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Improving Rooftop Detetion with Interative Visual Learning�Kamal M. Ali� Pat Langley� Marus A. Maloof y Stephanie Sage� Thomas Binfordz�Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306fali, langley, sageg�isle.org � http://www.isle.orgyDepartment of Computer Siene, Georgetown University, Washington DC 20057maloof�s.georgetown.edu � http://www.s.georgetown.eduzDepartment of Computer Siene, Stanford University, Stanford, CA 94305binford�s.stanford.edu � http://robotis.stanford.eduAbstratIn this paper, we report progress on theuse of mahine learning to improve the pro-ess of rooftop detetion in aerial images.We desribe an existing system for build-ing reognition, Budds, and identify itsrooftop stage as a target for improvement.We then review the naive Bayesian lassi-�er, a simple but robust approah to super-vised indution, and the visual interfae wedeveloped to ease the labeling of trainingdata. We present the results of experimentson the rooftop detetion task that revealimproved reognition levels over the hand-rafted Budds lassi�er, then examine thereliability and speed of the interative la-beling proess itself. Finally, we onsiderrelated researh and plans for future work.1 IntrodutionIn the past 20 years, the omputer vision ommu-nity has made great strides in extending the fun-tional overage of image understanding systems. Re-searhers have developed integrated systems thatoperate on a variety of hallenging tasks, inlud-ing pratial problems like the analysis of large-salesenes in aerial imagery. But this progress has of-ten obsured the underlying fragility of systems thathave been tuned arefully to operate well on a hand-ful of images.The advent of programs like RADIUS, whih providea repository of ommon images for use in testing, has�This researh was supported by the Defense Ad-vaned Researh Projets Ageny under grant N00014-98-1-0543, administered by the OÆe of Naval Researh,and by Sun Mirosystems through an equipment grant.

improved this situation. For spei� domains, wenow have image understanding systems that proessmany distint images in a reasonably robust manner.Yet these programs often rely on heuristi knowledgethat transfers poorly to new images, muh less tonew domains, and there remains onsiderable roomfor improving their behavior even on existing imagelibraries.One path to suh improvement invokes mahinelearning to re�ne or replae the handrafted knowl-edge that urrently guides an image understandingsystem (Bowyer et al., 1994). One an apply suhtehniques to any level of a omplex vision system,provided data are available for training the learningalgorithm. Indeed, future vision researhers mightuse learning methods to inorporate heuristi knowl-edge and to tune parameters for one stage of visualproessing before addressing stages that build on it.Conveniently, the mahine learning ommunity hasalso developed an extensive experimental method forevaluating its algorithms (Kibler & Langley, 1988)that should arry over readily when they are usedfor omputer vision.In the following pages, we report our progress to-ward this goal. We begin by reviewing our ompu-tational framework, inluding a representation forvisual knowledge, the vision system that uses thisknowledge to proess images, and the learning algo-rithm that aims to improve this proess. We also dis-uss our approah to olleting training data, whihrelies on an interative labeling system. Next we re-view some systemati experiments with visual learn-ing, inluding tests of generalization to novel images.After this, we report empirial studies of the label-ing proess, whih involves interations between thesystem and a human. We lose with a brief disus-sion of related work on visual learning and our plansfor future researh.



480 Interative Visual Learning2 An Approah to Visual LearningTo explore the potential of mahine learning for om-puter vision, we had to selet some task that re-quires image understanding. We deided to fous onthe analysis of aerial photographs available from theDARPA RADIUS program, and in partiular on thereognition and desription of buildings, as this wasa reognized problem of pratial import on whihthere already existed a body of work. Another fa-tor was the existene of Budds, a building reogni-tion system developed by Lin and Nevatia (1996) atUSC, whih they o�ered to make available. Theirsoftware seemed ideal for our purposes beause itwas robust enough on the task to provide a goodbaseline, yet still seemed likely to bene�t from im-provement through mahine learning.In this setion, we reviewBudds' representation andmehanisms, fousing on the stage that generatesrooftop andidates, whih we seleted for our initialwork. After this, we review the naive Bayesian las-si�er, the main learning algorithm we have used inour studies, followed by our approah to olletingdata in support of the learning proess. In this on-text, we disuss two hallenges raised by this domainthat are not normally addressed in mahine learning:the distint osts assoiated with di�erent types oferrors and the need for interative but eÆient la-beling of instanes.2.1 The Budds SystemThe Buildings Detetion and Desription System(Budds) was developed by Lin and Nevatia (1996)at the University of Southern California to addressthe task of deteting and desribing buildings inaerial photographs. Like many image understand-ing systems, Budds represents knowledge about asene at di�erent levels of desription and operatesby aggregating lower-level desriptors into higher-level ones, ultimately reahing haraterizations ofbuildings in the sene.Naturally, the software begins at the pixel level, de-sribing images in terms of gray sale intensitieswithin a retangular grid, along with informationabout amera and sun angles. Budds invokes anedge detetor to group pixels into onneted seg-ments, whih it desribes in terms of their startingand end points. The system then uses a line �nderto group these segments into extended lines, eah ofwhih it represents using end positions, slope, andomponent segments.At the next level, Budds onstruts L juntionsat the ends of eah line and T juntions that o-ur along them. These strutures it haraterizes in

