covering all objects while preserving enough information from each ob-ject to identify correspondences between objects. UsingM , Cluster/Scan extract a subset of the literals from each instance in a common lan-guage of quanti�er-free attributes. In this way, a structured domain isconverted to an attribute-value language by a search for common struc-tural properties. The re-de�ned objects, described by a �xed set ofliterals, are then clustered with the Cluster/2 algorithm, and theseclusters can easily be converted back to a structured form using M .A postprocessing step augments each cluster with those parts of eachinstance \left out" in the conversion to the template language.Stepp (1984) describes how the matching of two objects in structureddomains can be viewed as a graph-matching problem, and notes itscomputational complexities. The algorithm used to generateM appearsto employ a beam search through a space of partial matches for theinstances, starting with a single attribute and gradually extending theset of template hypotheses by adding more attributes. The algorithmcontains a \trimming" step to limit the combinatorial explosion of matchhypotheses, but Stepp fails to describe clearly the evaluation function.Many of the comments applicable to Cluster/2 are applicable toCluster/S as well. The latter system is important as the �rst machinelearning approach to unsupervised induction of concepts from structuraldata. However, because it uses Cluster/2 as a main subroutine, itshares the disadvantages of being computationally expensive and non-incremental. Like Cluster/2, it lacks a clear performance component.In addition, because it clusters only over those relations and attributesthat are found in the template M , it cannot �nd generalizations thatuse features shared only by a subset of the instances.2.4 Levinson's Incremental Self-Organizing MemoryLevinson (1985) describes a database retrieval system for concepts rep-resented as graphs. He applies his system to the domain of organicchemistry, but argues that it is widely applicable, and demonstrates itbriey on chess. In contrast to the other systems we review, Levinson'ssystem does not learn at the knowledge level (Dietterich, 1986), butaims to acquire e�cient indices for retrieving speci�c cases.



Structured Concept Formation 135Instances are represented as labeled graphs. For example, a hydro-carbon molecule would be represented as a graph with edges for bondsand vertices for individual atoms. Concepts are described as logical con-junctions of relations that share arguments, as in most work on struc-tured concept learning. Naturally, concepts are partially ordered bygenerality, but Levinson's system uses this ordering for memory orga-nization, not just to constrain search. The system stores all conceptsin a graph partially ordered by the relation Subgraph-of. The mostgeneral nodes are individual literals; the most speci�c concepts (termi-nal nodes) represent actual objects. If one concept (S) is more speci�cthan another (G), then S is connected to G by a Subgraph-of link,unless there is some other concept that is more general than S and morespeci�c than G.Levinson's system uses this memory organization to retrieve e�cientlythe best matches in memory to a presented object. A new instance I issorted \in parallel" down all paths in the concept hierarchy, starting atthe most general node. If I matches the concept C, then the instanceis recursively sorted to C's children. This continues until I reaches aconcept that it fails to match, or until it reaches a terminal node.If an instance I reaches and matches a terminal node during sortingthrough memory, no learning occurs. However, if I has matched a con-cept G but does not match any of G's children, the system considersforming generalizations based on I and each of those children. For eachchild S, it �nds all maximal partial matches between I and S, thenselects the best match according to e�ciency concerns. It creates a newintermediate level concept L that is more general than S and more spe-ci�c than G, inserting the appropriate Subgraph-of links. The systemalso determines whether L should be inserted between any other pair ofconcepts that are directly connected by Subgraph-of links. Note thatthe system can create multiple concepts for a given instance I, since Iis sorted down multiple paths in the hierarchy. However, the algorithmdoes not move beyond the input data, but only summarizes the observedinstances. The algorithm forms general concepts, but only uses them asan e�cient indexing scheme for retrieving speci�c cases. Wogulis andLangley (1989) use di�erent mechanisms to acquire a similar memorystructure, and point out that such systems lead to more e�cient clas-si�cation by storing intermediate concepts; in Levinson's system, thesubgraphs allow more e�cient indexing of structured objects.



136 K. Thompson and P. Langley2.5 Merge: Organizing Structured Objects into ComponentsWasserman (1985) describes Merge, a system that carries out incre-mental concept acquisition and organization for structured objects. LikeLevinson's system, it uses a memory organization to facilitate incremen-tal update of memory in response to new objects. In contrast to Levin-son's work,Mergemoves beyond the data, making generalizations thatsummarize instances and using those generalizations to �ll in missinginformation.Merge's instance representation is most interesting to the currentdiscussion. The standard representation for structured objects, a pred-icate calculus formalism, is equivalent to arbitrary directed graphs. De-termining a match between two structured objects represented as graphsis equivalent to the NP-complete subgraph isomorphism problem. In re-sponse to this combinatorial problem, both Sprouter and the Clus-ter programs use heuristics to control the search for a characteriza-tion. Wasserman takes an alternate approach: representing objects ina language in which generalizations are more easily found. Merge isdescribed as a system for learning from hierarchies, rather than fromarbitrary structured objects. An instance hierarchy is represented as atree of nodes partially ordered by a fundamental relation. This relationis used to decompose the structured object into smaller \components",which in turn can have components, and so on. The representationbottoms out with primitive objects described only by associated objectproperties. To distinguish these instances from concept hierarchies, werefer to instance hierarchies as partonomies.In the domain of physical objects, the fundamental relation wouldbe the Part-of relation, but in other applications, Wasserman usesrelations like Reports-to (for human organization charts) and Is-a(for biological taxonomies). Wasserman notes that there are severalpossible organizational concepts, or fundamental relations, for any givendomain, but argues that a single outstanding relation gives a completepartonomy of each object. This basic partonomy is augmented by non-fundamental relations, which are predicates other than the speci�edfundamental relation,5 and which take as arguments any object in theinstance tree. The RightStack-2 object would thus be represented as:5. It appears that MERGE is restricted to binary relations, although Wassermannever clearly states this constraint, and the extension to n-ary predicates seemsstraightforward.



