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Abstract

In this paper, we report progress on the
use of machine learning to improve the pro-
cess of rooftop detection in aerial images.
We describe an existing system for build-
ing recognition, BubpDS, and identify its
rooftop stage as a target for improvement.
We then review the naive Bayesian classi-
fier, a simple but robust approach to super-
vised induction, and the visual interface we
developed to ease the labeling of training
data. We present the results of experiments
on the rooftop detection task that reveal
improved recognition levels over the hand-
crafted BUDDS classifier, then examine the
reliability and speed of the interactive la-
beling process itself. Finally, we consider
related research and plans for future work.

1 Introduction

In the past 20 years, the computer vision commu-
nity has made great strides in extending the func-
tional coverage of image understanding systems. Re-
searchers have developed integrated systems that
operate on a variety of challenging tasks, includ-
ing practical problems like the analysis of large-scale
scenes in aerial imagery. But this progress has of-
ten obscured the underlying fragility of systems that
have been tuned carefully to operate well on a hand-
ful of images.

The advent of programs like RADIUS, which provide
a repository of common images for use in testing, has
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improved this situation. For specific domains, we
now have image understanding systems that process
many distinct images in a reasonably robust manner.
Yet these programs often rely on heuristic knowledge
that transfers poorly to new images, much less to
new domains, and there remains considerable room
for improving their behavior even on existing image
libraries.

One path to such improvement invokes machine
learning to refine or replace the handcrafted knowl-
edge that currently guides an image understanding
system (Bowyer et al., 1994). One can apply such
techniques to any level of a complex vision system,
provided data are available for training the learning
algorithm. Indeed, future vision researchers might
use learning methods to incorporate heuristic knowl-
edge and to tune parameters for one stage of visual
processing before addressing stages that build on it.
Conveniently, the machine learning community has
also developed an extensive experimental method for
evaluating its algorithms (Kibler & Langley, 1988)
that should carry over readily when they are used
for computer vision.

In the following pages, we report our progress to-
ward this goal. We begin by reviewing our compu-
tational framework, including a representation for
visual knowledge, the vision system that uses this
knowledge to process images, and the learning algo-
rithm that aims to improve this process. We also dis-
cuss our approach to collecting training data, which
relies on an interactive labeling system. Next we re-
view some systematic experiments with visual learn-
ing, including tests of generalization to novel images.
After this, we report empirical studies of the label-
ing process, which involves interactions between the
system and a human. We close with a brief discus-
sion of related work on visual learning and our plans
for future research.
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2 An Approach to Visual Learning

To explore the potential of machine learning for com-
puter vision, we had to select some task that re-
quires image understanding. We decided to focus on
the analysis of aerial photographs available from the
DARPA RADIUS program, and in particular on the
recognition and description of buildings, as this was
a recognized problem of practical import on which
there already existed a body of work. Another fac-
tor was the existence of BUDDS, a building recogni-
tion system developed by Lin and Nevatia (1996) at
USC, which they offered to make available. Their
software seemed ideal for our purposes because it
was robust enough on the task to provide a good
baseline, yet still seemed likely to benefit from im-
provement through machine learning.

In this section, we review BUDDS’ representation and
mechanisms, focusing on the stage that generates
rooftop candidates, which we selected for our initial
work. After this, we review the naive Bayesian clas-
sifier, the main learning algorithm we have used in
our studies, followed by our approach to collecting
data in support of the learning process. In this con-
text, we discuss two challenges raised by this domain
that are not normally addressed in machine learning;:
the distinct costs associated with different types of
errors and the need for interactive but efficient la-
beling of instances.

2.1 The BubpDS System

The Buildings Detection and Description System
(Bupps) was developed by Lin and Nevatia (1996)
at the University of Southern California to address
the task of detecting and describing buildings in
aerial photographs. Like many image understand-
ing systems, BUDDS represents knowledge about a
scene at different levels of description and operates
by aggregating lower-level descriptors into higher-
level ones, ultimately reaching characterizations of
buildings in the scene.

Naturally, the software begins at the pixel level, de-
scribing images in terms of gray scale intensities
within a rectangular grid, along with information
about camera and sun angles. BUDDSs invokes an
edge detector to group pixels into connected seg-
ments, which it describes in terms of their starting
and end points. The system then uses a line finder
to group these segments into extended lines, each of
which it represents using end positions, slope, and
component segments.

At the next level, BUDDS constructs L junctions
at the ends of each line and T junctions that oc-
cur along them. These structures it characterizes in

terms of the junction vertices and the angle of their
bisectors, along with their component lines. The
software also groups nearby lines with similar slopes
and lengths into parallel pairs, which it describes in
terms of the lines involved. The ensuing level com-
bines both junctions and parallels into three-sided
structures or U constructs, which again are denoted
by their components.

