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tIn this paper, we report progress on theuse of ma
hine learning to improve the pro-
ess of rooftop dete
tion in aerial images.We des
ribe an existing system for build-ing re
ognition, Budds, and identify itsrooftop stage as a target for improvement.We then review the naive Bayesian 
lassi-�er, a simple but robust approa
h to super-vised indu
tion, and the visual interfa
e wedeveloped to ease the labeling of trainingdata. We present the results of experimentson the rooftop dete
tion task that revealimproved re
ognition levels over the hand-
rafted Budds 
lassi�er, then examine thereliability and speed of the intera
tive la-beling pro
ess itself. Finally, we 
onsiderrelated resear
h and plans for future work.1 Introdu
tionIn the past 20 years, the 
omputer vision 
ommu-nity has made great strides in extending the fun
-tional 
overage of image understanding systems. Re-sear
hers have developed integrated systems thatoperate on a variety of 
hallenging tasks, in
lud-ing pra
ti
al problems like the analysis of large-s
ales
enes in aerial imagery. But this progress has of-ten obs
ured the underlying fragility of systems thathave been tuned 
arefully to operate well on a hand-ful of images.The advent of programs like RADIUS, whi
h providea repository of 
ommon images for use in testing, has�This resear
h was supported by the Defense Ad-van
ed Resear
h Proje
ts Agen
y under grant N00014-98-1-0543, administered by the OÆ
e of Naval Resear
h,and by Sun Mi
rosystems through an equipment grant.

improved this situation. For spe
i�
 domains, wenow have image understanding systems that pro
essmany distin
t images in a reasonably robust manner.Yet these programs often rely on heuristi
 knowledgethat transfers poorly to new images, mu
h less tonew domains, and there remains 
onsiderable roomfor improving their behavior even on existing imagelibraries.One path to su
h improvement invokes ma
hinelearning to re�ne or repla
e the hand
rafted knowl-edge that 
urrently guides an image understandingsystem (Bowyer et al., 1994). One 
an apply su
hte
hniques to any level of a 
omplex vision system,provided data are available for training the learningalgorithm. Indeed, future vision resear
hers mightuse learning methods to in
orporate heuristi
 knowl-edge and to tune parameters for one stage of visualpro
essing before addressing stages that build on it.Conveniently, the ma
hine learning 
ommunity hasalso developed an extensive experimental method forevaluating its algorithms (Kibler & Langley, 1988)that should 
arry over readily when they are usedfor 
omputer vision.In the following pages, we report our progress to-ward this goal. We begin by reviewing our 
ompu-tational framework, in
luding a representation forvisual knowledge, the vision system that uses thisknowledge to pro
ess images, and the learning algo-rithm that aims to improve this pro
ess. We also dis-
uss our approa
h to 
olle
ting training data, whi
hrelies on an intera
tive labeling system. Next we re-view some systemati
 experiments with visual learn-ing, in
luding tests of generalization to novel images.After this, we report empiri
al studies of the label-ing pro
ess, whi
h involves intera
tions between thesystem and a human. We 
lose with a brief dis
us-sion of related work on visual learning and our plansfor future resear
h.
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tive Visual Learning2 An Approa
h to Visual LearningTo explore the potential of ma
hine learning for 
om-puter vision, we had to sele
t some task that re-quires image understanding. We de
ided to fo
us onthe analysis of aerial photographs available from theDARPA RADIUS program, and in parti
ular on there
ognition and des
ription of buildings, as this wasa re
ognized problem of pra
ti
al import on whi
hthere already existed a body of work. Another fa
-tor was the existen
e of Budds, a building re
ogni-tion system developed by Lin and Nevatia (1996) atUSC, whi
h they o�ered to make available. Theirsoftware seemed ideal for our purposes be
ause itwas robust enough on the task to provide a goodbaseline, yet still seemed likely to bene�t from im-provement through ma
hine learning.In this se
tion, we reviewBudds' representation andme
hanisms, fo
using on the stage that generatesrooftop 
andidates, whi
h we sele
ted for our initialwork. After this, we review the naive Bayesian 
las-si�er, the main learning algorithm we have used inour studies, followed by our approa
h to 
olle
tingdata in support of the learning pro
ess. In this 
on-text, we dis
uss two 
hallenges raised by this domainthat are not normally addressed in ma
hine learning:the distin
t 
osts asso
iated with di�erent types oferrors and the need for intera
tive but eÆ
ient la-beling of instan
es.2.1 The Budds SystemThe Buildings Dete
tion and Des
ription System(Budds) was developed by Lin and Nevatia (1996)at the University of Southern California to addressthe task of dete
ting and des
ribing buildings inaerial photographs. Like many image understand-ing systems, Budds represents knowledge about as
ene at di�erent levels of des
ription and operatesby aggregating lower-level des
riptors into higher-level ones, ultimately rea
hing 
hara
terizations ofbuildings in the s
ene.Naturally, the software begins at the pixel level, de-s
ribing images in terms of gray s
ale intensitieswithin a re
tangular grid, along with informationabout 
amera and sun angles. Budds invokes anedge dete
tor to group pixels into 
onne
ted seg-ments, whi
h it des
ribes in terms of their startingand end points. The system then uses a line �nderto group these segments into extended lines, ea
h ofwhi
h it represents using end positions, slope, and
omponent segments.At the next level, Budds 
onstru
ts L jun
tionsat the ends of ea
h line and T jun
tions that o
-
ur along them. These stru
tures it 
hara
terizes in

terms of the jun
tion verti
es and the angle of theirbise
tors, along with their 
omponent lines. Thesoftware also groups nearby lines with similar slopesand lengths into parallel pairs, whi
h it des
ribes interms of the lines involved. The ensuing level 
om-bines both jun
tions and parallels into three-sidedstru
tures or U 
onstru
ts, whi
h again are denotedby their 
omponents.After this, Budds 
ombines pairs of nearby U's intoparallelograms that 
onstitute 
andidates for therooftops of buildings in the image. The system de-s
ribes these stru
tures in terms of the 
omponentU's and the positions of their four verti
es. The fol-lowing stage involves elimination of some roof 
andi-dates based on global 
riteria (e.g., when one over-laps another). Finally, Budds 
ombines the remain-ing rooftop 
andidates with eviden
e for walls andshadows to 
onstru
t 3D wire-frame des
riptions ofre
tilinear buildings.At most pro
essing stages, Budds' move to the nextlevel involves two distin
t operations. The system�rst generates 
andidates for the su

