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Abstract

Discovering the complex regulatory networks that govern mRNA expression is an
important but difficult problem. Many current approaches use only expression data
from microarrays to infer the likely network structure. However, this ignores much ex-
isting knowledge because for a given organism and system under study, a biologist may
already have a partial model of gene regulation. We propose a method for revising and
improving these initial models, which may be incomplete or partially incorrect, with
expression data. We demonstrate our approach by revising a model of photosynthesis
regulation proposed by a biologist for Cyanobacteria. Applied to wild type expression
data, our system suggested several modifications consistent with biological knowledge.
Applied to a mutant strain, our system correctly modified the disabled gene. Power
experiments with synthetic data that indicate that reliable revision is feasible even
with a small number of samples.



1 Introduction

An important problem in molecular biology is explaining how an organism regulates its levels
of gene expression in response to external stimuli. Although scientists understand the basic
mechanisms through which DNA produces proteins and thus biochemical behavior, they
have yet to determine most of the regulatory networks that control the degree to which each
gene is expressed.

DNA microarrays let scientists measure gene activity in terms of mRNA expression levels
in an organism. Much recent work in computational biology has focused on inferring a
regulatory network that describes how genes influence each other solely from such expression
data. However, this approach is rarely pursued by practicing biologists, who bring a wealth
of knowledge to the analysis and interpret data about the expression levels in this context.

For a particular organism and system under study, a biologist often has a partial model
of gene regulation. Although this model may be incomplete or partially incorrect, it contains
much information that could influence an algorithm that infers a model of the regulatory
relations between genes. In this paper, we describe an approach that uses gene expression
data to drive revision of an initial regulation model. Our goal is to build a computational
tool that assists working biologists in constructing models and modifying them in response
to observations.

Throughout this paper, we will focus on a model of photosynthesis regulation in Cyanobac-
teria that a microbiologist proposed to explain physiological adaptation in high light con-
ditions. We discuss how one can map models of this type, which are both qualitative and
abstract, into linear causal models, a statistical representation that makes contact with the
data. With this connection we can generate qualitative predictions and compare them with
the data to guide revision and discovery of causal relations. We demonstrate a computa-
tional method that uses expression data for wild type and mutant Cyanobacteria to revise
this model of photosynthesis regulation. We also conduct power experiments with synthetic
data to determine the reliability of suggested revisions with small sample sizes and with
larger models. Finally, we consider limitations of our approach and discuss directions for
future work.

2 Background

We focus on a model of photosynthesis regulation that was adapted from a model provided
by a microbiologist [9]1. The model, shown in Figure 1, aims to explain why Cyanobacteria
bleaches when exposed to high light conditions and how this protects the organism. Each
node in the model corresponds to an observable or theoretical variable; each link stands for
a biological process through which one variable influences another. Solid lines in the figure
denote internal processes, while dashes indicate processes connected to the environment.

The model states that changes in light level modulate the expression of dspA, a protein
hypothesized to serve as a sensor. This in turn regulates NBLR and NBLA proteins, which

1The paper describes an initial model for high light response in the Cyanobacterium Synechococcus.
This model was modified by the biologist for the Cyanobacterium used in our experiments, Synechocystis
PCC6803, by actions such as replacing nblS with its homolog dspA.
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Figure 1: Initial model for photosynthesis of wild type Cyanobacteria.

then reduce the number of phycobilisome (PBS) rods that absorb light. The level of PBS is
measured photometrically as the organism’s greenness. The reduction in PBS protects the
organism’s health by reducing absorption of light, which can be damaging at high levels. The
organism’s health under high light conditions can be measured in terms of the culture density.
The sensor dspA impacts health through a second pathway by influencing an unknown
response regulator RR, which in turn down regulates expression of the gene products psbA1,
psbA2, and cpcB. The first two positively influence the level of photosynthetic activity
(Photo) by altering the structure of the photosystem. If left unregulated, this second pathway
would also damage the organism in high light conditions.