terms of the juntion verties and the angle of theirbisetors, along with their omponent lines. Thesoftware also groups nearby lines with similar slopesand lengths into parallel pairs, whih it desribes interms of the lines involved. The ensuing level om-bines both juntions and parallels into three-sidedstrutures or U onstruts, whih again are denotedby their omponents.After this, Budds ombines pairs of nearby U's intoparallelograms that onstitute andidates for therooftops of buildings in the image. The system de-sribes these strutures in terms of the omponentU's and the positions of their four verties. The fol-lowing stage involves elimination of some roof andi-dates based on global riteria (e.g., when one over-laps another). Finally, Budds ombines the remain-ing rooftop andidates with evidene for walls andshadows to onstrut 3D wire-frame desriptions ofretilinear buildings.At most proessing stages, Budds' move to the nextlevel involves two distint operations. The system�rst generates andidates for the suessive level,onstrained mainly by loality assumptions; for ex-ample, it onsiders only nearby U's when onstrut-ing rooftop andidates. After this omes a �lteringstep that deides whether to retain or rejet this an-didate, typially using a handrafted lassi�er thatdraws on omputed features of the andidate. Webelieve that mahine learning is best suited to im-prove deisions during this �ltering step.Disussions with R. Nevatia (personal ommunia-tion, 1996) suggested that rooftop detetion heldthe most promise for improvement through mahinelearning, so we should onsider this stage in more de-tail. Again, this proess ombines three-sided U's toform parallelograms that onstitute andidate roofsin the image. Budds �lters these parallelograms byalulating nine ontinuous features and ombiningthem into a weighted sum. For eah andidate, ifthe result is higher than a spei�ed threshold, thesystem retains it; otherwise it rejets the andidate.Four of these features provide positive evidene thatthe andidate is a rooftop. For example, one suhattribute spei�es the extent to whih edges arepresent in the omponent lines. Low ontrast mayobsure parts of these lines, and buildings with moreomplex struture will have no edges where ompo-nent retangles meet. However, the more ompletethe edges that make up a parallelogram, the greaterthe evidene for a rooftop. Budds uses a similar on-tinuous attribute that favors rooftop andidates withmore deteted orners and ones with angles that areloser to 90 degrees. A third ontinuous feature re-ets the extent to whih opposite sides of the andi-date are parallel, whih an be a�eted indiretly by



Interative Visual Learning 481missing edges. A fourth attribute measures evidenefrom shadows; taking the diretion of illuminationinto aount, it looks for expeted orrespondenesbetween andidate orners and shadow orners, aswell as andidate edges and shadow edges.The remaining �ve features represent negative evi-dene that the andidate is atually a rooftop. Forinstane, one attribute measures the degree to whihlines ross the sides of the andidate desription;learly, the presene of suh interseting lines re-dues the hanes that the parallelogram is a build-ing roof. Two additional attributes indiate the ex-tent to whih sides of the andidate ontain L jun-tions and T juntions other than at its orners; theourrene of suh juntions within a side make theandidate an implausible rooftop. A fourth negativefeature measures the presene of orresponding gapson opposite sides of the andidate, whih are unlikelyin buildings. Finally, Budds omputes the displae-ment between the edges that make up the andidaterooftop and its inferred sides, giving higher soresfor poorer mathes.Lin and Nevatia developed their lassi�er manu-ally, through trial and error on a variety of imagesand their assoiated rooftop andidates. Our aimwas to use some form of mahine learning to pro-due a new lassi�er that improved on the hand-rafted method's ability to eliminate poor rooftopandidates but still retain aeptable ones. For thiswe needed two items|an appropriate learning algo-rithm and a soure of training data|to whih wenow turn.2.2 The Naive Bayesian Classi�erSine Budds treats the �ltering of rooftop an-didates as a lassi�ation task, it seemed naturalto formulate our learning problem in terms of su-pervised indution. Preliminary experiments witha number of indution methods (Maloof, Langley,Sage, & Binford, 1997) suggested that we would ob-tain good results with the naive Bayesian lassi�er ,a simple tehnique for probabilisti indution thathas a long history in pattern reognition (Duda &Hart, 1973) but that has gained aeptane in ma-hine learning more reently (Clark & Niblett, 1989;Kononenko, 1990; Langley, Iba, & Thompson, 1992).The Bayesian lassi�er represents its knowledgeabout eah lass in terms of a single probabilistisummary. Eah suh lass desription has an asso-iated lass probability or base rate, p(Ck), whihspei�es the prior probability that one will observea member of lass Ck. Eah desription also hasan assoiated set of onditional probabilities, spe-ifying a probability distribution for eah attribute.

For a nominal attribute, one typially stores a dis-rete distribution, with eah p(vj jCk) term statingthe probability of value vj given an instane of lassCk. For a numeri attribute, one must represent aontinuous probability distribution of that attributegiven the lass. This requires that one assume somegeneral form or model, the most ommon hoie be-ing the normal distribution, whih one an representonveniently entirely in terms of its mean � and itsvariane �2.To lassify a new instane I , a naive Bayesian las-si�er applies Bayes' theorem to determine the prob-ability of eah desription given the instane,p(CijI) = p(Ci)p(I jCi)p(I) :However, sine I is a onjuntion of j values, onean expand this expression top(Cij^ vj) = p(Ci)p(V vj jCi)Pk p(V vj jCk)p(Ck) ;where the denominator sums over all lasses andwhere p(V vj jCi) is the probability of the instane Igiven the lass Ci. After alulating these probabil-ities for eah desription, the algorithm assigns I tothe lass with the highest overall probability.In order to make the above expression operational,one must still speify how to ompute the termp(V vj jCi). Naive Bayes assumes independene ofattributes within eah lass, whih lets it use theequality p(^ vj jCi) =Yj p(vj jCi) ;where the values p(vj jCi) represent the onditionalprobabilities stored with the lass. This approahgreatly simpli�es the omputation of lass probabil-ities for a given observation.The Bayesian framework also lets one speify priorprobabilities for both the lass and the onditionalterms. A ommon sheme makes use of `uninformedpriors', whih assign equal probabilities to eah lassand to the values of eah attribute. However, onemust also speify how muh weight to give these pri-ors relative to the training data. For example, onean use a Dirihlet distribution to initialize proba-bilities and give these priors the same inuene asa single training instane. Clark and Niblett (1989)desribe another approah (whih we also use) thatdoes not require expliit priors, but instead esti-mates P (Ci) and p(vj jCi) diretly from their pro-portions in the training data. When no instanesof an attribute value for a given lass have been ob-served, it replaes the zero probability with p(Ci)=N ,where N is the number of training ases.