essive level,
onstrained mainly by lo
ality assumptions; for ex-ample, it 
onsiders only nearby U's when 
onstru
t-ing rooftop 
andidates. After this 
omes a �lteringstep that de
ides whether to retain or reje
t this 
an-didate, typi
ally using a hand
rafted 
lassi�er thatdraws on 
omputed features of the 
andidate. Webelieve that ma
hine learning is best suited to im-prove de
isions during this �ltering step.Dis
ussions with R. Nevatia (personal 
ommuni
a-tion, 1996) suggested that rooftop dete
tion heldthe most promise for improvement through ma
hinelearning, so we should 
onsider this stage in more de-tail. Again, this pro
ess 
ombines three-sided U's toform parallelograms that 
onstitute 
andidate roofsin the image. Budds �lters these parallelograms by
al
ulating nine 
ontinuous features and 
ombiningthem into a weighted sum. For ea
h 
andidate, ifthe result is higher than a spe
i�ed threshold, thesystem retains it; otherwise it reje
ts the 
andidate.Four of these features provide positive eviden
e thatthe 
andidate is a rooftop. For example, one su
hattribute spe
i�es the extent to whi
h edges arepresent in the 
omponent lines. Low 
ontrast mayobs
ure parts of these lines, and buildings with more
omplex stru
ture will have no edges where 
ompo-nent re
tangles meet. However, the more 
ompletethe edges that make up a parallelogram, the greaterthe eviden
e for a rooftop. Budds uses a similar 
on-tinuous attribute that favors rooftop 
andidates withmore dete
ted 
orners and ones with angles that are
loser to 90 degrees. A third 
ontinuous feature re-
e
ts the extent to whi
h opposite sides of the 
andi-date are parallel, whi
h 
an be a�e
ted indire
tly by
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tive Visual Learning 481missing edges. A fourth attribute measures eviden
efrom shadows; taking the dire
tion of illuminationinto a

ount, it looks for expe
ted 
orresponden
esbetween 
andidate 
orners and shadow 
orners, aswell as 
andidate edges and shadow edges.The remaining �ve features represent negative evi-den
e that the 
andidate is a
tually a rooftop. Forinstan
e, one attribute measures the degree to whi
hlines 
ross the sides of the 
andidate des
ription;
learly, the presen
e of su
h interse
ting lines re-du
es the 
han
es that the parallelogram is a build-ing roof. Two additional attributes indi
ate the ex-tent to whi
h sides of the 
andidate 
ontain L jun
-tions and T jun
tions other than at its 
orners; theo

urren
e of su
h jun
tions within a side make the
andidate an implausible rooftop. A fourth negativefeature measures the presen
e of 
orresponding gapson opposite sides of the 
andidate, whi
h are unlikelyin buildings. Finally, Budds 
omputes the displa
e-ment between the edges that make up the 
andidaterooftop and its inferred sides, giving higher s
oresfor poorer mat
hes.Lin and Nevatia developed their 
lassi�er manu-ally, through trial and error on a variety of imagesand their asso
iated rooftop 
andidates. Our aimwas to use some form of ma
hine learning to pro-du
e a new 
lassi�er that improved on the hand-
rafted method's ability to eliminate poor rooftop
andidates but still retain a

eptable ones. For thiswe needed two items|an appropriate learning algo-rithm and a sour
e of training data|to whi
h wenow turn.2.2 The Naive Bayesian Classi�erSin
e Budds treats the �ltering of rooftop 
an-didates as a 
lassi�
ation task, it seemed naturalto formulate our learning problem in terms of su-pervised indu
tion. Preliminary experiments witha number of indu
tion methods (Maloof, Langley,Sage, & Binford, 1997) suggested that we would ob-tain good results with the naive Bayesian 
lassi�er ,a simple te
hnique for probabilisti
 indu
tion thathas a long history in pattern re
ognition (Duda &Hart, 1973) but that has gained a

eptan
e in ma-
hine learning more re
ently (Clark & Niblett, 1989;Kononenko, 1990; Langley, Iba, & Thompson, 1992).The Bayesian 
lassi�er represents its knowledgeabout ea
h 
lass in terms of a single probabilisti
summary. Ea
h su
h 
lass des
ription has an asso-
iated 
lass probability or base rate, p(Ck), whi
hspe
i�es the prior probability that one will observea member of 
lass Ck. Ea
h des
ription also hasan asso
iated set of 
onditional probabilities, spe
-ifying a probability distribution for ea
h attribute.

For a nominal attribute, one typi
ally stores a dis-
rete distribution, with ea
h p(vj jCk) term statingthe probability of value vj given an instan
e of 
lassCk. For a numeri
 attribute, one must represent a
ontinuous probability distribution of that attributegiven the 
lass. This requires that one assume somegeneral form or model, the most 
ommon 
hoi
e be-ing the normal distribution, whi
h one 
an represent
onveniently entirely in terms of its mean � and itsvarian
e �2.To 
lassify a new instan
e I , a naive Bayesian 
las-si�er applies Bayes' theorem to determine the prob-ability of ea
h des
ription given the instan
e,p(CijI) = p(Ci)p(I jCi)p(I) :However, sin
e I is a 
onjun
tion of j values, one
an expand this expression top(Cij^ vj) = p(Ci)p(V vj jCi)Pk p(V vj jCk)p(Ck) ;where the denominator sums over all 
lasses andwhere p(V vj jCi) is the probability of the instan
e Igiven the 
lass Ci. After 
al
ulating these probabil-ities for ea
h des
ription, the algorithm assigns I tothe 
lass with the highest overall probability.In order to make the above expression operational,one must still spe
ify how to 
ompute the termp(V vj jCi). Naive Bayes assumes independen
e ofattributes within ea
h 
lass, whi
h lets it use theequality p(^ vj jCi) =Yj p(vj jCi) ;where the values p(vj jCi) represent the 
onditionalprobabilities stored with the 
lass. This approa
hgreatly simpli�es the 
omputation of 
lass probabil-ities for a given observation.The Bayesian framework also lets one spe
ify priorprobabilities for both the 
lass and the 
onditionalterms. A 
ommon s
heme makes use of `uninformedpriors', whi
h assign equal probabilities to ea
h 
lassand to the values of ea
h attribute. However, onemust also spe
ify how mu
h weight to give these pri-ors relative to the training data. For example, one
an use a Diri
hlet distribution to initialize proba-bilities and give these priors the same in
uen
e asa single training instan
e. Clark and Niblett (1989)des
ribe another approa
h (whi
h we also use) thatdoes not require expli
it priors, but instead esti-mates P (Ci) and p(vj jCi) dire
tly from their pro-portions in the training data. When no instan
esof an attribute value for a given 
lass have been ob-served, it repla
es the zero probability with p(Ci)=N ,where N is the number of training 
ases.
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tive Visual LearningLearning in the naive Bayesian 
lassi�er is an al-most trivial matter. The simplest implementationin
rements a 
ount ea
h time it en
ounters a new in-stan
e, along with a separate 
ount for a 
lass ea
htime it observes an instan
e of that 
lass. Togetherwith the prior probabilities, these 
ounts let the 
las-si�er estimate p(Ci) for ea
h 
lass Ci. In addition,for ea
h instan
e of a 
lass that has a given nominalvalue, the algorithm updates a 
ount for that 
lass-value pair. Together with the se
ond 
ount, thislets the 
lassi�er estimate p(vj jCi). For ea
h nu-meri
 attribute, the method retains and revises twoquantities, the sum and the sum of squares, whi
hlet it 
ompute the mean and varian
e for a normal
urve that it uses to �nd p(vj jCi). In domains that
an have missing attributes, it must in
lude a fourth
ount for ea
h 
lass-attribute pair.In 
ontrast to many indu
tion methods, the naiveBayesian 
lassi�er does not 
arry out an extensivesear
h through a spa
e of possible des
riptions. Thebasi
 algorithm makes no 
hoi
es about how to par-tition the data, as with de
ision-tree methods, orwhi
h dire
tion to move in a weight spa
e, as withneural networks, and the resulting probabilisti
 sum-mary is 
ompletely determined by the training dataand the prior probabilities. Nor does the order ofthe training instan
es have any e�e
t on the out-put; the basi
 pro
ess produ
es the same des
riptionwhether it pro
esses the data in
rementally or all aton
e. These features make the learning algorithmboth simple to understand and quite eÆ
ient.But the naive Bayesian 
lassi�er buys these advan-tages at the 
ost of two important assumptions.First, it posits that ea
h 
lass 
an be summarized bya single probabilisti
 des
ription, and that these aresuÆ
ient to distinguish the 
lasses from one other.This idea is 
losely related to the assumption of lin-ear separability in early work on neural networksand, like per
eptrons, naive Bayes is typi
ally lim-ited to learning 
lasses that 
an be separated by asingle de
ision boundary. Se
ond, the approa
h as-sumes that, within ea
h 
lass, the probability distri-butions for attributes are independent of ea
h other.Clearly, this assumption is unrealisti
 for many real-world domains, and one 
an easily design noninde-pendent data sets on whi
h naive Bayes does poorly.These apparent drawba
ks led most ma
hine learn-ing resear
hers to ignore this promising method formany years.However, experimental studies a
ross a broad rangeof domains show that the naive Bayesian 
lassi�eroften fares very well 
ompared to mu
h more sophis-ti
ated indu
tion algorithms like de
ision-tree indu
-tion (e.g., Langley et al., 1992). In some 
ases, thisre
e
ts a representational bias that is more appro-