Although the model incorporates quantitative variables, it is qualitative in that it specifies
cause and effect but not the exact numerical form of the relationship. For example, one causal
link indicates that increases in NBLR will increase NBLA, but it does not specify the form
of the relationship, nor does it specify any parameters.

The model is both partial and abstract. The biologist who proposed the model made
no claim about its completeness and clearly viewed it as a working hypothesis to which
additional genes and processes should be added as indicated by new data. Some links are
abstract in the sense that they denote entire chains of subprocesses. For example, the link
from dspA to NBLR stands for a signaling pathway, the details of which are not relevant at
this level of analysis. The model also includes an abstract variable RR, an unspecified gene
product (or possibly a set of gene products) which acts as an intermediary controller.

3 Methods

Our approach to revising regulatory networks is based on linear causal models, also referred
to as structural equation models [1], and methods for learning them from data [8, 17].
Linear causal models provide a statistical representation that connects models provided by
biologists with experimental data provided by microarray measurements of mRNA. They
make predictions that can be tested against data, and from these tests one can revise the
models to better explain the data.
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3.1 Linear Causal Models

A linear causal model represents each variable as a linear function of its direct causes plus
an error term. For example, the equations below represent a model that states X1 directly
causes X2, and X1 and X2 together cause X3.

X2 = b12X1 + e1 (1)

X3 = b13X1 + b23X2 + e2 (2)

For a gene regulation model, the variables Xi would correspond to the expression levels of
genes or measurements of external quantities, the linear parameters bij represent the causal
effect of variable i on j, and finally the error terms ei are assumed to be independent and
uncorrelated.

There is a direct mapping from the equations to a graphical notation. Each variable
becomes a node and linear terms (causal influences) are represented by an arrow from the
cause to the effect. For example, the above equations are equivalent to the diagram in
Figure 2a. We focus on models where the graph is acyclic (i.e., there are no feedback cycles).

X2 X3 X1

X2 X3X1 X2 X3

X1
(a)

(b)

(c)

Figure 2: Several alternative models of regulation among variables X1, X2, and X3.

Linear causal models support reasoning at a range of qualitative and quantitative lev-
els, and make predictions that can be scored against data. At the most qualitative level,
the model specifies causal interactions, that is, it specifies how the variables directly and
indirectly influence each other. For example, the model in Figure 2a states that X1 directly
influences both X2 and X3. In contrast, the model in Figure 2b states that X1 influences
X3 only through the intermediate X2. Second, at a slightly more detailed level, the model
specifies the type of causal interaction. If the sign on a link from X1 → X2 is positive,
then X2 should increase with X1. Conversely, if the sign is negative, X2 should decrease
as X1 increases. This analysis can be extended to indirectly connected variables by tracing
the connecting paths and multiplying the signs of the link parameters. Finally, at the most
detailed level of analysis, we can specify the exact values for the additive parameters, bij,
and obtain a fully quantitative model that predicts numerical values. However, because of
limited data we do not pursue this level of analysis.

Linear causal models would clearly be a simplification of any biological system they
represent. However, given the extremely limited number of samples available from most mi-
croarray experiments, which is often as few as five samples, they are promising because they
can use a small number of parameters to represent activation and repression relationships
between genes. While more complex models can better represent a wider range of relations
such as thresholds or combinatorial interactions, they increase the risk of overfitting with
small sample sizes.
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Recently, a variety of linear models have been proposed for modeling gene regulation
[3, 21, 20]. These approaches all represent the expression (or change in expression) of a gene
as a linear function of the expression levels of other genes. Our approach differs from these
in two important ways. First, we concentrate on discovering causal relationships between
the variables, whereas previous approaches focus on finding predictive but not necessarily
causal relations between genes. For example, D’Haeseleer et al. [3] use a multiple regression
method that identifies correlations between gene expression levels but cannot determine if
genes are linked directly or indirectly connected through other genes. Second, we try to bring
as much domain knowledge as possible into the inference process by starting from partial
initial models and using constraints on the model structure to limit search.