482 Interative Visual LearningLearning in the naive Bayesian lassi�er is an al-most trivial matter. The simplest implementationinrements a ount eah time it enounters a new in-stane, along with a separate ount for a lass eahtime it observes an instane of that lass. Togetherwith the prior probabilities, these ounts let the las-si�er estimate p(Ci) for eah lass Ci. In addition,for eah instane of a lass that has a given nominalvalue, the algorithm updates a ount for that lass-value pair. Together with the seond ount, thislets the lassi�er estimate p(vj jCi). For eah nu-meri attribute, the method retains and revises twoquantities, the sum and the sum of squares, whihlet it ompute the mean and variane for a normalurve that it uses to �nd p(vj jCi). In domains thatan have missing attributes, it must inlude a fourthount for eah lass-attribute pair.In ontrast to many indution methods, the naiveBayesian lassi�er does not arry out an extensivesearh through a spae of possible desriptions. Thebasi algorithm makes no hoies about how to par-tition the data, as with deision-tree methods, orwhih diretion to move in a weight spae, as withneural networks, and the resulting probabilisti sum-mary is ompletely determined by the training dataand the prior probabilities. Nor does the order ofthe training instanes have any e�et on the out-put; the basi proess produes the same desriptionwhether it proesses the data inrementally or all atone. These features make the learning algorithmboth simple to understand and quite eÆient.But the naive Bayesian lassi�er buys these advan-tages at the ost of two important assumptions.First, it posits that eah lass an be summarized bya single probabilisti desription, and that these aresuÆient to distinguish the lasses from one other.This idea is losely related to the assumption of lin-ear separability in early work on neural networksand, like pereptrons, naive Bayes is typially lim-ited to learning lasses that an be separated by asingle deision boundary. Seond, the approah as-sumes that, within eah lass, the probability distri-butions for attributes are independent of eah other.Clearly, this assumption is unrealisti for many real-world domains, and one an easily design noninde-pendent data sets on whih naive Bayes does poorly.These apparent drawbaks led most mahine learn-ing researhers to ignore this promising method formany years.However, experimental studies aross a broad rangeof domains show that the naive Bayesian lassi�eroften fares very well ompared to muh more sophis-tiated indution algorithms like deision-tree indu-tion (e.g., Langley et al., 1992). In some ases, thisreets a representational bias that is more appro-

priate to the domain, sine some lass distintionsare easier to represent using global evidene ombi-nation than with deision trees. However, ompar-isons to methods that onstrut full Bayesian net-works, whih use the same probabilisti representa-tion but whih do not make the independene as-sumption, show that naive Bayes often outperformsthem as well (Provan & Singh, 1996). The natu-ral explanation is that, beause naive Bayes must �tfewer parameters than more exible tehniques, ithas less hane of over�tting limited training data.Reent analyses by Domingos and Pazzani (1997)reveal other fators, inluding the fat that naiveBayes learns the optimal lassi�er even in many do-mains that involve signi�ant dependenies.The naive Bayesian lassi�er has another advantage:it an be easily modi�ed to take into aount the ostof errors. One formulation for two-lass problems,whih we use below, spei�es the relative ost asa parameter �1 <  < 1 and uses this onstantto ompute utilities from the posterior probabilitiesprodued by naive Bayes. If we let U(rjx) be theutility of lassifying andidate x as a rooftop and letU(njx) be the utility of lassifying x as a nonroof,then U(rjx) = P (rjx) +  � P (njx)and U(njx) = P (njx)�  � P (njx) ;where  is positive when mislabeled roofs are moreexpensive than mislabeled nonroofs. In other words,one alulates the utility for eah lass by adding afator to the posterior probability of the more ex-pensive lass and by subtrating the same amountfor the less ostly lass. This modi�ed Bayesian las-si�er then predits the lass with the highest utility.2.3 Interative Labeling of Training DataMahine learning annot our without some train-ing data to drive the proess. We an use Buddsto generate andidate rooftops and their nine asso-iated features; indeed, the system generates thou-sands of suh andidates per image. But we alsoneed labels that speify whether eah andidateshould be retained (a positive instane) or rejeted(a negative instane).Sine we ould identify the verties of eah atualrooftop in an image, we tried using their distanefrom andidate verties to determine lass labelsautomatially. But inspetion of the results indi-ated that this sheme assigned labels poorly, ap-parently beause many bad andidates had vertiesnear those of atual rooftops. Also, we wanted thelassi�er to retain andidates that looked like goodrooftops, but were not part of buildings, for reje-
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Figure 1: Visualization interfae for labeling rooftop andidates. The system presents andidates to a userwho labels them by liking either the `Roof' or `Non-Roof' button.tion by later stages of Budds' proessing, sine ourUSC olleagues believed that the nine features werenot enough to identify rooftops on their own.These onerns suggested that some form of manuallabeling by a human was needed, but the numberof andidates generated for eah image made this adaunting task. In response, we implemented an in-terative labeling system in Java, shown in Figure 1,that suessively displays eah extrated rooftop tothe user. The interfae draws a andidate over theportion of the image from whih it was extrated,lets the user lik buttons for `Roof' or `Non-Roof'to label it, and moves on to the next andidate.We used this approah to generate data from twoimages of Fort Hood, Texas, whih were olletedas part of the RADIUS program (Firshein & Strat,1997). These images, FHOV1027 and FHOV625,over the same area but were taken from di�erentviewpoints, one from a nadir angle and the otherfrom an oblique angle. We subdivided eah imageinto three subimages, fousing on loations that on-tained onentrations of buildings, to maximize thenumber of positive rooftop andidates. This gave usthree pairs of images, eah pair overing the samearea but viewed from di�erent aspets, as summa-rized in Table 1. Even though the data set ontained17,829 rooftop andidates, the interfae requiredonly about �ve hours to label them. This omes to