Structured Concept Formation 137(Rightstack-2 (component1 (color blue) (shape odd))(component2 (color red) (shape circular))(component3 (color grey) (shape square))((Left-of component1 component3)))((Left-of component1 component2))((on component3 component2)) .Wasserman uses a graphical notation for instances; we have substitutedan equivalent syntax for purposes of comparison.Generalizations are essentially the logical intersection of the instancesfrom which they are made; the system avoids the extra search requiredto make disjunctive generalizations. Abstractions are made over thestructural information (relations); Wasserman deemphasizes the impor-tance of abstractions over object properties, although an unspeci�edalgorithm does generalize the object properties.Merge incrementally forms abstraction hierarchies from a sequenceof instance partonomies. The system classi�es not only the entire struc-tured object, but each of its subhierarchies6 as well. Each of these sub-hierarchies is classi�ed into a separate concept hierarchy, thus giving aforest of concept hierarchies, one for each \type" of object (apparently,each level of an instance is a di�erent type). Like Unimem (Lebowitz,1987), Merge explicitly represents di�erences and similarities betweena child and its parent with the use of inheritance to add, subtract, orsubstitute features. To classify each subhierarchy I of the instance,Merge starts at the root of the concept hierarchy for that type of ob-ject and recurses through the tree. At each parent P , it �nds the bestcandidate child C of that node. If C's score is no better than that of P ,the algorithm stops and makes the object a new child of P . Otherwise,it incorporates I into C and recurses. Merge's evaluation function isa scoring scheme relying on several heuristics. Two components thathave a common ancestor in a concept hierarchy are rewarded if thatancestor is low in the partonomy, and components are scored based ontheir literal similarity. In addition, components are weighted less in theoverall score than the object itself.Wasserman (1985) downplays the computational di�culties of match-ing structured objects. The augmented partonomy representation ofMerge lends itself to decomposition of the match problem into a series6. Remember that these are PART-OF hierarchies that represent individual instances,not concept hierarchies.



138 K. Thompson and P. Langleyof component-matching problems, unlike the arbitrary graph represen-tation used by earlier systems. However, Wasserman does not promotethis as an advantage of using partonomies. Although the system classi-�es each subtree of the instance, it does not use the results of componentclassi�cations in classi�cation of instances. It thus faces the problem ofgenerating abstractions from arbitrary trees. TheMergematcher com-pares two trees by working its way bottom up through each partonomy,�nding \best" matches at each level and recursing. It appears to usean exhaustive matcher that matches m instance components againstn concept components, with a computational complexity of O(n!). Inaddition, the matcher has operators for \level hopping" that involvechecking whether a component at level x of the one partonomy matcheswell against a component at a di�erent level y of another partonomy.2.6 Cobweb: Probabilistic ConceptsBecause the Cobweb system (Fisher, 1987; McKusick & Thompson,1990) forms the basis for Labyrinth, we review it in some detail.Cobweb is an incremental, unsupervised concept learner, like Cyrus(Kolodner, 1983) and Unimem (Lebowitz, 1987). It di�ers from itspredecessors in its use of probabilistic concepts (Smith & Medin, 1981)and its use of a principled evaluation function that favors clusters thatmaximize the potential for inferring information. In addition, Fisheremphasizes the use of concept formation systems in the context of a per-formance task |missing attribute prediction | and explicitly evaluateshis system using this task. This contrasts with most earlier unsuper-vised learners, which have been evaluated only in light of the conceptsformed and their \comprehensibility".Cobweb represents each instance as a set of nominal7 attribute-valuepairs, and it summarizes these instances in a hierarchy of probabilis-tic concepts. Each concept Ck is described as a set of attributes Aiand their possible values Vij, along with the conditional probabilityP (Ai = VijjCk) that a value will occur in an instance of a concept. Thesystem also stores the overall probability of each concept, P (Ck). Thus,whereas Cluster/2 can represent an attribute color with alternate val-ues blue_red, aCobweb concept can represent the observed conditional7. Gennari, Langley, and Fisher (1989) describe CLASSIT, a variant of COBWEBthat accepts real-valued attributes. LABYRINTH's mechanisms are independentof the feature types of primitive object attributes.