3.2 Making Predictions and Scoring Models

The structure and parameters of every linear causal model imply predictions about the
correlations between variables that can be supported or refuted by observations. We discuss
predictions that follow from structure and ones that follow from the signs of the parameters.

3.2.1 Structure and Correlation Constraints

The structure of the model, that is the pattern of directed links between variables, implies
certain equality constraints on the correlation values between variables. For example, con-
sider the model in Figure 2b. If we calculate the correlation of X1 and X3 from the model’s
equations, we find that ρ13 = ρ12ρ23, where ρij is the correlation of variables i and j.2 Note
that this relation is true for any values of the parameters bij, and it provides a testable
prediction that can be scored on data without the need to learn the parameter values first.

We can interpret this equality relationship as a zero partial correlation, also known as a
vanishing partial correlation. Formally, the partial correlation between variables X1 and X3

while controlling for X2 is defined as

ρ13.2 =
(ρ13 − ρ12ρ23)√

(1− ρ2
12)(1− ρ2

23)
, (3)

where ρij is the correlation coefficient for variables i and j. Thus, if ρ13 = ρ12ρ23 the
numerator is zero and the partial correlation must be zero. Like the correlation coefficient,
partial correlations vary from -1 to 1. A zero value indicates that the controlling variable
k perfectly explains the correlation between i and j. A non-zero value indicates that the
correlation is not fully explained.

Partial correlations are significant because they help us determine whether correlated
variables are directly linked or whether they are indirectly linked and the correlation is spu-
rious [19]. Given two correlated variables, a zero partial correlation means that the variables
are connected through the third variable. In contrast, a non-zero partial correlation means
that the two variables are connected by paths that do not involve the third variable.3 This

2The calculation involves taking expectation of the variables as defined by the equations. Glymour et al.
[8] discuss this in detail.

3If the partial correlation is non-zero for all possible sets of controlling variables, then we can infer that
the variables are directly connected.
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analysis depend on assumptions that variables are uncorrelated to other non-descendents
given their parents (causal Markov assumption) and that all common causes are included in
the analysis. For example, in Figure 2c the model entails ρ23.1 = 0 because X1 is a common
cause of X2 and X3. In contrast, ρ23.1 6= 0 for the models in Figure 2a and 2b because of the
direct link connecting X2 and X3.

We can determine from a model’s equations if it entails a zero partial correlation. How-
ever, a more intuitive method involves a path analysis on the graph using the concept of a
trek. Glymour et al. [8] define a trek between two variables i and j as either a directed path
from i to j (or j to i), or as a pair of paths from a third variable u, such that there is a
directed path from u to i and from u to j with only u in common. If a variable k appears
in all treks between i and j, and either every trek from k to j is a directed path from k to
j, or every trek from k to i is a directed path from k to i, then the partial correlation of i
and j controlling for k (and only k) is zero (ρij.k = 0) [8]. In Figure 1 the partial correlation
of dspA and PBS given NBLA is zero because NBLA is between them on the pathway and
the trek between NBLA and PBS is a direct path in the proper orientation. Similarly, the
partial correlation of NBLA and cpcB given dspA is zero. However, the partial correlation
of dspA and Health given NBLA is non-zero because NBLA does not appear in the lower
paths (dspA, RR, psbA1 or psbA2, PHOTO, Health).

To determine the partial correlations in the data, we test the significance of the observed
value of rij.k (note that we use ρ for population values and r for observed values on data).
Specifically, we test the null hypothesis H0 : ρij.k = 0, which has three outcomes depending
on the p value and two thresholds α and γ. If p ≤ α, we say that the null hypothesis is
rejected and we accept the alternate Ha : ρij.k 6= 0. If α < p < γ, then we say that the status
of H0 is ambiguous. Finally, if p ≥ γ, we accept the null hypothesis.