under one seond per andidate, whih seems rea-sonably eÆient. However, the task remains timeonsuming and also raises questions about the relia-bility of the labeling proess; we will return to bothof these issues in Setion 4.3 Studies of Cost-Sensitive LearningIn a previous paper (Maloof et al., 1997), we re-ported initial experimental studies of mahine learn-ing for rooftop lassi�ation using three di�erenttehniques: deision-tree indution, nearest neigh-bor, and the naive Bayesian lassi�er. Here we re-port more extensive experiments that repliate andextend our earlier results, but that fous on naiveBayes, sine it fared best in those studies.3.1 Experimental Measures and DesignOur basi hypothesis was that a learned rooftoplassi�er ould outperform the handrafted Buddslassi�er. However, before we ould test this laimexperimentally, we needed more than labeled ex-amples of rooftop andidates; we also needed somelear measure of performane. The most obviousapproah, usually taken in mahine learning stud-ies, was to use lassi�ation auray, but analysisof the domain revealed a problem with this metri.Briey, a simple auray measure assumes that all



484 Interative Visual LearningTable 1: Charateristis of the images and data sets. We began with a nadir and an oblique image of an areaof Fort Hood, Texas, and we divided eah into three subimages that ontained onentrations of buildings.We then used Budds to generate rooftop andidates and interatively labeled eah as either a positive ornegative example of the onept \rooftop".Image Original Positive NegativeNumber Image Loation Aspet Examples Examples1 FHOV1027 1 Nadir 197 9822 FHOV625 1 Oblique 238 19553 FHOV1027 2 Nadir 71 26454 FHOV625 2 Oblique 74 33495 FHOV1027 3 Nadir 87 37226 FHOV625 3 Oblique 114 4395errors have the same ost, but we knew that this doesnot hold for the task of building detetion. Given a-tual osts for eah error type, we ould alulate aweighted measure using the auray on eah lass,but we knew only that labeling buildings as non-buildings (whih later Budds stages annot orret)was more expensive than the onverse.In suh situations, a natural solution is to evaluatea ost-sensitive method over a range of ost settingsand to report the results in a Reeiver OperatingCharateristi (ROC) urve (Swets, 1988). The ba-si idea is to systematially vary some aspet of themethod or domain (in this ase the ost ratio), thenplot the true positive rate against the false negativerate for eah situation. Although researhers haveused suh ROC urves in psyhology for deades,this tehnique has only reently �ltered into mahinelearning (Bradley, 1997; Provost & Fawett, 1997).To generate ROC urves in the studies reported be-low, we varied the ost parameter  and measuredthe resulting true positive and false positive ratesfor naive Bayes on a given test set of rooftop an-didates. However, rather than reporting a ompleteROC urve for eah experimental ondition, we of-ten follow Swets' reommendation and present thearea under this urve, whih we approximated bysumming the areas of the trapezoids de�ned by eahpair of adjaent points.Following the standard experimental method in ma-hine learning, in eah situation we trained theindution algorithm on labeled data, in this aserooftop andidates, that were separate from thoseused to test the learned lassi�ers. Beause theBudds lassi�er was hand on�gured, it had notraining phase, so we applied it diretly to the in-stanes in the test set, varying its threshold param-eter to generate an ROC urve.