Structured Concept Formation 139probabilities, P (color = bluejCk) = 0:6 and P (color = redjCk) = 0:4.The use of probabilistic concepts is crucial to Cobweb's design. AsHanson and Bauer (1989) point out, many categories are better repre-sented as probabilistic concepts than as sets of common features. Forincremental systems with a restricted hypothesis memory, probabilis-tic concepts are crucial to avoid brittleness in the face of noisy or ap-proximate concepts. Probabilistic concepts allow gradual updating ofdescriptions and recovery from misleading training orders because theystore more information about the instances that form the concept.Cobweb organizes its acquired concepts in a probabilistic concepthierarchy, in which each node is indexed by Is-a links from its parents,rather than di�erence links as with Unimem and Merge. Speci�c in-stances are stored as leaves of the concept hierarchy, and the root nodesummarizes all instances seen in the domain. Such hierarchies are cru-cial for focusing attention and allowing small local changes to memoryduring incremental processing.The system integrates classi�cation and learning, sorting each in-stance through its concept hierarchy and simultaneously updating mem-ory. Upon encountering a new instance I, Cobweb incorporates it intothe root of the existing hierarchy and then recursively compares theinstance with each new partition as I descends the tree. At a node N ,the system considers incorporating the instance into each child of Nas well as creating a new singleton class, and evaluates each resultingpartition. If the evaluation function prefers adding the instance to anexisting concept, Cobweb modi�es the concept's probability and theconditional probabilities for its attribute values and then recurses tothe children of that concept. If the system decides to place the instanceinto a new class, it creates a new child of the current parent node, andthe classi�cation process halts. Cobweb also incorporates two bidirec-tional operators, splitting and merging, that make local modi�cations tothe hierarchy structure. These mitigate sensitivities to instance order-ings, giving the e�ect of backtracking in the space of concept hierarchieswithout the memory overhead required by storing previous hypotheses.To choose among these operators, Cobweb uses the probabilistic in-formation stored in memory in an evaluation function | category utility| which favors high intra-class similarity and high inter-class di�er-ences. Gluck and Corter (1985) derive this function from informationtheory, and Fisher modi�es it slightly to control classi�cation and learn-



140 K. Thompson and P. Langleying behavior in Cobweb. Given a set of n categories, category utility isde�ned as the increase in the expected number of attribute values thatcan be correctly guessed over the expected number of correct guesseswithout such knowledge. The version used by Cobweb isPKk=1 P (Ck)PiPj P (Ai = Vij jCk)2 �PiPj P (Ai = VijjC)2K ; (1)where k varies over categories, i over attributes, and j over values foreach attribute. This function evaluates a partition | de�ned as a parentnode C and its immediate children Ck. The term P (Ck) refers to the apriori likelihood that an instance is a member of the child Ck, whereasP (Ai = VijjCk)2 is a measure of within-class similarity , that is, how wellthe instances summarized by Ck resemble one another. The subtractionof the parent's within-class similarity P (Ai = VijjC)2 lets category util-ity measure the information gained by partitioning the parent class intoa set of children. Dividing by K, the number of C's children, biases thesystem against proliferation of singleton classes.Cobweb has many positive characteristics, many of which will beimportant to the design of Labyrinth. Its well-de�ned performancetask, tightly integrated with its learning component, allows evaluationof the concepts learned. Its use of probabilistic concepts and a singleevaluation function allows more robust performance than earlier conceptformation systems. Its simple local reorganization operators give it thepartial ability to overcome misleading orders of training instance withminimal reprocessing of previous instances. However, Cobweb can onlylearn in domains in which there are a �nite number of unstructuredattributes; Labyrinth builds on Cobweb to overcome this limitation.2.7 Issues in Structural LearningTable 1 summarizes the six systems we have just reviewed, as well asLabyrinth, across �ve important characteristics. Labyrinth is theonly system that exhibits all �ve characteristics: it is an incremental,unsupervised learning method that acquires probabilistic concepts fromrelational data, using the heuristic of breaking the instance into compo-nents for classi�cation. From our review, we can see the origins of theseideas. Sprouter and related systems were the earliest to face the prob-lem of learning in structured domains. These programs are supervised,



Structured Concept Formation 141Table 1. Issues addressed by Labyrinth and its predecessors.System Probabilistic Incremental Unsupervised Relations ComponentsSprouter � �Cluster/2 �Cluster/S � �Levinson � � �Merge � � � �Cobweb � � �Labyrinth � � � � �and learn only a single conjunctive concept at a time, avoiding issues ofmemory organization but explicitly proposing algorithms to form gen-eralizations from multiple objects described in a structured language.We have seen that Cluster/2 di�ers from most earlier inductivelearning algorithms in that it is unsupervised ; it discovers object classesand characterizes these classes as well. Its successor, Cluster/S, in-corporates the advances of Cluster/2, but uses a structured objectand concept language. Unfortunately, both these systems are nonincre-mental, requiring all instances in order to generate classes. Levinsonis among the �rst8 to propose a method for incrementally generating amemory organization containing structured concepts from unclassi�edinstances. However, his system, in using what is in e�ect a completematcher, fails to go beyond the data and to enlarge the deductive closureof its knowledge base. Wasserman's Merge can be viewed abstractlyas a version of Levinson's system that uses a partial matcher, and thusmakes accurate classi�cations of previously unseen instances. In ad-dition, Wasserman introduces the heuristic of decomposing structuredobjects into a tree, thus using one fundamental relation to organizememory and direct learning.The basic classi�cation mechanism and memory structure of Cobwebanticipates that of the current work. This system's use of probabilisticconcepts gives it power to make more e�ective predictions than earlier8. EPAM (Feigenbaum, 1963) also acquires concepts from hierarchically decomposedobjects, but this system does not handle relations among components.