We compare the result of the hypothesis test to the partial correlation implied by the
model. If the null hypothesis is clearly rejected or accepted, there are four possible outcomes:

1. the model entails ρij.k = 0 and the data implies ρij.k = 0 (true positive)

2. the model entails ρij.k = 0 and the data implies ρij.k 6= 0 (false positive)

3. the model entails ρij.k 6= 0 and the data implies ρij.k = 0 (false negative)

4. the model entails ρij.k 6= 0 and the data implies ρij.k 6= 0 (true negative)

We make this comparison for every combination and ordering of three variables, and from
these we develop the score function

score = fp+ fn− tp− tn, (4)

where tp, tn, fp, and fn are the number of true/false positive/negatives. Ambiguous hy-
pothesis tests do not count as evidence for or against a model.

Partial correlation constraints let one recover much of the structure, as most graphs will
imply different constraints. However, there are equivalence classes for which several models
with the same undirected link structure have identical constraints. For example, the model
X1 → X2 → X3 has equivalent partial correlation constraints to X1 ← X2 ← X3, and
X1 ← X2 → X3. The correct direction can often be resolved if there is some additional
knowledge about the causal ordering. For example, dspA is a known light sensor in the
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photosynthesis model presented earlier, so it must come before other genes in the regulation
model.

Implicit in our analysis is the assumption that partial correlations in the data are only
zero when they are entailed (faithfulness assumption), i.e., true for all possible values of the
link parameters bij. This eliminates models where the partial correlations are zero only for
specific values on the links. For example, this could happen for the model in Figure 2c if b13

was exactly equal to −b12b23.

3.2.2 Parameter Signs and Correlation

We can use knowledge about the signs of the parameters bij in the model to predict the sign
of correlation between any two variables that we can observe in the data. If two variables
are directly connected, such as X1 → X2, then we expect that sign(ρ12) = sign(r12). When
the variables are not directly connected, we can predict the sign by tracing the links in the
trek connecting any two variables and by multiplying the signs. For example, in Figure 1
the sign between dspA and PBS should be negative (1× 1×−1).

When there are multiple treks between two variables the predicted signs could disagree.
In a fully quantitative model, each path would have its own degree of influence based on
the magnitude of bij, and one could sum their effects to determine the outcome. In general,
we will not assume reasoning at this fully quantitative level. Thus, to obtain unambiguous
predictions, we annotate the model with dominance relations that specify the corresponding
pathway sign. The dominant pathways can be either specified by the biologist or learned
from data.

Given a model and sign assignments, we can score it against data using the function

score =
∑

ij,i6=j
f(signd(i, j), signm(i, j)) , (5)

where signd(i, j) and signm(i, j) return the sign of ρij predicted by the data and the model,
and f(a, b) is a function that returns 0 if a and b are equal, 1 otherwise.

3.3 Revising Regulatory Models to Explain Microarray Data

Given an initial model and data, we use a two-stage process to revise the model. The first
stage attempts to revise the model structure to find the correct causal relationships. Given
the new structure, the second stage attempts to determine the type of regulation between
variables (i.e., signs of bij parameters).

We view the revision process as carrying out heuristic search through the space of can-
didate models for a network structure that explains the data better. The starting state is
the initial model provided by the biologist. The search operators for generating alternative
models are the addition, deletion, and reversal of links between genes and external variables.
We evaluate the alternative models with the score function in Equation 4, which examines
partial correlation constraints, and move through the model space with greedy hillclimbing.

In addition to providing a starting point for the search, biological knowledge comes into
play by constraining the link structures that are permitted. For example, in Figure 1 the
link from Light is a signaling pathway that should connect to a light sensor, for which
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the only candidate is dspA. Our system supports type constraints between variables, where
the beginning and end of a link must be variables of a specific type. In our model, these
constraints have the effect of fixing the links to and from the external variables. There
are many other ways that biological knowledge can constrain the model. For example,
Hartemink et al. [10] takes an alternative approach that uses location information to fix
links in a Bayesian network.