priate to the domain, sin
e some 
lass distin
tionsare easier to represent using global eviden
e 
ombi-nation than with de
ision trees. However, 
ompar-isons to methods that 
onstru
t full Bayesian net-works, whi
h use the same probabilisti
 representa-tion but whi
h do not make the independen
e as-sumption, show that naive Bayes often outperformsthem as well (Provan & Singh, 1996). The natu-ral explanation is that, be
ause naive Bayes must �tfewer parameters than more 
exible te
hniques, ithas less 
han
e of over�tting limited training data.Re
ent analyses by Domingos and Pazzani (1997)reveal other fa
tors, in
luding the fa
t that naiveBayes learns the optimal 
lassi�er even in many do-mains that involve signi�
ant dependen
ies.The naive Bayesian 
lassi�er has another advantage:it 
an be easily modi�ed to take into a

ount the 
ostof errors. One formulation for two-
lass problems,whi
h we use below, spe
i�es the relative 
ost asa parameter �1 < 
 < 1 and uses this 
onstantto 
ompute utilities from the posterior probabilitiesprodu
ed by naive Bayes. If we let U(rjx) be theutility of 
lassifying 
andidate x as a rooftop and letU(njx) be the utility of 
lassifying x as a nonroof,then U(rjx) = P (rjx) + 
 � P (njx)and U(njx) = P (njx)� 
 � P (njx) ;where 
 is positive when mislabeled roofs are moreexpensive than mislabeled nonroofs. In other words,one 
al
ulates the utility for ea
h 
lass by adding afa
tor to the posterior probability of the more ex-pensive 
lass and by subtra
ting the same amountfor the less 
ostly 
lass. This modi�ed Bayesian 
las-si�er then predi
ts the 
lass with the highest utility.2.3 Intera
tive Labeling of Training DataMa
hine learning 
annot o

ur without some train-ing data to drive the pro
ess. We 
an use Buddsto generate 
andidate rooftops and their nine asso-
iated features; indeed, the system generates thou-sands of su
h 
andidates per image. But we alsoneed labels that spe
ify whether ea
h 
andidateshould be retained (a positive instan
e) or reje
ted(a negative instan
e).Sin
e we 
ould identify the verti
es of ea
h a
tualrooftop in an image, we tried using their distan
efrom 
andidate verti
es to determine 
lass labelsautomati
ally. But inspe
tion of the results indi-
ated that this s
heme assigned labels poorly, ap-parently be
ause many bad 
andidates had verti
esnear those of a
tual rooftops. Also, we wanted the
lassi�er to retain 
andidates that looked like goodrooftops, but were not part of buildings, for reje
-



Intera
tive Visual Learning 483

Figure 1: Visualization interfa
e for labeling rooftop 
andidates. The system presents 
andidates to a userwho labels them by 
li
king either the `Roof' or `Non-Roof' button.tion by later stages of Budds' pro
essing, sin
e ourUSC 
olleagues believed that the nine features werenot enough to identify rooftops on their own.These 
on
erns suggested that some form of manuallabeling by a human was needed, but the numberof 
andidates generated for ea
h image made this adaunting task. In response, we implemented an in-tera
tive labeling system in Java, shown in Figure 1,that su

essively displays ea
h extra
ted rooftop tothe user. The interfa
e draws a 
andidate over theportion of the image from whi
h it was extra
ted,lets the user 
li
k buttons for `Roof' or `Non-Roof'to label it, and moves on to the next 
andidate.We used this approa
h to generate data from twoimages of Fort Hood, Texas, whi
h were 
olle
tedas part of the RADIUS program (Firs
hein & Strat,1997). These images, FHOV1027 and FHOV625,
over the same area but were taken from di�erentviewpoints, one from a nadir angle and the otherfrom an oblique angle. We subdivided ea
h imageinto three subimages, fo
using on lo
ations that 
on-tained 
on
entrations of buildings, to maximize thenumber of positive rooftop 
andidates. This gave usthree pairs of images, ea
h pair 
overing the samearea but viewed from di�erent aspe
ts, as summa-rized in Table 1. Even though the data set 
ontained17,829 rooftop 
andidates, the interfa
e requiredonly about �ve hours to label them. This 
omes to