To guard against nonrepresentative samples, we re-port results that are averaged over ten di�erent par-titions into training and test data. Unless statedotherwise, we used 60% of the andidates for train-ing and 40% for testing purposes. The experimentsdi�ered in whether the training and test ases amefrom the same or distint images, whih let us ex-amine di�erent forms of generalization beyond thetraining data.3.2 Within-Image LearningOur �rst experimental study examined how naiveBayes behaves on within-image learning, that is,when generalizing to test ases taken from the sameimage on whih we trained it. Our researh hypoth-esis was that the learned lassi�er would be more a-urate, over a range of mislassi�ation osts, thanthe handrafted lassi�er. Beause our measure ofperformane was area under the ROC urve, thistranslates into a predition that the ROC urves ofthe learned rooftop lassi�ers would have larger ar-eas than those for the Budds lassi�er.Table 2: Approximate areas under the ROC urves,along with 95% on�dene intervals, for naive Bayesand Budds on the within-image experiment.Naive Bayes BuddsImage 1 0.870�0.008 0.717�0.009Image 2 0.812�0.017 0.773�0.004Image 3 0.962�0.013 0.899�0.015Image 4 0.908�0.025 0.901�0.007Image 5 0.869�0.016 0.833�0.021Image 6 0.835�0.025 0.849�0.010
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Figure 2: ROC urves for Images 1 (left) and 2 (right), whih we obtained by training and testing on rooftopandidates from the same image over a range of mislassi�ation osts and averaging over ten runs. Theseimages over the same loation but from di�erent aspets, with Image 1 giving a nadir view and Image 2being oblique.Figure 2 presents the ROC urves for Images 1 and2, in whih naive Bayes learly fares better than thehandrafted Budds lassi�er, produing fewer falsepositives (nonroofs mislabeled as roofs) for a givenlevel of true positives (orretly labeled roofs). Forall exept Image 6, the learned lassi�er produedurves with areas greater than those forBudds, thusgenerally supporting our researh hypothesis.3.3 Generalization Over AspetAlthough the results from the previous study wereenouraging, we also wanted to understand betterhow the knowledge learned from one image general-izes to other images. Our hypothesis here was a re-�ned version of the previous one: lassi�ers learnedfrom one set of images would be more aurate onunseen images than handrafted lassi�ers. How-ever, we also expeted that between-image learningwould give lower auray than the within-image sit-uation, sine di�erenes aross images would makegeneralization more diÆult.Thus, our seond experiment foused on how naiveBayes generalizes over aspet. Reall from Table 1that we had images from two aspets (i.e., nadir andoblique) and from three loations. This let us trainthe algorithm on an image from one aspet and testthe learned lassi�er on an image from another as-pet but from the same loation. As an example,for the nadir aspet, we hose Image 1 and thentested on Image 2, whih is an oblique image of thesame loation. We ran naive Bayes in this mannerusing the images from eah loation, while varyingthe ost parameter and measuring its true positiveand false positive rates. We then averaged thesemeasures aross the three loations and plotted theresults as ROC urves, as shown in Figure 3. The

areas under these urves and their 95% on�deneintervals appear in Table 3.One obvious onlusion is that the nadir images ap-pear to pose an easier problem than the oblique im-ages, sine the urves for testing on nadir andidatesare generally higher than those for testing on datafrom oblique images. For example, Table 3 showsthat naive Bayes generates a urve with an area of0.878 for the nadir images, but produes one withan area of 0.842 for the oblique images. In ontrast,the Budds lassi�er gives an area of 0.837 for thenadir ondition and 0.831 for the oblique ondition.Table 3: Approximate areas under the ROC urves,along with 95% on�dene intervals, for naiveBayes and Budds when generalizing aross aspet(A), generalizing aross loation (L), and general-izing within an image (W). The labels `nadir' and`oblique' indiate the testing ondition.Naive Bayes Budds(A) Nadir 0.878�0.042 0.837�0.085Oblique 0.842�0.063 0.831�0.068(L) Nadir 0.901�0.079 0.837�0.085Oblique 0.831�0.067 0.831�0.068(W) Nadir 0.900�0.012 0.837�0.085Oblique 0.851�0.022 0.831�0.0683.4 Generalization Over LoationA similar study examined generalization over loa-tion. To this end, we trained naive Bayes on pairsof images from one aspet and tested on the thirdimage from the same aspet. As an example, for the
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Figure 3: ROC urves for the experiment that tested generalization over aspet. For eah loation, wetrained a lassi�er on the oblique image and tested it on the nadir image (left), then reversed the proedureby training on nadir images and testing on oblique ones (right).nadir images, one of the three learning runs involvedtraining on rooftop andidates from Images 1 and 3,then testing on andidates from Image 5. We thenran eah of the algorithms aross a range of osts,measuring the false positive and true positive rates.We plotted the averages of these measures aross allthree learning runs for one aspet in an ROC urve,as shown in Figure 4.In this ontext, we again see evidene that theoblique images presented a more diÆult reogni-tion task than the nadir aspet, sine the obliqueareas are less than those for the nadir images. Com-paring the behavior of the various methods, Table 3shows that, for the nadir aspet, naive Bayes per-forms somewhat better than the Budds lassi�er,whih give areas of 0.901 and 0.837, respetively.When generalizing over loation on the oblique im-ages, naive Bayes and the Budds lassi�er produedROC urves with equal areas of 0.831.Reall that we also antiipated generalizing arossimages would give lower auraies than generaliz-ing within images. To test this hypothesis, we mustompare the results from these experiments withthose from the within-image experiments in Table 2.Simple alulation shows that, for the within-imageondition, naive Bayes produed an average ROCarea of 0.9 for the nadir images and 0.851 for theoblique images. Thus, the results are not entirelyonsistent with our predition, sine naive Bayes didequally well when generalizing over loation for thenadir image.3.5 Rates of LearningWe were also interested in naive Bayes' behavior as itproessed inreasing amounts of training data. Boththeoretial analyses (Langley et al., 1992) and exper-imental results in other domains (Langley & Sage,