142 K. Thompson and P. Langleysystems. In addition, Cobweb adopts prediction as a performance taskfor unsupervised learning systems. We have noted that Cobweb hasmany good characteristics, but is limited to attribute-value languages.3. Representation and Organization in LabyrinthHaving described earlier systems that address many of the issues facedby Labyrinth, we are ready to discuss the current system at length.We will see that Labyrinth has distinct ties to Cobweb, adopting itsbasic principle of probabilistic concepts organized in a disjoint hierar-chy, and its divisive concept formation algorithm. However, the currentsystem extends the representation language for objects and concepts.As we have seen, a central obstacle to learning in structured domainsis that of characterizing structured concepts. Labyrinth uses a rep-resentation for structured objects that reduces search by decomposingstructured objects into a partonomy of components,9 supplemented byadditional relations among those components. In this section, we de-scribe the system's representation for objects and concepts, and howthese concepts are organized in long-term memory.3.1 Instances in LabyrinthFollowing Wasserman (1985), we argue that in many domains the in-stances passed to a concept learner are naturally decomposed by a fun-damental relation. For example, Marr (1982) has argued that the visualsystem parses physical object descriptions into a partonomy organizedby Part-of relations. Similarly, McNamara, Hardy, and Hirtle (1989)have found that memory for large-scale spatial environments has a hi-erarchical component. Many forms of sequential data also can be rep-resented as an ordered set of components; Rubin and Richards' (1985)work on elementary motion boundaries presents evidence that humansperceive motion in distinct segments that are invariant with respect tospeed and viewpoint. For continuity, we use physical objects for ourexample instances, but we will discuss alternative domains and funda-mental relations in Section 5.3.9. Recall from Section 2.5 that we use the term partonomy for object hierarchies,to distinguish them from concept hierarchies (taxonomies).



Structured Concept Formation 143Labyrinth treats one relation as fundamental and structures bothobjects and concepts by that relation. A structured object is representedas a partonomy whose constituents are linked together by the fundamen-tal relation. Each object can be augmented by non-fundamental rela-tions whose arguments are components of that object. Consider againthe domain shown in Figure 1. We represent the rightmost instance inFigure 1 as:(Rightstack-2 (component1 (color blue) (shape odd))(component2 (color red) (shape circular))(component3 (color grey) (shape square))((Left-of component1 component3)))((Left-of component1 component2))((on component3 component2)) .Note that the Part-of relation is implicit in this representation and isused to organize the object into a partonomy, as in Merge.We distinguish between two types of objects. Primitive objects areleaves of an instance partonomy. They are represented as ordered setsof attributes whose values are directly observable object features, asin Cobweb. For example, RightStack-2 has three primitive com-ponents: Component1, Component2, and Component3. Structuredobjects are represented as unordered sets of attributes (components)whose values can additionally be either primitive objects or other struc-tured objects. Here, RightStack-2 is a structured object with threeattributes, each of which has a value that is a primitive object. In addi-tion, this object has three associated binary relations, On and two dif-ferent instances of Left-of, which are treated as additional attributesduring classi�cation. Labyrinth treats components, non-fundamentalrelations, and descriptive features as di�erent forms of \attributes". Itexploits the isomorphism among them to classify both primitive andstructured objects using a similar algorithm.3.2 Concept Representation and Organization in LabyrinthLike Cobweb, Labyrinth represents concepts by storing an associatedset of attributes, their values, and associated conditional probabilities;it di�ers by the types of data that can be tied to those attributes.We de�ne a primitive concept as a concept whose attributes have di-rectly observable values. In contrast, a structured concept is one whose



144 K. Thompson and P. Langleyattributes correspond to \components".10 Because these componentsare themselves objects, a structured concept's \attributes" have asso-ciated values that point at other concepts summarizing those objects.In this way, a single structured concept is de�ned in terms of other,possibly structured, concepts. A structured concept is thus stored notas a monolithic structure, but as many concepts distributed throughmemory, decomposed by the fundamental relation for that domain.Because of this distributed representation, a single component con-cept can take part in several structured concepts. The concepts \pointedto" are themselves acquired by Labyrinth, so that one can view thesystem as learning new terms; only primitive concepts are representedwith values present in the original instance language. In addition, be-cause all the concepts are changing over time in response to new in-formation, Labyrinth can manage concept drift with respect to bothstructured object concepts and component concepts.Figure 2 shows a snapshot of Labyrinth's memory after it has in-corporated three instances into memory: LeftStack-1, LeftStack-2, and RightStack-1. The two singleton children of the LeftStackconcept, as well as the mixed root, are omitted for brevity. Each con-cept has been given a name for expository purposes, and each has anassociated probability P (N) with respect to its parent, along with a setof attributes. Each of these attributes in turn has a set of values andassociated conditional probabilities. Note that for some of the conceptsthese associated values are in italics to indicate that they are the namesof other concepts in memory. Thus, the hierarchy of Figure 2 containsthirteen primitive concepts, which represent stack components, and �vestructured concepts (of which three are shown), which represent stacks.Concepts for both are indexed in the same memory structure. The rootconcept thus summarizes both stacks and stack components, and is usedonly as an index for the hierarchy.In addition to components, structured concepts can have arbitraryrelations associated with them. Labyrinth represents these relationsas ternary-valued attributes, with associated conditional probabilitiesfor each of the possible situations Confirmed, Negated, and Miss-ing. If a relation is not found in an object description, the system10. Some concepts are \mixed", in that they generalize both primitive and structuredobjects; for example, the root of the tree will always be mixed. Because primitiveand structured objects never have values in common, these mixed concepts rarelyappear below the �rst level of the tree in LABYRINTH runs.
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Figure 2. Labyrinth's memory after processing three instances from Figure 1.