under one se
ond per 
andidate, whi
h seems rea-sonably eÆ
ient. However, the task remains time
onsuming and also raises questions about the relia-bility of the labeling pro
ess; we will return to bothof these issues in Se
tion 4.3 Studies of Cost-Sensitive LearningIn a previous paper (Maloof et al., 1997), we re-ported initial experimental studies of ma
hine learn-ing for rooftop 
lassi�
ation using three di�erentte
hniques: de
ision-tree indu
tion, nearest neigh-bor, and the naive Bayesian 
lassi�er. Here we re-port more extensive experiments that repli
ate andextend our earlier results, but that fo
us on naiveBayes, sin
e it fared best in those studies.3.1 Experimental Measures and DesignOur basi
 hypothesis was that a learned rooftop
lassi�er 
ould outperform the hand
rafted Budds
lassi�er. However, before we 
ould test this 
laimexperimentally, we needed more than labeled ex-amples of rooftop 
andidates; we also needed some
lear measure of performan
e. The most obviousapproa
h, usually taken in ma
hine learning stud-ies, was to use 
lassi�
ation a

ura
y, but analysisof the domain revealed a problem with this metri
.Brie
y, a simple a

ura
y measure assumes that all
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tive Visual LearningTable 1: Chara
teristi
s of the images and data sets. We began with a nadir and an oblique image of an areaof Fort Hood, Texas, and we divided ea
h into three subimages that 
ontained 
on
entrations of buildings.We then used Budds to generate rooftop 
andidates and intera
tively labeled ea
h as either a positive ornegative example of the 
on
ept \rooftop".Image Original Positive NegativeNumber Image Lo
ation Aspe
t Examples Examples1 FHOV1027 1 Nadir 197 9822 FHOV625 1 Oblique 238 19553 FHOV1027 2 Nadir 71 26454 FHOV625 2 Oblique 74 33495 FHOV1027 3 Nadir 87 37226 FHOV625 3 Oblique 114 4395errors have the same 
ost, but we knew that this doesnot hold for the task of building dete
tion. Given a
-tual 
osts for ea
h error type, we 
ould 
al
ulate aweighted measure using the a

ura
y on ea
h 
lass,but we knew only that labeling buildings as non-buildings (whi
h later Budds stages 
annot 
orre
t)was more expensive than the 
onverse.In su
h situations, a natural solution is to evaluatea 
ost-sensitive method over a range of 
ost settingsand to report the results in a Re
eiver OperatingChara
teristi
 (ROC) 
urve (Swets, 1988). The ba-si
 idea is to systemati
ally vary some aspe
t of themethod or domain (in this 
ase the 
ost ratio), thenplot the true positive rate against the false negativerate for ea
h situation. Although resear
hers haveused su
h ROC 
urves in psy
hology for de
ades,this te
hnique has only re
ently �ltered into ma
hinelearning (Bradley, 1997; Provost & Faw
ett, 1997).To generate ROC 
urves in the studies reported be-low, we varied the 
ost parameter 
 and measuredthe resulting true positive and false positive ratesfor naive Bayes on a given test set of rooftop 
an-didates. However, rather than reporting a 
ompleteROC 
urve for ea
h experimental 
ondition, we of-ten follow Swets' re
ommendation and present thearea under this 
urve, whi
h we approximated bysumming the areas of the trapezoids de�ned by ea
hpair of adja
ent points.Following the standard experimental method in ma-
hine learning, in ea
h situation we trained theindu
tion algorithm on labeled data, in this 
aserooftop 
andidates, that were separate from thoseused to test the learned 
lassi�ers. Be
ause theBudds 
lassi�er was hand 
on�gured, it had notraining phase, so we applied it dire
tly to the in-stan
es in the test set, varying its threshold param-eter to generate an ROC 
urve.

To guard against nonrepresentative samples, we re-port results that are averaged over ten di�erent par-titions into training and test data. Unless statedotherwise, we used 60% of the 
andidates for train-ing and 40% for testing purposes. The experimentsdi�ered in whether the training and test 
ases 
amefrom the same or distin
t images, whi
h let us ex-amine di�erent forms of generalization beyond thetraining data.3.2 Within-Image LearningOur �rst experimental study examined how naiveBayes behaves on within-image learning, that is,when generalizing to test 
ases taken from the sameimage on whi
h we trained it. Our resear
h hypoth-esis was that the learned 
lassi�er would be more a
-
urate, over a range of mis
lassi�
ation 
osts, thanthe hand
rafted 
lassi�er. Be
ause our measure ofperforman
e was area under the ROC 
urve, thistranslates into a predi
tion that the ROC 
urves ofthe learned rooftop 
lassi�ers would have larger ar-eas than those for the Budds 
lassi�er.Table 2: Approximate areas under the ROC 
urves,along with 95% 
on�den
e intervals, for naive Bayesand Budds on the within-image experiment.Naive Bayes BuddsImage 1 0.870�0.008 0.717�0.009Image 2 0.812�0.017 0.773�0.004Image 3 0.962�0.013 0.899�0.015Image 4 0.908�0.025 0.901�0.007Image 5 0.869�0.016 0.833�0.021Image 6 0.835�0.025 0.849�0.010
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Figure 2: ROC 
urves for Images 1 (left) and 2 (right), whi
h we obtained by training and testing on rooftop
andidates from the same image over a range of mis
lassi�
ation 
osts and averaging over ten runs. Theseimages 
over the same lo
ation but from di�erent aspe
ts, with Image 1 giving a nadir view and Image 2being oblique.Figure 2 presents the ROC 
urves for Images 1 and2, in whi
h naive Bayes 
learly fares better than thehand
rafted Budds 
lassi�er, produ
ing fewer falsepositives (nonroofs mislabeled as roofs) for a givenlevel of true positives (
orre
tly labeled roofs). Forall ex
ept Image 6, the learned 
lassi�er produ
ed
urves with areas greater than those forBudds, thusgenerally supporting our resear
h hypothesis.3.3 Generalization Over Aspe
tAlthough the results from the previous study wereen
ouraging, we also wanted to understand betterhow the knowledge learned from one image general-izes to other images. Our hypothesis here was a re-�ned version of the previous one: 
lassi�ers learnedfrom one set of images would be more a

urate onunseen images than hand
rafted 
lassi�ers. How-ever, we also expe
ted that between-image learningwould give lower a

ura
y than the within-image sit-uation, sin
e di�eren
es a
ross images would makegeneralization more diÆ
ult.Thus, our se
ond experiment fo
used on how naiveBayes generalizes over aspe
t. Re
all from Table 1that we had images from two aspe
ts (i.e., nadir andoblique) and from three lo
ations. This let us trainthe algorithm on an image from one aspe
t and testthe learned 
lassi�er on an image from another as-pe
t but from the same lo
ation. As an example,for the nadir aspe
t, we 
hose Image 1 and thentested on Image 2, whi
h is an oblique image of thesame lo
ation. We ran naive Bayes in this mannerusing the images from ea
h lo
ation, while varyingthe 
ost parameter and measuring its true positiveand false positive rates. We then averaged thesemeasures a
ross the three lo
ations and plotted theresults as ROC 
urves, as shown in Figure 3. The