1994) suggest that this indution method ahieveshigh auray from relatively few training ases. Tosee if similar e�ets held for rooftop lassi�ation,we arried out a �nal study in whih we systemati-ally varied the number of training ases available tothe algorithm. Here we used the rooftop andidatesavailable from all six images, again splitting the datainto training (60%) and test (40%) sets, but furtherdividing the training set randomly into ten subsets(10%, 20%, : : :, 100%). We ran naive Bayes on eahtraining subset and evaluated the resulting lassi�erson the reserved test data, averaging our results over25 separate training/test splits.Figure 5 shows the resulting learning urve, eahpoint of whih orresponds to the average area un-der the ROC urve for a given number of trainingases. The graph also inludes a at urve for theBudds lassi�er, sine it involves no training and wesimply applied it to the same test set for eah num-ber of training ases. Naturally, the naive Bayesianlassi�er improves with inreasing amounts of train-ing data. More important, its performane exeedsthat for Budds almost from the start, after observ-ing only 10% of the training data (less than the num-ber of andidates from one image) and levels o� af-ter proessing 30% of the ases. Not only did naiveBayes outperform Budds and other indution meth-ods, but it was able to aomplish this feat usingvery little of the available training data.4 Studies of Interative LabelingThe experiments above showed that a learnedBayesian lassi�er typially outperforms the hand-rafted Budds lassi�er, that the learning methodgeneralizes aross both aspet and loation, and thatit ahieves good results from little training data.But these results relied on an interative sheme in



Interative Visual Learning 487

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

Naive Bayes
Budds Classifier

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

Naive Bayes
Budds Classifier

Figure 4: ROC urves for the experiment that tested generalization over loation. For eah pair of imageswith the nadir aspet, we trained on that pair and tested on the third nadir image (left), then applied thesame methodology to images with the oblique aspet (right).whih a human labeled the andidates generated byBudds, and the studies left unanswered some en-tral questions about the role of the developer in thisproess. We now present some more reent exper-iments that diretly address the interative aspetsof our framework, in partiular the reliablity of la-beling deisions and the potential for reduing thenumber of rooftop andidates that one must label.4.1 Consisteny of Human LabelingWe developed the interative labeling software toprovide lassi�ed ases for training and testing. Asdesribed in Setion 2, this interfae presents theuser with andidates (appearing as highlighted par-allelograms in the image), eah of whih he mustlabel as a roof or nonroof. This task seems straight-forward, but the omplex shape of some buildings,the existene of similar andidates, and the sheerlength of a labeling session an all introdue sub-jetivity and unertainty into user deisions. Thisraises questions about labeling onsisteny, and thusabout the reliability of our results, both aross dif-ferent users and within a single user.To address this issue, we examined the results ofthe labeling proess in some detail. We ombinedreords of labeling deisions made by one team mem-ber (Maloof) with more reent reordings from an-other member (Ali), who labeled the same andi-dates in two separate sessions. Our omparisons fo-used on Images 1 and 2 from Table 1, whih onsti-tuted nadir and oblique views of the same Fort Hoodloation. Our aim was to understand how onsistentthese users were at labeling rooftop andidates andto understand the e�ets of their disagreement onthe behavior of learned lassi�ers.Our initial analysis examined onsisteny in the la-beling deisions made by the two users. To this end,

we generated a onfusion matrix for their deisionsthat inluded the number of items they agreed wereroofs or nonroofs, as well as the number one lassi-�ed as a roof and the other as a nonroof. Table 4shows the onfusion matrix between Maloof's andAli's labels on Image 1. If we treat the Maloof la-bels as orret, then Ali had 69% true positive an-didates (whih they agreed were roofs) and a 6%false negative rate (whih Ali labeled as nonroofsand Maloof as roofs). Treating the Ali labels as or-ret gives nearly the same rates, and both pointsfall just above the naive Bayes urve for Image 1 inFigure 2. In other words, Maloof and Ali were littlebetter at prediting eah other's labels than was thenaive Bayesian lassi�er, and we found qualitativelysimilar results for Image 2. This suggests that thelearning method may be doing as well as one anreasonably expet, onsidering the apparent unreli-ability of human labelers.Table 4: Confusion matrix for two users (Maloof andAli) on Image 1. Ali AliRoof NonroofMaloofRoof 134 61MaloofNonroof 63 921In our seond analysis, we examined the onsistenywithin a single human labeler (Ali) aross two dif-ferent sessions on Image 1. Table 5 presents theresulting onfusion matrix. If we treat Ali1 as or-ret, then Ali2 has an 86% true positive rate anda 5% false negative rate. These numbers are muhbetter than the between-user rates, but they are notas high as one might hope given a single labeler.
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Figure 5: Learning urve for naive Bayes (left), plotting area under the ROC urve against size of the trainingset, averaged over 25 runs on data from all six images, and (right) ROC urves produed by training andtesting naive Bayes on rooftops labeled by two users in three separate sessions, along with the urve for theBudds lassi�er.Overall, these analyses suggest that the task of la-beling rooftop andidates is a diÆult one, and thatthe naive Bayesian lassi�er is doing fairly well giventhe inherent noise in its data.We also wanted to study the e�ets of labeler dif-ferenes on the behavior of learned lassi�ers, so weturned again to ROC analysis. Figure 5 shows fourROC urves for Image 1, one for naive Bayes trainedand tested on andidates labeled by Maloof, two fornaive Bayes using labels from separate sessions byAli, and the last for the Budds lassi�er tested onMaloof labels. As before, we used 60% of the labeledandidates for training and the rest as test ases, us-ing a variety of ost oeÆients during testing. Werepeated this proess over ten random training/testpartitions to obtain average values.Table 5: Confusion matrix for di�erent sessions (Ali1and Ali2) of one user on Image 1.Ali2 Ali2Roof NonroofAli1Roof 167 28Ali1Nonroof 49 935The �gure's most striking aspet is the rough sim-ilarity of the three learned urves when ontrastedwith the urve for Budds. This suggests that, de-spite apparent variations in labeling deisions bothbetween and within users, we an remain on�dentin our general results. However, there are some im-portant di�erenes. For instane, to ahieve a 90%true positive rate, one must tolerate a false positiverate of 28% for Image 1 andidates that Ali labeled