146 K. Thompson and P. Langleyincrements its Missing probability. For brevity, we include only theConfirmed probability in our �gures, but all three values are used forclassi�cation decisions. Note that there can be several di�erent instanti-ations of the same relation at a concept; both (Left-of Component1Component3) and (Left-of Component1 Component2) are asso-ciated with the RightStack concept.4. Classi�cation and Learning in LabyrinthHaving described Labyrinth's memory structures, we can now describehow it classi�es objects and updates its concept hierarchy. As in Cob-web, classi�cation and learning are intertwined, with each instance be-ing sorted through a concept hierarchy and altering that hierarchy inits passage. The system initializes its hierarchy to a single node basedon the �rst instance. It then enters a loop of accepting new instances,classifying them and updating memory along the classi�cation path.Labyrinth di�ers from Cobweb in two important ways. It adds anouter loop to classify each component of a structured object. In ad-dition, it introduces a new subroutine, Cobweb0, to form predictivecharacterizations of structured concepts.4.1 The Labyrinth AlgorithmTable 2 shows the top-level Labyrinth algorithm for classifying andlearning with structured objects. To classify a single instance, the sys-tem uses a divide-and-conquer technique, breaking up the overall clas-si�cation problem into a series of simpler classi�cations, one for eachsubtree of the instance partonomy. Labyrinth processes structuredobjects in a \component-�rst" style, performing a complete postordertraversal of the partonomy. To classify a structured object in the parton-omy, the system �rst classi�es each of the object's components, re-turning the node in memory that the component most closely matches.Labyrinth then \re-labels" the structured object, using each returnednode as a label for a component. By performing this re-labeling op-eration, Labyrinth reduces a structured object to a simple one withattributes and corresponding values; however, the values in this case arepointers to nodes in memory. The system then classi�es this re-labeledobject and recurses, until all the structured objects of the instance,including the instance itself, are classi�ed.



Structured Concept Formation 147Table 2. The basic Labyrinth algorithm.Input: OBJECT is a composite object, with substructure given.ROOT is the root node of the concept (is-a) hierarchy.Side effects: Labels OBJECT and all its components with class names.Procedure Labyrinth(OBJECT, ROOT)For each primitive component PRIM of composite object OBJECT,Let CONCEPT be Cobweb(PRIM, ROOT);Labyrinth0(OBJECT, PRIM, CONCEPT, ROOT).Procedure Labyrinth0(OBJECT, COMPONENT, CONCEPT, ROOT)Label object COMPONENT as an instance of category CONCEPT.If COMPONENT is not the top-level object OBJECT,Then let COMPOSITE be the object that contains COMPONENT.If all components of COMPOSITE are labeled,Then let COMPOSITE-CONCEPT be Cobweb0(COMPOSITE, ROOT).Labyrinth0(OBJECT, COMPOSITE, COMPOSITE-CONCEPT, ROOT).Labyrinth uses two principal subroutines. The �rst of these isFisher's Cobweb, which we have described in Section 2.6. Labyrinthuses Cobweb to classify primitive components, treating it as a blackbox that returns the best match in memory to the object passed to it;we refer to this match as the label for that component. Labyrinth re-lies on a second subroutine, Cobweb0, to classify non-primitive objects.This routine is based on Cobweb; it uses the same evaluation function,basic control structure, and learning operators. However, Cobweb0incorporates additional mechanisms for �nding the characterization ofstructured concepts.We �rst illustrate Labyrinth's processing on a simple two-level in-stance, RightStack-2, from Figure 1. We then describe Cobweb0 andits mechanisms for characterizing structured concepts.4.2 Labyrinth Classifying a Structured ObjectWe start with memory as in Figure 2, after three instances (two of Left-Stack and RightStack-1) have been processed. To process the newinstance RightStack-2, Labyrinth passes the description of Com-ponent1 to Cobweb, which classi�es and returns a label (the concept



148 K. Thompson and P. LangleyOdd-4) for that component. The same procedure leads Labyrinthto label Component2 as a member of Circle-4, and Component3as a member of Square-4. So far, Labyrinth has done no morethan use Cobweb's existing mechanisms to \label" three primitive ob-jects and update memory accordingly. However, whereasCobweb stopsthere, Labyrinth uses this information to classify the structured ob-ject. These labels are inserted into the structured object description, sothat the instance now has the form:(Rightstack-2 (component1 odd-4)(component2 circle-4)(component3 square-4)((Left-of component1 component3)))((Left-of component1 component2))((on component3 component2)) .Labyrinth treats these labels from previous classi�cations as nominalvalues, enabling it to classify the structured object as though it were aprimitive object (with the exceptions described in Section 4.3). In thiscase, Labyrinth labels the structured object as a member of the struc-tured concept RightStack, resulting in the memory structure foundin Figure 3. Here, we see that the concepts labeled Blocks, Square,Odd, and Circle have been updated in response to the componentsof RightStack-2, and new leaves have been added to the concept treefor Odd-4, Circle-4, and Square-4. In addition, the stack itself haspassed through the Stacks and RightStack concepts, updating themaccordingly. As in Figure 2, we omit the singleton concepts for the indi-vidual stacks, indexed by the LeftStack and RightStack concepts.4.3 Integrating a Structured Object into a ConceptAs we have seen in Section 2, the primary di�culty in learning fromstructured data is �nding adequate characterizations of the concepts.Labyrinth has a simpli�ed characterization task because it learns fromtrees, not from the arbitrary graphs used by programs like SprouterandCluster/S. However, Labyrinth's subroutineCobweb0 still facestwo extra searches to form characterizations. First, as we have noted,in many structural domains the components are unordered ; in addition,whereas each object in Figure 1 has an identical number of components,some domains have objects with varying numbers of components. A
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Figure 3. Labyrinth's memory after processing four instances from Figure 1.