areas under these 
urves and their 95% 
on�den
eintervals appear in Table 3.One obvious 
on
lusion is that the nadir images ap-pear to pose an easier problem than the oblique im-ages, sin
e the 
urves for testing on nadir 
andidatesare generally higher than those for testing on datafrom oblique images. For example, Table 3 showsthat naive Bayes generates a 
urve with an area of0.878 for the nadir images, but produ
es one withan area of 0.842 for the oblique images. In 
ontrast,the Budds 
lassi�er gives an area of 0.837 for thenadir 
ondition and 0.831 for the oblique 
ondition.Table 3: Approximate areas under the ROC 
urves,along with 95% 
on�den
e intervals, for naiveBayes and Budds when generalizing a
ross aspe
t(A), generalizing a
ross lo
ation (L), and general-izing within an image (W). The labels `nadir' and`oblique' indi
ate the testing 
ondition.Naive Bayes Budds(A) Nadir 0.878�0.042 0.837�0.085Oblique 0.842�0.063 0.831�0.068(L) Nadir 0.901�0.079 0.837�0.085Oblique 0.831�0.067 0.831�0.068(W) Nadir 0.900�0.012 0.837�0.085Oblique 0.851�0.022 0.831�0.0683.4 Generalization Over Lo
ationA similar study examined generalization over lo
a-tion. To this end, we trained naive Bayes on pairsof images from one aspe
t and tested on the thirdimage from the same aspe
t. As an example, for the
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Figure 3: ROC 
urves for the experiment that tested generalization over aspe
t. For ea
h lo
ation, wetrained a 
lassi�er on the oblique image and tested it on the nadir image (left), then reversed the pro
edureby training on nadir images and testing on oblique ones (right).nadir images, one of the three learning runs involvedtraining on rooftop 
andidates from Images 1 and 3,then testing on 
andidates from Image 5. We thenran ea
h of the algorithms a
ross a range of 
osts,measuring the false positive and true positive rates.We plotted the averages of these measures a
ross allthree learning runs for one aspe
t in an ROC 
urve,as shown in Figure 4.In this 
ontext, we again see eviden
e that theoblique images presented a more diÆ
ult re
ogni-tion task than the nadir aspe
t, sin
e the obliqueareas are less than those for the nadir images. Com-paring the behavior of the various methods, Table 3shows that, for the nadir aspe
t, naive Bayes per-forms somewhat better than the Budds 
lassi�er,whi
h give areas of 0.901 and 0.837, respe
tively.When generalizing over lo
ation on the oblique im-ages, naive Bayes and the Budds 
lassi�er produ
edROC 
urves with equal areas of 0.831.Re
all that we also anti
ipated generalizing a
rossimages would give lower a

ura
ies than generaliz-ing within images. To test this hypothesis, we must
ompare the results from these experiments withthose from the within-image experiments in Table 2.Simple 
al
ulation shows that, for the within-image
ondition, naive Bayes produ
ed an average ROCarea of 0.9 for the nadir images and 0.851 for theoblique images. Thus, the results are not entirely
onsistent with our predi
tion, sin
e naive Bayes didequally well when generalizing over lo
ation for thenadir image.3.5 Rates of LearningWe were also interested in naive Bayes' behavior as itpro
essed in
reasing amounts of training data. Boththeoreti
al analyses (Langley et al., 1992) and exper-imental results in other domains (Langley & Sage,

1994) suggest that this indu
tion method a
hieveshigh a

ura
y from relatively few training 
ases. Tosee if similar e�e
ts held for rooftop 
lassi�
ation,we 
arried out a �nal study in whi
h we systemati-
ally varied the number of training 
ases available tothe algorithm. Here we used the rooftop 
andidatesavailable from all six images, again splitting the datainto training (60%) and test (40%) sets, but furtherdividing the training set randomly into ten subsets(10%, 20%, : : :, 100%). We ran naive Bayes on ea
htraining subset and evaluated the resulting 
lassi�erson the reserved test data, averaging our results over25 separate training/test splits.Figure 5 shows the resulting learning 
urve, ea
hpoint of whi
h 
orresponds to the average area un-der the ROC 
urve for a given number of training
ases. The graph also in
ludes a 
at 
urve for theBudds 
lassi�er, sin
e it involves no training and wesimply applied it to the same test set for ea
h num-ber of training 
ases. Naturally, the naive Bayesian
lassi�er improves with in
reasing amounts of train-ing data. More important, its performan
e ex
eedsthat for Budds almost from the start, after observ-ing only 10% of the training data (less than the num-ber of 
andidates from one image) and levels o� af-ter pro
essing 30% of the 
ases. Not only did naiveBayes outperform Budds and other indu
tion meth-ods, but it was able to a

omplish this feat usingvery little of the available training data.4 Studies of Intera
tive LabelingThe experiments above showed that a learnedBayesian 
lassi�er typi
ally outperforms the hand-
rafted Budds 
lassi�er, that the learning methodgeneralizes a
ross both aspe
t and lo
ation, and thatit a
hieves good results from little training data.But these results relied on an intera
tive s
heme in
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Figure 4: ROC 
urves for the experiment that tested generalization over lo
ation. For ea
h pair of imageswith the nadir aspe
t, we trained on that pair and tested on the third nadir image (left), then applied thesame methodology to images with the oblique aspe
t (right).whi
h a human labeled the 
andidates generated byBudds, and the studies left unanswered some 
en-tral questions about the role of the developer in thispro
ess. We now present some more re
ent exper-iments that dire
tly address the intera
tive aspe
tsof our framework, in parti
ular the reliablity of la-beling de
isions and the potential for redu
ing thenumber of rooftop 
andidates that one must label.4.1 Consisten
y of Human LabelingWe developed the intera
tive labeling software toprovide 
lassi�ed 
ases for training and testing. Asdes
ribed in Se
tion 2, this interfa
e presents theuser with 
andidates (appearing as highlighted par-allelograms in the image), ea
h of whi
h he mustlabel as a roof or nonroof. This task seems straight-forward, but the 
omplex shape of some buildings,the existen
e of similar 
andidates, and the sheerlength of a labeling session 
an all introdu
e sub-je
tivity and un
ertainty into user de
isions. Thisraises questions about labeling 
onsisten
y, and thusabout the reliability of our results, both a
ross dif-ferent users and within a single user.To address this issue, we examined the results ofthe labeling pro
ess in some detail. We 
ombinedre
ords of labeling de
isions made by one team mem-ber (Maloof) with more re
ent re
ordings from an-other member (Ali), who labeled the same 
andi-dates in two separate sessions. Our 
omparisons fo-
used on Images 1 and 2 from Table 1, whi
h 
onsti-tuted nadir and oblique views of the same Fort Hoodlo
ation. Our aim was to understand how 
onsistentthese users were at labeling rooftop 
andidates andto understand the e�e
ts of their disagreement onthe behavior of learned 
lassi�ers.Our initial analysis examined 
onsisten
y in the la-beling de
isions made by the two users. To this end,