in his seond session. In ontrast, ahieving this 90%level requires a 30% false positive rate for Maloof la-bels and 42% false positives for labels produed inAli's �rst session. Thus, the labeled andidates fromsome sessions are more diÆult for naive Bayes tomaster than those from others.4.2 Ative Learning for Redued LabelingAnother of our onerns entered on the arduousand lengthy nature of the interative labeling pro-edure. Although we were able to label all 17,829rooftop andidates for our initial studies in around�ve hours, this study involved only six images. Forinterative labeling to play a pratial role in de-veloping future vision systems, whih would involvetraining on many more images, we must �nd someway to redue the labeler's e�ort. But reall that thelearning urve for naive Bayes in Setion 3 showedthe method reahing reasonable levels after seeingonly a fration of the training data.This observation suggested that we modify the la-beling interfae to present andidate rooftops moreseletively. In response, we augmented the softwareto update the naive Bayesian summaries after eahnewly labeled ase, then used the revised lassi�erto deide whether to present the next andidate forlabeling. In partiular, the system showed the useronly those ases about whih it was unertain, thatis, on whih the probability of the most likely lassfell below a ertain level. This approah is similar inaims and method to work on ative learning (e.g.,Cohn, Ghahramani, & Jordan, 1996), whih is alsomotivated by domains with high labeling osts.One design deision that arose in modifying the in-terfae onerned the unertainty threshold. To bet-ter understand naive Bayes' behavior, we plotted
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P(nonroof) from Naive BayesFigure 6: Distribution of atual rooftops (left) in the test set as a funtion of p(roof) and distribution ofatual nonroofs (right) as a funtion of p(nonroof).its distribution of errors on earlier runs as a fun-tion of lassi�ation on�dene, or the maximum ofp(roof) and p(nonroof). For example, the left por-tion of Figure 6 shows the distribution for p(roof)that naive Bayes produed for test ases that wereatually roofs.This distribution is surprising on two ounts. First,the lassi�er was muh more ertain about manypreditions than we expeted, with 60% reeiving aprobability above 0.9. Seond, some 20% of the an-didates reeived near-zero probabilities, even thoughthey reeted atual rooftops, whereas very fewases fell in the middle range. The pattern repeatsfor the nonroof ases and the nonroof preditions, asthe right part of the �gure reveals. This has unfor-tunate onsequenes for any sheme that assoiateshigh on�dene with lower error, as seems naturalin an ative learning senario. The bimodal distri-bution means that p(nonroof) will be near 1.0 formany atual roofs and that p(roof) will approah1.0 for many nonroof ases.Figure 7 presents the resulting distribution of er-rors as a funtion of p(roof). The graph shows thatif p(nonroof) is near to 1.0, then the error rate isquite low, but that errors are more ommon whenp(roof) is near 1.0. Based on this observation, wedeided to implement an assymetrial form of ativelearning in whih the interfae withheld andidatesfrom the user only when p(nonroof) was high, butwhih presented any ases that the urrent lassi-�er would label as a roof. We seleted the thresholdp(nonroof) > 0:9, sine alulations showed thatthis level would inur only �ve perent errors.Another design deision onerned the number ofases the interfae should ollet before ative learn-ing takes over. Sine rooftops are both rare and moreimportant, it seemed prudent to require the systemto proess a ertain minimum number of rooftops

seen before this ourred, whereas introduing suha threshold for nonrooftops seemed less important.Preliminary studies suggested 30 as a good thresholdfor the minimum number of rooftops, whih repre-sents 15% of the rooftops in Image 1.Naturally, we wanted to examine the e�et of em-bedding ative learning in the interative labelingsystem. We hoped that this modi�ation would re-due labeling e�ort substantially but ause little re-dution in the learned lassi�er's performane, sowe used the number of labeled ases and ROC areasas our dependent measures. We were interested inomparing a passive learning senario, in whih theinterfae asked the user to label all training ases,with an ative learning situation, in whih the sys-tem presented only those ases about whih it wasunertain.As usual, we wanted to average over di�erent runsbut, for ative learning, this would mean asking theuser to revisit the interfae many times to olletreliable results. Instead, we simulated this experi-mental ondition by reusing labels the user gener-ated in the passive ondition. That is, the human�rst labeled all rooftop andidates from a given im-age and, for a given run with passive learning, wedivided these data into separate training and testsets. Next, for eah step in the orresponding runwith ative learning, the system seleted an uner-tain training ase and assigned it the same label asit reeived in the �rst ondition. This sheme hadthe added advantage that it redued variane due towithin-user inonsisteny.For eah run in eah ondition, we used the learnedBayesian lassi�er to lassify the same test ases, allof whih were labeled by the same user. As before,we invoked these lassi�ers with varying osts to ob-tain ROC urves and their assoiated areas, and weaveraged over ten di�erent partitions of the data into