150 K. Thompson and P. LangleyTable 3. Incorporating a structured object into a structured concept.Variables: NODE is a node in the hierarchy.INST is an unclassified structured object.Incorporate(NODE, INST)Update the probability of category NODE.Let BINDINGS be all possible bindings between NODE and INST.For each possible set of bindings BIND in BINDINGS,For each relation REL in instance INST,Bind the arguments of REL according to BIND.If there is an equivalent relation N-REL in NODE,Then update the probability of N-REL;Else add REL to the characterization of NODE.For each attribute ATT in instance INST,Let I-VAL be the value of ATT.Let N-ATT be the corresponding attribute in NODE.For each value VAL of N-ATT,Update the probability of VAL given category NODE.Let VALS be the value list of N-ATT.Let the VALS be Attribute-Generalize (I-VAL, N-VALS, NIL).Evaluate the resulting node.Choose the best possible BIND and use it to store INST.Attribute-Generalize(OBJ-VAL, NODE-VALS, CHECKED)For each VALUE in NODE-VALS,Let ANCESTOR be the common ancestor of OBJ-VAL and VALUE.Let REST be NODE-VALS with VALUE removed.If it is appropriate to replace OBJ-VAL and VALUE with ANCESTOR,Then call Attribute-Generalize(ANCESTOR, REST, CHECKED);Else call Attribute-Generalize(OBJ-VAL, REST, CHECKED).characterization algorithm for structured concepts must thus determinea set of bindings between components in the object and those in theconcept.The second search arises from the nature of objects that Cobweb0processes. The routine classi�es objects that are \re-labeled", in thattheir values are labels returned by earlier classi�cations. Cobweb0 takesadvantage of the hierarchical relationships between these labels to searchfor more predictive characterizations of structured objects. In this sec-



Structured Concept Formation 151tion, we describe the approach Cobweb0 takes to searching for the bestcharacterization. Table 3 summarizes the function for incorporating anobject into a concept in memory. This function replaces the simpler oneused in Cobweb (see Gennari et al., 1989).4.3.1 Matching Components and Binding RelationsStructured objects have unordered attributes; they lack role informa-tion that helps the learner match components from di�erent objects.Whereas for primitive objects there is a unique maximal generalizationfor any pair of objects, structured objects require an extra matchingprocess in order to determine the best match between the componentsand relations in the object and those in the concept. Cobweb0 mustbind the arguments of object relations to determine if they match withone of the concept relations. Once it has bound the arguments of eachobject relation, Cobweb0 can update the correct probability (eitherConfirmed, Negated, or Missing) of each concept relation based onthe bound object. These concept relations are then treated as additionalattributes of the concept in classi�cation decisions.We describe here an exhaustive algorithm to �nd the best mappingbetween a structured object and a structured concept.11 Cobweb0matches a structured object with each concept in memory using a four-step process. First, it �nds all mappings of components in the objectto components in the concept. Second, for each mapping, the systemrewrites the n-ary relations in the object by substituting each objectcomponent for its corresponding concept component. Third, Cobweb0compares the resulting instantiated relations to the relations in the con-cept description, treating each one as a Boolean attribute that mayor may not match the concept. Finally, the system considers apply-ing the attribute generalization operator described in Section 4.3.2 toeach attribute. The resulting concept, with fully bound relations andattributes, is evaluated with a reduced form of category utility thatevaluates the quality of a single concept:AttsXi V aluesXj P (Ai = Vij jCk)2 : (2)11. For n components, this algorithm is O(n!). Clearly, such a solution is impractical,and fails to take advantage of the simpler matching problem faced by COBWEB0.We discuss some less expensive solutions in Section 5.1.