we generated a 
onfusion matrix for their de
isionsthat in
luded the number of items they agreed wereroofs or nonroofs, as well as the number one 
lassi-�ed as a roof and the other as a nonroof. Table 4shows the 
onfusion matrix between Maloof's andAli's labels on Image 1. If we treat the Maloof la-bels as 
orre
t, then Ali had 69% true positive 
an-didates (whi
h they agreed were roofs) and a 6%false negative rate (whi
h Ali labeled as nonroofsand Maloof as roofs). Treating the Ali labels as 
or-re
t gives nearly the same rates, and both pointsfall just above the naive Bayes 
urve for Image 1 inFigure 2. In other words, Maloof and Ali were littlebetter at predi
ting ea
h other's labels than was thenaive Bayesian 
lassi�er, and we found qualitativelysimilar results for Image 2. This suggests that thelearning method may be doing as well as one 
anreasonably expe
t, 
onsidering the apparent unreli-ability of human labelers.Table 4: Confusion matrix for two users (Maloof andAli) on Image 1. Ali AliRoof NonroofMaloofRoof 134 61MaloofNonroof 63 921In our se
ond analysis, we examined the 
onsisten
ywithin a single human labeler (Ali) a
ross two dif-ferent sessions on Image 1. Table 5 presents theresulting 
onfusion matrix. If we treat Ali1 as 
or-re
t, then Ali2 has an 86% true positive rate anda 5% false negative rate. These numbers are mu
hbetter than the between-user rates, but they are notas high as one might hope given a single labeler.
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Figure 5: Learning 
urve for naive Bayes (left), plotting area under the ROC 
urve against size of the trainingset, averaged over 25 runs on data from all six images, and (right) ROC 
urves produ
ed by training andtesting naive Bayes on rooftops labeled by two users in three separate sessions, along with the 
urve for theBudds 
lassi�er.Overall, these analyses suggest that the task of la-beling rooftop 
andidates is a diÆ
ult one, and thatthe naive Bayesian 
lassi�er is doing fairly well giventhe inherent noise in its data.We also wanted to study the e�e
ts of labeler dif-feren
es on the behavior of learned 
lassi�ers, so weturned again to ROC analysis. Figure 5 shows fourROC 
urves for Image 1, one for naive Bayes trainedand tested on 
andidates labeled by Maloof, two fornaive Bayes using labels from separate sessions byAli, and the last for the Budds 
lassi�er tested onMaloof labels. As before, we used 60% of the labeled
andidates for training and the rest as test 
ases, us-ing a variety of 
ost 
oeÆ
ients during testing. Werepeated this pro
ess over ten random training/testpartitions to obtain average values.Table 5: Confusion matrix for di�erent sessions (Ali1and Ali2) of one user on Image 1.Ali2 Ali2Roof NonroofAli1Roof 167 28Ali1Nonroof 49 935The �gure's most striking aspe
t is the rough sim-ilarity of the three learned 
urves when 
ontrastedwith the 
urve for Budds. This suggests that, de-spite apparent variations in labeling de
isions bothbetween and within users, we 
an remain 
on�dentin our general results. However, there are some im-portant di�eren
es. For instan
e, to a
hieve a 90%true positive rate, one must tolerate a false positiverate of 28% for Image 1 
andidates that Ali labeled

in his se
ond session. In 
ontrast, a
hieving this 90%level requires a 30% false positive rate for Maloof la-bels and 42% false positives for labels produ
ed inAli's �rst session. Thus, the labeled 
andidates fromsome sessions are more diÆ
ult for naive Bayes tomaster than those from others.4.2 A
tive Learning for Redu
ed LabelingAnother of our 
on
erns 
entered on the arduousand lengthy nature of the intera
tive labeling pro-
edure. Although we were able to label all 17,829rooftop 
andidates for our initial studies in around�ve hours, this study involved only six images. Forintera
tive labeling to play a pra
ti
al role in de-veloping future vision systems, whi
h would involvetraining on many more images, we must �nd someway to redu
e the labeler's e�ort. But re
all that thelearning 
urve for naive Bayes in Se
tion 3 showedthe method rea
hing reasonable levels after seeingonly a fra
tion of the training data.This observation suggested that we modify the la-beling interfa
e to present 
andidate rooftops moresele
tively. In response, we augmented the softwareto update the naive Bayesian summaries after ea
hnewly labeled 
ase, then used the revised 
lassi�erto de
ide whether to present the next 
andidate forlabeling. In parti
ular, the system showed the useronly those 
ases about whi
h it was un
ertain, thatis, on whi
h the probability of the most likely 
lassfell below a 
ertain level. This approa
h is similar inaims and method to work on a
tive learning (e.g.,Cohn, Ghahramani, & Jordan, 1996), whi
h is alsomotivated by domains with high labeling 
osts.One design de
ision that arose in modifying the in-terfa
e 
on
erned the un
ertainty threshold. To bet-ter understand naive Bayes' behavior, we plotted
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P(nonroof) from Naive BayesFigure 6: Distribution of a
tual rooftops (left) in the test set as a fun
tion of p(roof) and distribution ofa
tual nonroofs (right) as a fun
tion of p(nonroof).its distribution of errors on earlier runs as a fun
-tion of 
lassi�
ation 
on�den
e, or the maximum ofp(roof) and p(nonroof). For example, the left por-tion of Figure 6 shows the distribution for p(roof)that naive Bayes produ
ed for test 
ases that werea
tually roofs.This distribution is surprising on two 
ounts. First,the 
lassi�er was mu
h more 
ertain about manypredi
tions than we expe
ted, with 60% re
eiving aprobability above 0.9. Se
ond, some 20% of the 
an-didates re
eived near-zero probabilities, even thoughthey re
e
ted a
tual rooftops, whereas very few
ases fell in the middle range. The pattern repeatsfor the nonroof 
ases and the nonroof predi
tions, asthe right part of the �gure reveals. This has unfor-tunate 
onsequen
es for any s
heme that asso
iateshigh 
on�den
e with lower error, as seems naturalin an a
tive learning s
enario. The bimodal distri-bution means that p(nonroof) will be near 1.0 formany a
tual roofs and that p(roof) will approa
h1.0 for many nonroof 
ases.Figure 7 presents the resulting distribution of er-rors as a fun
tion of p(roof). The graph shows thatif p(nonroof) is near to 1.0, then the error rate isquite low, but that errors are more 
ommon whenp(roof) is near 1.0. Based on this observation, wede
ided to implement an assymetri
al form of a
tivelearning in whi
h the interfa
e withheld 
andidatesfrom the user only when p(nonroof) was high, butwhi
h presented any 
ases that the 
urrent 
lassi-�er would label as a roof. We sele
ted the thresholdp(nonroof) > 0:9, sin
e 
al
ulations showed thatthis level would in
ur only �ve per
ent errors.Another design de
ision 
on
erned the number of
ases the interfa
e should 
olle
t before a
tive learn-ing takes over. Sin
e rooftops are both rare and moreimportant, it seemed prudent to require the systemto pro
ess a 
ertain minimum number of rooftops