In general, current gene expression experiments provide only a few data points to score
models. This causes severe problems because, with little data, small changes in the data
set or algorithm parameters can produce very different revisions. To address this, we use
the bootstrap [4] to determine the stability of the suggested revisions. The bootstrap is
a resampling method for estimating statistics that would be difficult to infer analytically.
Bootstrapping has been used in phylogenetic trees [5] and Bayesian network inference [6].

Our application differs slightly from these previous uses as we attempt to learn stable
changes from an initial model as opposed to stable structures inferred from the data alone.
Our technique estimates how frequently a change would be suggested during revision with
slightly different data sets of fixed size. In particular, it samples with replacement from
a data set of size n to create k new data sets also of size n. For each sample, it carries
out the revision process and records the suggested changes, then only accepts changes with
repeatability greater than a threshold,4 where we define repeatability as the percentage of
the samples in which the revision occurs.

Once structure is learned, the system carries out another another search process to de-
termine whether each link should have a positive or negative sign. If there are few links in
the model, it exhaustively checks all possible assignments of + or - to the links; otherwise, it
resorts to hill-climbing search starting with the assignment given by the initial model when-
ever the link is present in both models. The system uses Equation 5 to score each candidate
assignment and direct the search procedure.

4 Results

In this section, we discuss the results of applying our method to revising the photosynthe-
sis model on real microarray data. We also describe experiments with synthetic data to
understand better the properties of our algorithm.

4.1 Results for Wild Type and Mutant Cyanobacteria

We applied our method to revise the regulation model of photosynthesis for wild type
Cyanobacteria from Figure 1 and to construct a model for the mutant dspA, which does
not bleach in high light conditions. We have microarray data for both organisms which con-
tain measurements for approximately 300 genes believed to play a role in photosynthesis.5

For this analysis, we focus on the genes in the original model and do not consider links to
other genes. The array data were collected at 0, 30, 60, 120, and 360 minutes after high
light conditions were introduced, with four replicated measurements at each time point. We
treated RR as an unmeasured variable, and Photo, which represents the structure of the

4An alternative would be to present the repeatability numbers directly to the biologist and let her decide.
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photosystem, was not measured (although it could be in theory). We treated the observa-
tions as independent samples and ignored their temporal aspect, as well as the dependencies
among the four replicates.

Our system revised the initial model for wild type Cyanobacteria with 20 bootstrap
replicates and a repeatability threshold of 75%. Figure 3 shows the revised model. There are
four changes from the original model: removing psbA2, changing the signs of the correlation
on links between from RR to psbA1 and cpcB, and changing the sign of the link between
PBS and Health.

Light

NBLR
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cpcB

psbA2

psbA1

Photo

NBLA PBS

Health
+

+

+

+ −

++

+

+

−

dspA

Figure 3: Revised model of photosynthesis in wild type Cyanobacteria.

The revised wild type model dropped all links to the gene psbA2. Discussion with the
biologist who proposed the model indicated that the links from RR to the photosystem
(psbA1, psbA2, and cpcB) are thought to occur, but the exact configuration and genes
involved are uncertain. The presence of one gene product (psbA1) is enough to regulate the
structure of the photosynthetic center (Photo), so dropping psbA2 is not problematic.6 As a
check, we can examine correlations of psbA2 with its neighboring genes in the initial model.
The gene psbA2 has very low correlations with psbA1 (r = 0.01), cpcB (r = −0.11), and
dspA (r = −0.21). In contrast, the genes psbA1 and cpcB are strongly correlated (r = 0.88)
as expected from their connection through RR.

Although our method suggested several plausible revisions to the wild type model, there
were also changes that we did not expect. For example, the revision process changed the
sign on the link PBS → Health from negative to positive. The biologist who proposed the
model assumed that the light conditions were high enough to cause damage; the revision
suggests the opposite, that under high light conditions more PBS is better for the organism.
The underlying issue is that the link from PBS to Health is an abstraction that obscures two
pathways that compete for dominance, as shown in Figure 4.