152 K. Thompson and P. LangleyThis expression rewards matches that reinforce values already found ina node. The system selects the mapping that produces the node withthe best score.For example, when Cobweb0 matches the fourth instance againstthe RightStack concept from Figure 2, there are 3! = 6 mappings be-tween the three components of the instance and the three componentsof the concept. Some of these mappings reinforce the values in thecomponents but not the associated relations in the concept; others rein-force the relations but not the components. Labyrinth includes bothcomponents and relations as attributes in Equation 2. For the Right-Stack concept, the system chooses an instantiation that reinforces allthree relations found in the instance. This generates bindings for boththe components and relation arguments in the object, producing thecharacterization found in the RightStack concept of Figure 3.4.3.2 Attribute Generalization in LabyrinthCobweb0 uses an additional mechanism to determine appropriate ab-stractions. For Cobweb, in which attributes take on only symbolicvalues, updating an attribute Ai after inspecting a new object is a sim-ple matter of updating the correct conditional probability P (Ai = Vij).However, in Cobweb0, the values in the object are concepts stored else-where in the hierarchy (the results of previous classi�cations). In orderto determine the best generalization between this structured object andan existing structured concept, Cobweb0 uses the hierarchical relation-ships between the values in the object and those in the existing conceptto determine the best values for the updated concept.When incorporating an object into a concept, Cobweb0 �rst adds thelabel from the object to the corresponding attribute Ai (as found by astep of the match process) in the concept, resulting in a set of valuesVi. The system then evaluates whether to apply attribute generaliza-tion to the values on each attribute. We de�ne attribute generalizationas replacing a subset of the values Vi stored at attribute Ai with theircommon ancestor, resulting in a smaller set of values. Attribute gen-eralization chooses between two possibilities. In the simple case, theoperator can leave Vi intact, as would Cobweb. The Cobweb0 routinealso considers replacing a subset Wi of Vi with its common ancestorW �i . This results in a structured concept that can match more objects
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154 K. Thompson and P. LangleyDetermining when to apply the attribute generalization operator re-quires evaluating a tradeo�. Equation 2 favors a single value with highprobability over several values with lower probability. Its applicationto attribute generalization would result in storing each attribute witha value V �i (the common ancestor of all the disjuncts) and probabilityof 1. While this would result in a higher score for Equation 2, it wouldresult in less predictive power for the partition, because it would be dif-�cult to discriminate such a node from other overgeneralized concepts.Cobweb0 evaluates the tradeo� between forming concise characteriza-tions with few values at one extreme, and over generalizing values sothat concepts cannot be distinguished at the other extreme. It replacesa value set Vi with a shorter set Wi if doing so increases the informationgain between a child Ck and its parent C. For an attribute Ai in Ck,Cobweb0 replaces a set of values Vi with a new set of values Wi i�:Pl2Wi [P (Ai =WiljCk)2 � P (Ai =WiljC)2] �Pj2Vi [P (Ai = Vij jCk)2 � P (Ai = VijjC)2] . (3)The left side of this equation measures the information gain if the val-ues are generalized at both the child Ck and the parent C. The rightside measures the gain if the values are left as an internal disjunct.12Cobweb0 considers all new value sets Wi that are strictly more generalthan the original set Vi, and stores with Ck the �rst set it �nds for whichEquation 3 holds.In one sense, this attribute generalization process is simply an incre-mental approach to learning with structured attributes through climbinga \generalization tree", as described by Michalski (1983), Mitchell, Ut-go�, and Banerji (1983), and others. However, recall that Labyrinthis constantly revising the structure of its concept hierarchy and intro-ducing new symbols as it acquires new concepts. Since the descriptionsof structured concepts refer to other concepts in the concept hierarchy,which Labyrinth has acquired, the attribute generalization processoperates over di�erent knowledge structures at di�erent points in thelearning process. In e�ect, Labyrinth is dynamically changing therepresentation used to describe its structured concepts.12. Doug Fisher (personal communication) suggested the use of Equation 3.



Structured Concept Formation 1555. DiscussionWe believe that Labyrinth constitutes a promising approach to con-cept learning in structured domains. However, the existing system hasa number of limitations that we plan to remedy in future e�orts. Inaddition, we must demonstrate the system on a variety of domains. Wediscuss these issues below, along with some related work.5.1 Labyrinth, Partial Matching, and AnalogyWe have described an exhaustive algorithm to match components of anobject to those of a concept in memory. Although this O(n!) algorithmis guaranteed to �nd the optimal match according to Equation 2, moree�cient alternatives exist. We plan to examine the Hungarian algorithm(Papademetriou & Steiglitz, 1982), a guaranteed matching algorithmthat uses additional space to save partial solutions. Given a bipartitegraph with 2n concepts, along with some function for evaluating thequality of a match, the Hungarian method �nds the best match in O(n3)time. The algorithm works by creating an n � n cost matrix for allpossible pairs of components and then solving an \n rooks" problemover this matrix. We are also studying the use of a heuristic beamsearch (e.g., as used by Sprouter) guided by Equation 2. We planto use background knowledge about the data types of components toconstrain this search as well.Labyrinth can be viewed as an approach to partial matching (Hayes-Roth, 1978). This task is usually de�ned as a comparison of two descrip-tions to identify their similarities, and is thus typically used in systemsthat use a speci�c-to-general search for hypotheses. Sprouter (Hayes-Roth & McDermott, 1978) and its relatives (Winston, 1975; Vere, 1975)all use partial matchers as a principal subroutine in their search forgeneralizations. Some additional work has focused on partial match-ing outside the context of a concept learner. Kline (1981) emphasizesordering the space of possible partial matches to reduce computation.In contrast, Watanabe and Rendell (1990) reduce computation by �nd-ing branches of the search tree that can be eliminated without loss ofinformation by pruning redundant paths.In determining the best match between a structured object and astructured concept, Labyrinth is performing a crucial subtask in ana-logical reasoning. Falkenhainer, Forbus, and Gentner (1989) have de-