seen before this o

urred, whereas introdu
ing su
ha threshold for nonrooftops seemed less important.Preliminary studies suggested 30 as a good thresholdfor the minimum number of rooftops, whi
h repre-sents 15% of the rooftops in Image 1.Naturally, we wanted to examine the e�e
t of em-bedding a
tive learning in the intera
tive labelingsystem. We hoped that this modi�
ation would re-du
e labeling e�ort substantially but 
ause little re-du
tion in the learned 
lassi�er's performan
e, sowe used the number of labeled 
ases and ROC areasas our dependent measures. We were interested in
omparing a passive learning s
enario, in whi
h theinterfa
e asked the user to label all training 
ases,with an a
tive learning situation, in whi
h the sys-tem presented only those 
ases about whi
h it wasun
ertain.As usual, we wanted to average over di�erent runsbut, for a
tive learning, this would mean asking theuser to revisit the interfa
e many times to 
olle
treliable results. Instead, we simulated this experi-mental 
ondition by reusing labels the user gener-ated in the passive 
ondition. That is, the human�rst labeled all rooftop 
andidates from a given im-age and, for a given run with passive learning, wedivided these data into separate training and testsets. Next, for ea
h step in the 
orresponding runwith a
tive learning, the system sele
ted an un
er-tain training 
ase and assigned it the same label asit re
eived in the �rst 
ondition. This s
heme hadthe added advantage that it redu
ed varian
e due towithin-user in
onsisten
y.For ea
h run in ea
h 
ondition, we used the learnedBayesian 
lassi�er to 
lassify the same test 
ases, allof whi
h were labeled by the same user. As before,we invoked these 
lassi�ers with varying 
osts to ob-tain ROC 
urves and their asso
iated areas, and weaveraged over ten di�erent partitions of the data into
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P(roof) from Naive BayesFigure 7: Test error rate for the naive Bayesian 
las-si�er as a fun
tion of p(roof).training and test sets. We 
arried out this experi-mental pro
edure for Images 1 and 2 from Table 1.Figure 8 presents the ROC 
urves for Image 1. Thekey result is that we obtained very similar 
urveswhen the user (Ali) labeled all training 
ases andwhen the simulated user labeled only about 35% ofthe rooftop 
andidates. Thus, a
tive learning re-du
ed the user's labeling e�ort by two-thirds on thisimage with little redu
tion in 
lassi�
ation perfor-man
e. In fa
t, the area under the passive learning
urve is 0.866 and that for a
tive learning is 0.849, sothe latter 
omes to 98% of the former. Both 
urvesare substantially better than that for the Budds
lassi�er, whi
h had 0.717 for its area.We 
an also use the ROC 
urves to determine theper
entage of false positives (nonroofs 
lassi�ed asroofs) that one must tolerate to �nd a given per
ent-age of the rooftops. For example, to dete
t 90% ofthe roofs, the 
lassi�er built through passive learn-ing mislabels 42% of the nonroofs, the a
tive-learned
lassi�er mislabels 50%, and the Budds 
lassi�ersome 82% of them. From this perspe
tive, present-ing only 33% of the rooftops 
andidates to the hu-man labeler in
urs an extra 8% false positive rate.Figure 8 also shows 
orresponding results on Im-age 2. This oblique image is more diÆ
ult be
auseBudds' uses features that favor rooftop 
andidateswith 
orners 
lose to 90 degrees. The areas under theROC 
urve are less than they were for their analogson Image 1, but again we �nd similar results forpassive learning (0.791) and a
tive learning (0.775).On this image, the sele
tive interfa
e presented only24% of the rooftop 
andidates, an even greater sav-ings than on the �rst one. Inspe
tion of the ROC
urves shows that a
tive learning does slightly worsethan passive learning in part of the spa
e, but over-all the two 
urves are diÆ
ult to distinguish, givingfurther eviden
e that a
tive learning is e�e
tive.

5 Related and Future Resear
hThe relationship between image pro
essing and ma-
hine learning has a long history. Indeed, resear
hon pattern re
ognition has assumed for de
ades thatlearning 
an 
ontribute to the 
reation of robustre
ognizers, and more re
ent work on `appearan
e-based' vision often takes a similar attitude (Nayar &Poggio, 1996). The 
ombination of ma
hine learningwith multi-level 
omputer vision systems has beenless 
ommon, but Bowyer et al. (1994) review somework along these lines, most of whi
h addresses thea
quisition of 2D or 3D models for obje
t 
lasses.In 
ontrast, our approa
h uses ma
hine indu
tion toimprove the reliability of de
isions within an exist-ing image understanding system. One other e�ortthat shares this goal is reported by Draper (1996),who also fo
uses on re
ognizing rooftops and otherobje
ts in aerial images. His formulation relies on re-infor
ement learning to assign 
redit in a multi-stagere
ognition system similar to Budds, 
ombined withba
kpropagation in neural networks to learn whento sele
t alternative operators. The most importantdi�eren
e between our frameworks is that Draperhopes to eliminate user intera
tion by automatingthe assignment of 
redit, whereas our s
heme as-sumes 
ontinuing relian
e on a human expert whiletrying to minimize demands on his time. However,the two approa
hes are not mutually ex
lusive, and a
ombined framework 
ould well inherit bene�ts fromboth parents.Although our experimental studies have 
lari�ed thepotential for ma
hine learning, 
ombined with in-tera
tive labeling, to produ
e more robust visionsystems, there remain many avenues for future re-sear
h. One natural dire
tion would involve modify-ing the learning algorithm to further improve thepro
ess of rooftop re
ognition. Previous resear
hhas shown that, when the predi
tive attributes arenot normally distributed, one 
an improve the naiveBayesian 
lassi�er by using kernel estimators (John& Langley, 1995) or by dis
retizing their values. Au-tomati
 feature sele
tion 
an also give substantialimprovements in some domains (Langley & Sage,1994). Moreover, this latter te
hnique holds promiseas a development tool that would let resear
hersevaluate the usefulness of new features for use inbuilding re
ognition.However, a more fundamental issue 
on
erns extend-ing our approa
h to other levels of the Budds soft-ware. As we noted in Se
tion 2, the system makesearlier de
isions about whi
h jun
tions, parallels,and U 
onstru
ts to pass on to the rooftop stage,and also takes steps after this level. Ea
h stage holdspotential for improvement through ma
hine learn-ing, and we intend to adapt our intera
tive labeling
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Figure 8: ROC 
urves for passive and a
tive learning on the nadir Image 1 (left) and the oblique Image 2(right). The `passive learning' 
urves 
orrespond to runs in whi
h the user labeled the entire training set. The`a
tive learning' 
urves 
ome from runs in whi
h the interfa
e sele
ted un
ertain training 
ases for labelingand ignored the rest. The other 
urves represent the Budds 
lassi�er.software to operate at these other levels. One goalfor su
h learning is to redu
e Budds' 
omplexity byremoving poor 
andidates before it aggregates theminto larger stru
tures. More important, we know thesystem misses some rooftops be
ause it never gener-ates their 
omponents. We suspe
t that, by moving
onstraints on 
andidate generation into the �lteringstep, whi
h 
an then be learned, we 
an redu
e su
homissions without in
reasing 
omputational 
ost.In the longer term, we hope to modify Budds toin
orporate our software for learning and intera
-tive labeling. Our intent is to support in
rementalimprovement of the vision system as it en
ountersnew images that 
ause it diÆ
ulty. When notingthat the system fails to re
ognize a building or in-fers an imaginary one, the user would intera
tivelytra
e its reasoning to assign blame to some parti
u-lar inferen
e step, then provide the 
orre
t labels foruse in learning at that de
ision point. Su
h knowl-edge re�nement would seem ne
essary to maintainany large-s
ale system for image understanding.In summary, our studies have shown that ma
hinelearning 
an improve the behavior of an existing im-age understanding system, and that intera
tive la-beling 
an play a important role in that pro
ess. Wealso showed en
ouraging results about the ability oflearning to generalize a
ross images and about thepotential for a
tive learning to redu
e the e�ort oflabeling training 
ases. Considerable work remainsto be done, in
luding the extension of intera
tivelabeling and learning to other stages of Budds, butthat does not minimize the progress to date. We an-ti
ipate that ma
hine learning will 
ome to o