490 Interative Visual Learning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
rr

or
 R

at
e 

on
 A

ll 
T

es
t C

as
es

P(roof) from Naive BayesFigure 7: Test error rate for the naive Bayesian las-si�er as a funtion of p(roof).training and test sets. We arried out this experi-mental proedure for Images 1 and 2 from Table 1.Figure 8 presents the ROC urves for Image 1. Thekey result is that we obtained very similar urveswhen the user (Ali) labeled all training ases andwhen the simulated user labeled only about 35% ofthe rooftop andidates. Thus, ative learning re-dued the user's labeling e�ort by two-thirds on thisimage with little redution in lassi�ation perfor-mane. In fat, the area under the passive learningurve is 0.866 and that for ative learning is 0.849, sothe latter omes to 98% of the former. Both urvesare substantially better than that for the Buddslassi�er, whih had 0.717 for its area.We an also use the ROC urves to determine theperentage of false positives (nonroofs lassi�ed asroofs) that one must tolerate to �nd a given perent-age of the rooftops. For example, to detet 90% ofthe roofs, the lassi�er built through passive learn-ing mislabels 42% of the nonroofs, the ative-learnedlassi�er mislabels 50%, and the Budds lassi�ersome 82% of them. From this perspetive, present-ing only 33% of the rooftops andidates to the hu-man labeler inurs an extra 8% false positive rate.Figure 8 also shows orresponding results on Im-age 2. This oblique image is more diÆult beauseBudds' uses features that favor rooftop andidateswith orners lose to 90 degrees. The areas under theROC urve are less than they were for their analogson Image 1, but again we �nd similar results forpassive learning (0.791) and ative learning (0.775).On this image, the seletive interfae presented only24% of the rooftop andidates, an even greater sav-ings than on the �rst one. Inspetion of the ROCurves shows that ative learning does slightly worsethan passive learning in part of the spae, but over-all the two urves are diÆult to distinguish, givingfurther evidene that ative learning is e�etive.

5 Related and Future ResearhThe relationship between image proessing and ma-hine learning has a long history. Indeed, researhon pattern reognition has assumed for deades thatlearning an ontribute to the reation of robustreognizers, and more reent work on `appearane-based' vision often takes a similar attitude (Nayar &Poggio, 1996). The ombination of mahine learningwith multi-level omputer vision systems has beenless ommon, but Bowyer et al. (1994) review somework along these lines, most of whih addresses theaquisition of 2D or 3D models for objet lasses.In ontrast, our approah uses mahine indution toimprove the reliability of deisions within an exist-ing image understanding system. One other e�ortthat shares this goal is reported by Draper (1996),who also fouses on reognizing rooftops and otherobjets in aerial images. His formulation relies on re-inforement learning to assign redit in a multi-stagereognition system similar to Budds, ombined withbakpropagation in neural networks to learn whento selet alternative operators. The most importantdi�erene between our frameworks is that Draperhopes to eliminate user interation by automatingthe assignment of redit, whereas our sheme as-sumes ontinuing reliane on a human expert whiletrying to minimize demands on his time. However,the two approahes are not mutually exlusive, and aombined framework ould well inherit bene�ts fromboth parents.Although our experimental studies have lari�ed thepotential for mahine learning, ombined with in-terative labeling, to produe more robust visionsystems, there remain many avenues for future re-searh. One natural diretion would involve modify-ing the learning algorithm to further improve theproess of rooftop reognition. Previous researhhas shown that, when the preditive attributes arenot normally distributed, one an improve the naiveBayesian lassi�er by using kernel estimators (John& Langley, 1995) or by disretizing their values. Au-tomati feature seletion an also give substantialimprovements in some domains (Langley & Sage,1994). Moreover, this latter tehnique holds promiseas a development tool that would let researhersevaluate the usefulness of new features for use inbuilding reognition.However, a more fundamental issue onerns extend-ing our approah to other levels of the Budds soft-ware. As we noted in Setion 2, the system makesearlier deisions about whih juntions, parallels,and U onstruts to pass on to the rooftop stage,and also takes steps after this level. Eah stage holdspotential for improvement through mahine learn-ing, and we intend to adapt our interative labeling
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Figure 8: ROC urves for passive and ative learning on the nadir Image 1 (left) and the oblique Image 2(right). The `passive learning' urves orrespond to runs in whih the user labeled the entire training set. The`ative learning' urves ome from runs in whih the interfae seleted unertain training ases for labelingand ignored the rest. The other urves represent the Budds lassi�er.software to operate at these other levels. One goalfor suh learning is to redue Budds' omplexity byremoving poor andidates before it aggregates theminto larger strutures. More important, we know thesystem misses some rooftops beause it never gener-ates their omponents. We suspet that, by movingonstraints on andidate generation into the �lteringstep, whih an then be learned, we an redue suhomissions without inreasing omputational ost.In the longer term, we hope to modify Budds toinorporate our software for learning and intera-tive labeling. Our intent is to support inrementalimprovement of the vision system as it enountersnew images that ause it diÆulty. When notingthat the system fails to reognize a building or in-fers an imaginary one, the user would interativelytrae its reasoning to assign blame to some partiu-lar inferene step, then provide the orret labels foruse in learning at that deision point. Suh knowl-edge re�nement would seem neessary to maintainany large-sale system for image understanding.In summary, our studies have shown that mahinelearning an improve the behavior of an existing im-age understanding system, and that interative la-beling an play a important role in that proess. Wealso showed enouraging results about the ability oflearning to generalize aross images and about thepotential for ative learning to redue the e�ort oflabeling training ases. Considerable work remainsto be done, inluding the extension of interativelabeling and learning to other stages of Budds, butthat does not minimize the progress to date. We an-tiipate that mahine learning will ome to oupyan inreasingly entral plae in the development andmaintenane of software for omputer vision.
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