PBS Health

Energy

Damage −

++

+

Figure 4: Expansion of the abstract link from PBS to Health.

5The data is available at http://www.isle.org/∼sbay/data/cyano.html .
6The genes psbA1 and psbA2 both encode variants of the photosystem II D1 protein.
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Light provides energy to the organism and this increases viability, but it also damages
the organism by increasing the number of oxygen radicals. When light levels are low, the
effect of energy dominates. As light levels rise, damage increases and eventually dominates
over any gains from energy. The results suggest that the light exposure was not high enough
for damage to overcome the benefit from energy.

We also applied our revision process to develop a model that explains why the mutant
dspA does not bleach in high light conditions. Presumably, the mutant differs genetically
from the wild type organism in at most a few ways, so we used the initial model in Figure 1
as the starting point for revision. The revised model, shown in Figure 5, involves only one
change – the removal of the link from dspA to RR.
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+

+ −
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−
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Figure 5: Model of photosynthesis in mutant Cyanobacteria.

Dropping the link from dspA to RR is sensible because the mutant is an experimental
knockout in dspA, and thus dspA should not influence other genes in the model. Removing
the link moves the model a step closer to an isolated dspA gene. However, the new model
does not explain why the mutant fails to bleach in high light conditions. One possibility is
that 20 examples do not provide enough statistical power to detect all necessary changes.
Specifically, the revised model correctly removed the link from dspA to RR, but did not
remove the link from dspA to NBLR. This latter change was suggested in several bootstrap
samples, but not frequently enough to meet the 75% repeatability threshold. An additional
problem is that the links from RR to psbA2, and psbA2 to Photo are not dropped, as with
the wild type model. Again, we believe psbA2 is not removed from the model because of
insufficient statistical power.

4.2 Results for Synthetic Data

We used synthetic data to study how well structure could be recovered from incorrect initial
models with a small number of samples. We generated data sets of size 20 by treating the
structure of the model in Figure 1 as the true model. We assumed values for bij on the links,
and generated ei according to a random normal distribution (µ = 0, σ = 0.1). The root
causal variable, Light, was assigned a random uniform value between 0 and 1.

We also applied our revision process to synthetic data in which the initial model has been
mis-specified by randomly adding or deleting links to the generating model. The results are
summarized in Table 1 which lists the number of correct and incorrect suggested revisions
given errors in the initial model averaged over 20 runs. The first row represents the situation
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in which all variables are observable; the second row represents the situation in which the
the synthetic variable corresponding to RR is unobservable.

These results provide an estimate of our method’s ability to correct errors in the initial
model. For example, the entry in the first row and third column says that if the initial model
has two incorrect links, then on average the revision process will correct 1.2 link errors and
introduce 0.5 incorrect link changes. The last column represents the empty model, which
corresponds to an initial model where nothing is known about the regulatory relations and
all variables are unconnected. The number of correct/incorrect revisions are tabulated for
a repeatability threshold of 75%. We selected this threshold to control error given a fairly
complete initial model. However, this cutoff is too conservative for the empty model where a
lower threshold would result in many more correct revisions (on average the top 5.8 suggested
revisions are correct when starting with an empty model).

Table 1: Expected number of correct/incorrect revisions on synthetic data.

errors in initial model
0 1 2 4 6 empty

all observable 0/0.4 0.5/0.4 1.2/0.5 1.8/0.3 2.5/0.2 2.1/0.1
RR not observable 0/0.4 0.3/0.2 0.6/0.3 1.3/0.5 1.4/0.2 1.8/0.3

These results suggest that there is enough power to suggest a few revisions reliably, as
we found with wild type and mutant Cyanobacteria, even though there were only a small
number of samples (20) and unmeasured variables such as RR.

In addition to studying the ability of our algorithm to revise structures such as the
photosynthesis regulation model, we also investigated the ability of our algorithm to revise
larger models that involve more variables if a greater amount of data were available.