upyan in
reasingly 
entral pla
e in the development andmaintenan
e of software for 
omputer vision.

A
knowledgementsWe would like to thank Ram Nevatia, Andres Huer-tas, and Andy Lin for providing the images anddata used for experimentation and for giving valu-able 
omments and advi
e. We also thank Win-ton Davies for useful 
omments on the paper. Thiswork was 
ondu
ted at the Institute for the Studyof Learning and Expertise and in the ComputationalLearning Laboratory, Center for the Study of Lan-guage and Information, at Stanford University. Thereview of the naive Bayesian 
lassi�er in Se
tion 2 re-peats some material from Langley and Sage (1994).Referen
esBowyer, K. W., Hall, L. O., Langley, P., Bhanu,B., & Draper, B. A. (1994). Report of the AAAIFall Symposium on Ma
hine Learning and Com-puter Vision: What, Why and How. Pro
eedingsof the Image Understanding Workshop (pp. 727{731). Monterrey, CA. Morgan Kaufmann.Bradley, A. (1997). The use of the area under theROC 
urve in the evaluation of ma
hine learningalgorithms. Pattern Re
ognition, 30 , 1145{1159.Clark, P., & Niblett, T. (1989). The CN2 indu
tionalgorithm. Ma
hine Learning , 3 , 261{284.Cohn, D. A., Ghahramani, Z., & Jordan, M. I.(1996). A
tive learning with statisti
al models.Journal of Arti�
ial Intelligen
e Resear
h, 4 , 129{145.Domingos, P., & Pazzani, M. (1997). On the opti-mality of the simple Bayesian 
lassi�er under zero-one loss. Ma
hine Learning , 29 , 103{130.



492 Intera
tive Visual LearningDraper, B. (1996). Learning grouping strategies for2D and 3D obje
t re
ognition. Pro
eedings of theImage Understanding Workshop (pp. 1447{1454).Palm Springs, CA: Morgan Kaufmann.Duda, R. O., & Hart, P. E. (1973). Pattern 
lassi�-
ation and s
ene analysis . New York: John Wiley.Firs
hein, O., & Strat, T. (Eds.). (1997). RADIUS:Image understanding for imagery intelligen
e.San Fran
is
o: Morgan Kaufmann.John, G. H., & Langley, P. (1995). Estimating
ontinuous distributions in Bayesian networks.Pro
eedings of the Eleventh Conferen
e on Un-
ertainty in Arti�
ial Intelligen
e (pp. 338{345).Montreal, Quebe
: Morgan Kaufmann.Kibler, D., & Langley, P. (1988). Ma
hine learn-ing as an experimental s
ien
e. Pro
eedings ofthe Third European Working Session on Learning(pp. 81{92). Glasgow: Pittman.Kononenko, I. (1990). Comparison of indu
tiveand naive Bayesian learning approa
hes to auto-mati
 knowledge a
quisition. In B. Wielinga et al.(Eds.), Current trends in knowledge a
quisition.Amsterdam: IOS Press.Langley, P., Iba, W., & Thompson, K. (1992). Ananalysis of Bayesian 
lassi�ers. Pro
eedings of theTenth National Conferen
e on Arti�
ial Intelli-gen
e (pp. 223{228). San Jose, CA: AAAI.Langley, P., & Sage, S. (1994). Indu
tion of sele
-tive Bayesian 
lassi�ers. Pro
eedings of the TenthConferen
e on Un
ertainty in Arti�
ial Intelli-gen
e (pp. 399{406). Seattle: Morgan Kaufmann.

Lin, C., & Nevatia, R. (1996). Building dete
-tion and des
ription from mono
ular aerial im-ages. Pro
eedings of the Image UnderstandingWorkshop (pp. 461{468). San Fran
is
o: MorganKaufmann.Maloof, M. A., Langley, P., Sage, S., & Binford,T. (1997). Learning to dete
t rooftops in aerialimages. Pro
eedings of the Image UnderstandingWorkshop (pp. 835{845). New Orleans: MorganKaufmann.Nayar, S., & Poggio, T. (Eds.). (1996). Early visuallearning . New York: Oxford University Press.Provan, G., Langley, P., & Binford, T. O. (1996).Probabilisti
 learning of three-dimensional obje
tmodels. Pro
eedings of the Image UnderstandingWorkshop (pp. 1403{1413). Palm Springs, CA:Morgan Kaufmann.Provan, G. M., & Singh, M. (1996). Data miningand model simpli
ity: A 
ase study in diagnosis.Pro
eedings of the Se
ond International Confer-en
e on Knowledge Dis
overy and Data Mining(pp. 57{62). Portland, OR: AAAI Press.Provost, F., & Faw
ett, T. (1997). Analysis and vi-sualization of 
lassi�er performan
e: Comparisonunder impre
ise 
lass and 
ost distributions. Pro-
eedings of the Third International Conferen
e onKnowledge Dis
overy and Data Mining (pp. 43{48). Newport Bea
h, CA: AAAI Press.Swets, J. (1988). Measuring the a

ura
y of diag-nosti
 systems. S
ien
e, 240 , 1285{1293.