156 K. Thompson and P. Langleyveloped the Structure-Mapping Engine (SME) for determining this bestmatch, emphasizing structural integrity of the structured object over ob-ject similarity. Matching is constrained in structure mapping by higher-order relationships that are included as part of the instance. In contrast,Labyrinth treats relations and object attributes as two contributors tothe same evaluation function, rather than treating relations as preemi-nent. This should allow it to �nd some generalizations based on surfacefeatures that SME would not consider. However, the current version ofLabyrinth uses a far less constrained matcher than SME and will thusrequire far more computation in complex situations.5.2 Using Context in Classifying ComponentsThe current version of Labyrinth takes a purely \component-�rst" or\context-free" approach to structured classi�cation. An alternative ap-proach would be to take context as the primary criterion, classifying acomponent only with respect to the role it plays in the greater whole.Clearly, a better approach would involve a combination of these two ex-tremes (Fisher, 1986). We are investigating an extension to Labyrinthin which the concept learner determines dynamically whether to clas-sify an object based on its descriptive attributes only (as in the currentsystem), or whether to consider its role as well.The approach involves storing a container link with each object com-ponent. This link points from the component to the object of which itis a component (the partonomy parent) and is treated as an additionalattribute for that object. Handa (1990) has explored one version of thisapproach. His system extends Labyrinth to learn context-sensitiveconcepts by classifying each component twice: �rst to get a label usedin classifying its container, and again after the container has been classi-�ed, using the container link as an additional attribute. In contrast, weplan to use ideas from Gennari's (1989) model of selective attention todetermine dynamically whether to use the container attribute or othersin classifying the object.Another interesting extension to Labyrinth involves forming con-cepts for the roles in its hierarchy. Consider the LeftStack conceptin Figure 3. The two values in Component2 (Odd-1 and Circle-1)are grouped by a simple kind of functional similarity; they play thesame role in a structured concept. This grouping might occur in severalstructured concepts (although not in the Stack domain); however, the



Structured Concept Formation 157current system has no means of recognizing this similarity across roles.We plan to investigate mechanisms through which Labyrinth couldrecognize such shared structures.5.3 Domains for LabyrinthWe claim in Section 3.1 that a hierarchical organization is natural formany domains; we plan to demonstrate Labyrinth's e�ectiveness insuch domains. We have designed Labyrinth as the fundamental mem-ory organization scheme for Icarus (Langley, Thompson, Gennari, Iba,& Allen, in press), an integrated architecture that treats storage andretrieval as central issues. Two components of Icarus use structuredobject descriptions, and we plan to integrate each of these other systemswith Labyrinth.D�dalus (Langley & Allen, 1990), the planning component of the ar-chitecture, uses plan knowledge stored in a probabilistic concept hierar-chy to guide operator selection. We are currently integrating Labyrinthinto Daedalus; in this domain, a means-ends trace is represented as ahierarchical object linked by a Subgoal relation. In addition, we planto apply Labyrinth to the motor schemas formed by M�ander (Iba& Gennari, this volume), which represents limb motions as temporalsequences of joint positions and velocities. Each state corresponds to aLabyrinth component, with joints serving as primitive objects.6. SummaryIn this chapter, we have described a system that learns concepts instructured domains. We have explained why the study of structureddomains is important, and we have described six related systems thatform a historical background for the current work. We have emphasizedthat all of the characteristics of Labyrinth have been found in at leastone of these systems. However, no single system shares all �ve features:the use of probabilistic concepts; an incremental algorithm; learningfrom unclassi�ed instances; learning with objects that have relations;and using component structure to constrain matching.Labyrinth is an implemented system that extendsCobweb to struc-tured domains. The system demonstrates a method for learning fromhierarchically decomposed objects, using the results of component clas-



158 K. Thompson and P. Langleysi�cations to guide object classi�cation. It learns in the presence of ar-bitrary relations in the object and concept language. Labyrinth alsointroduces a new method for learning with hierarchically structured at-tributes. It demonstrates a form of representation change, in that it notonly forms new terms as in previous concept formation systems, butalso uses those terms in describing new concepts. In future work, wehope to establish Labyrinth's applicability in a wide range of domainsand to test its abilities in systematic experiments.AcknowledgementsWe thank Kathleen McKusick, Wayne Iba, Deepak Kulkarni, John Gen-nari, John Allen, and Doug Fisher for lengthy discussions that have in-uenced many of the ideas in this paper. All of the above and SallyMouzon provided useful comments on an earlier draft.ReferencesAllen, J. A., & Langley, P. (1990). Integrating memory and search inplanning. Proceedings of the 1990 DARPA Workshop on InnovativeApproaches to Planning, Scheduling, and Control (pp. 301{312).San Diego, CA: Morgan Kaufmann.Dietterich, T. G. (1986). Learning at the knowledge level. MachineLearning , 1 , 287{316.Dietterich, T. G., & Michalski, R. S. (1981). Inductive learning ofstructural descriptions. Arti�cial Intelligence, 16 , 257{294.Everitt, B. (1981). Cluster analysis. London: Heinemann.Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine: Algorithm and examples. Arti�cial Intelligence,41 , 1{63.Feigenbaum, E. A. (1963). The simulation of verbal learning behavior.In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought.New York: McGraw{Hill.Fisher, D. (1986). A proposed method of conceptual clustering for struc-tured and decomposable objects. In T. M. Mitchell, J. G. Carbonell,& R. S. Michalski (Eds.), Machine learning: A guide to current re-search. Boston: Kluwer.
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