We generated larger models and the corresponding synthetic data by first determining a
model structure according to the following procedure. We selected 30 random genes from
our real microarray data and used our algorithm to learn a model. We then treated the
discovered model as correct and used it to generate new data in the same fashion as in the
previous experiment. This approach is similar to a parametric bootstrap.

We then corrupted the model by randomly adding and deleting links between genes (6
changes in total) and measured the ability of our algorithm to suggest correct revisions with
varying amounts of data. The results are summarized in Table 2, which lists the average
number of correct revisions in the top ten suggestions over five trials. As one might expect,
as we increase the number of data points, our algorithm is more likely to suggest correct
revisions.

5 Discussion

Although our approach to revising models of gene regulation shows clear promise, we should
consider its limitations, as well as its relation to other methods for discovering causal knowl-
edge.
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Table 2: Average number of correct suggestions on synthetic data from models with 30
genes. The maximum number of correct revisions is 6. The pooled standard deviation for
these results is 0.4.

Number of data samples
50 100 200

correct suggestions 3.4 3.95 4.6

5.1 Limitations

Our approach assumes a linear model that has limited representational power. Although
linear models are desirable because they have a small number of parameters, they cannot
model combinatorial effects, such as genes X and Y both needing to be highly expressed
before Z transcribes. For photosynthesis in Cyanobacteria, the genes were not believed to
interact combinatorially and the primary concern was dealing with the small number of
samples, making the linear model a natural choice. For other systems that have known
combinatorial interactions, we should extend our representation to include interaction terms
within the linear framework.

In addition, although our data originated from time-course measurements, we also limited
representational power by deliberately choosing not to model time dependent effects for
two reasons. First, the data samples were taken far apart in time and we hoped that
temporal dependencies would not be significant to the modeling effort at that time scale.
Second, proper inference of causal relations in temporal data is an extremely challenging
and unsolved problem in microarray data analysis. The main issue is that microarray data
are typically sampled with extremely low frequencies (e.g., in our case with a period of at
least 30 minutes). The low sampling rate can cause temporal aggregation bias which is well
known to lead to spurious causality relationships (e.g., [2, 13]). Essentially, the levels of
gene expression between sampling points are unobserved and act as latent variables through
which indirectly related variables can have unexplained correlations. These correlations lead
to algorithms to incorrectly infer direct causal relationships when none exist in reality.

We restricted the genes that could appear in the model to a small subset of those mea-
sured by the microarray chips. The complete set of data contains about 300 variables, from
which we used the 11 variables present in the initial model. We restricted the number of
variables because we had very few samples, and many variables would have made estimating
zero partial correlations unreliable because of the multiple hypothesis testing problem [18].
However, using too few variables means that we may have excluded an important variable
from the analysis. Clearly, a tradeoff is involved and we believe a good practical solution is
limiting the number of genes to a reasonable set with background knowledge.

Finally, we have focused on mRNA expression levels and did not directly model vari-
ables representing biochemical activity, such as the concentration of proteins and their state
(e.g., phosphorylated or bound in a complex). Modeling activity at the biochemical level is
clearly more realistic, and biologists typically model their regulation system both in terms
of mRNA expression and protein activities. However, biochemical activity is not measured
by microarrrays and thus the protein levels are generally unobserved.
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Partial correlation constraints can distinguish between some, but not all, structures in-
volving unobserved variables [8]. For example, with our photosynthesis regulation model
the biologist hypothesized that dspA affects psbA1, psbA2, and cpcB through some un-
observed gene RR. However, an alternate hypothesis is that dspA regulates these genes
directly. These two hypotheses generate predictions about partial correlations even though
RR is unobserved: the model without RR entails ρcpcB psbA1 . dspA = 0, while the model with
RR entails ρcpcB psbA1 . dspA 6= 0. In general, the presence of unobserved variables makes
inference about the network structure more difficult and it may not always be possible to
distinguish competing models.

5.2 Relation to Bayesian Networks

Linear causal models are closely related to Bayesian networks, which a number of researchers
have used to model gene regulation [7, 15, 10, 11, 22]. In fact, a linear causal model is a
special case of a Bayesian network that has linear Gaussian conditional densities at each
node.

Our method used treks and directed paths to identify zero partial correlations entailed
by the model. This approach is very similar to Pearl’s [14] notion of d-separation in Bayesian
networks for determining conditional independence relations. Two variables i and j are d-
separated if for all undirected paths between them there is an intermediate variable k such
that:

1. k does not have converging arrows (i.e., ← k ←, → k →, ← k →) and k is observed,
or

2. k has converging arrows (→ k ←) and neither k nor its descendents are observed.

In our path analysis, we only considered controlling for a single variable7 whereas d-separation
can be applied when multiple variables are controlled (observed). In addition, treks do not
contain paths with converging arrows and thus our analysis to identify partial correlation
constraints entailed by the model does not explicitly consider the second condition.

Learning methods for inferring causal Bayesian networks can be divided into two main
groups. Constraint-based approaches [8, 16] attempt to find networks whose structures entail
the conditional independence relations observed in the data. Note that, for linear models,
conditional independence between variables is equivalent to zero partial correlations. Our
approach falls into this group, as it attempts to find networks that closely match the observed
partial correlation constraints in the data. The other main approach for learning causal
Bayesian networks attempts to maximize a Bayesian scoring metric. Methods in this group
focus on finding the network model M that produces the best score given the data D, i.e.,
P (M |D). A central step in computing P (M |D) is determining the likelihood of the data
given the model, P (D|M), which is usually decomposed into the score of local models that
compute the probability of a variable’s observations given its direct causes in the model.

7Each additional controlled variable reduces the degrees of freedom available for estimating the partial
correlation.
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At this point, the advantages and disadvantages of each approach are not completely
clear. Constraint-based methods may be sensitive to the test used for conditional indepen-
dence (zero partial correlations) and violations of test assumptions (e.g., linearity). However,
Friedman et al. [7] report that their Bayesian scoring approach is “sensitive to the choice
of local model, and in the case of the multinomial model, to the discretization method”.
Saavedra et al. [16] performed an initial study that attempted to compare constraint-based
algorithms [8] with a Bayesian scoring approach [7] on regulation networks developed for
the yeast cell cycle. However, they found the methods were difficult to compare because
little is known about the true regulatory processes, and differences in handling of missing
values and normalization of data can have large effects on the final results, thus masking
differences between approaches. In the future, we plan to compare these two general ap-
proaches with synthetic data along measures such as the robustness to noise, violations of
model assumptions, number of samples, and number of hidden variables.

6 Conclusions and Future Work

In this paper, we have described an approach to combining data-driven search with biological
knowledge in order to find better models of gene regulation. We illustrated this method by
using it to revise a regulatory model of photosynthesis in Cyanobacteria with expression
data.

Our results are encouraging, but we must extend our system in a number of directions to
make it a more useful tool for biologists. From the perspective of computational inference,
we should expand our analysis techniques to explicitly handle time delay and feedback, both
of which are common in gene regulation. One possible approach is to represent interactions
between genes with qualitative differential equations. Another issue is incorporating inter-
ventional data from knockout experiments into the revision process [15, 22], as so far we
have concentrated on analyzing observational data.

From the perspective of modeling domain knowledge, we intend to support many more
biological concepts. For example, although biologists often state models in terms of mea-
surable statistical variables, such as gene expression levels, they also describe an organism’s
behavior in terms of mechanical processes that operate on individual molecules. Karp’s [12]
work on modeling the tryptophan operon provides one approach to representing such mech-
anisms. Future work should support the ability to make statistical predictions from such
mechanistic models, and thus make better contact with biologists’ concepts.

In the longer term, we envision an interactive discovery aide that lets a biologist specify
initial models, focus the system’s attention on particular data and parts of those models it
should attempt to improve, select among candidate models with similar scores, and control
high-level aspects of the discovery process.
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