After this, BUDDS combines pairs of nearby U’s into
parallelograms that constitute candidates for the
rooftops of buildings in the image. The system de-
scribes these structures in terms of the component
U’s and the positions of their four vertices. The fol-
lowing stage involves elimination of some roof candi-
dates based on global criteria (e.g., when one over-
laps another). Finally, BUuDDS combines the remain-
ing rooftop candidates with evidence for walls and
shadows to construct 3D wire-frame descriptions of
rectilinear buildings.

At most processing stages, BUDDS’ move to the next
level involves two distinct operations. The system
first generates candidates for the successive level,
constrained mainly by locality assumptions; for ex-
ample, it considers only nearby U’s when construct-
ing rooftop candidates. After this comes a filtering
step that decides whether to retain or reject this can-
didate, typically using a handcrafted classifier that
draws on computed features of the candidate. We
believe that machine learning is best suited to im-
prove decisions during this filtering step.

Discussions with R. Nevatia (personal communica-
tion, 1996) suggested that rooftop detection held
the most promise for improvement through machine
learning, so we should consider this stage in more de-
tail. Again, this process combines three-sided U’s to
form parallelograms that constitute candidate roofs
in the image. BUDDS filters these parallelograms by
calculating nine continuous features and combining
them into a weighted sum. For each candidate, if
the result is higher than a specified threshold, the
system retains it; otherwise it rejects the candidate.

Four of these features provide positive evidence that
the candidate is a rooftop. For example, one such
attribute specifies the extent to which edges are
present in the component lines. Low contrast may
obscure parts of these lines, and buildings with more
complex structure will have no edges where compo-
nent rectangles meet. However, the more complete
the edges that make up a parallelogram, the greater
the evidence for a rooftop. BUDDS uses a similar con-
tinuous attribute that favors rooftop candidates with
more detected corners and ones with angles that are
closer to 90 degrees. A third continuous feature re-
flects the extent to which opposite sides of the candi-
date are parallel, which can be affected indirectly by
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missing edges. A fourth attribute measures evidence
from shadows; taking the direction of illumination
into account, it looks for expected correspondences
between candidate corners and shadow corners, as
well as candidate edges and shadow edges.

The remaining five features represent negative evi-
dence that the candidate is actually a rooftop. For
instance, one attribute measures the degree to which
lines cross the sides of the candidate description;
clearly, the presence of such intersecting lines re-
duces the chances that the parallelogram is a build-
ing roof. Two additional attributes indicate the ex-
tent to which sides of the candidate contain L junc-
tions and T junctions other than at its corners; the
occurrence of such junctions within a side make the
candidate an implausible rooftop. A fourth negative
feature measures the presence of corresponding gaps
on opposite sides of the candidate, which are unlikely
in buildings. Finally, BUuDDS computes the displace-
ment, between the edges that make up the candidate
rooftop and its inferred sides, giving higher scores
for poorer matches.

Lin and Nevatia developed their classifier manu-
ally, through trial and error on a variety of images
and their associated rooftop candidates. Our aim
was to use some form of machine learning to pro-
duce a new classifier that improved on the hand-
crafted method’s ability to eliminate poor rooftop
candidates but still retain acceptable ones. For this
we needed two items an appropriate learning algo-
rithm and a source of training data—to which we
now turn.

2.2 The Naive Bayesian Classifier

Since BUDDS treats the filtering of rooftop can-
didates as a classification task, it seemed natural
to formulate our learning problem in terms of su-
pervised induction. Preliminary experiments with
a number of induction methods (Maloof, Langley,
Sage, & Binford, 1997) suggested that we would ob-
tain good results with the naive Bayesian classifier,
a simple technique for probabilistic induction that
has a long history in pattern recognition (Duda &
Hart, 1973) but that has gained acceptance in ma-
chine learning more recently (Clark & Niblett, 1989;
Kononenko, 1990; Langley, Iba, & Thompson, 1992).

The Bayesian classifier represents its knowledge
about each class in terms of a single probabilistic
summary. Each such class description has an asso-
ciated class probability or base rate, p(C}), which
specifies the prior probability that one will observe
a member of class C}. FEach description also has
an associated set of conditional probabilities, spec-
ifying a probability distribution for each attribute.

p(Av;|Cs).

For a nominal attribute, one typically stores a dis-
crete distribution, with each p(v;|C}) term stating
the probability of value v; given an instance of class
C}. For a numeric attribute, one must represent a
continuous probability distribution of that attribute
given the class. This requires that one assume some
general form or model, the most common choice be-
ing the normal distribution, which one can represent
conveniently entirely in terms of its mean p and its

variance 2.

To classify a new instance I, a naive Bayesian clas-
sifier applies Bayes’ theorem to determine the prob-
ability of each description given the instance,

) _ p(Ci)p(1|Cz‘)

However, since I is a conjunction of j values, one
can expand this expression to

Cop(AvICH)
p(Cil [\ vi) Zm/\v]\ck)( SEk

where the denominator sums over all classes and
where p(A v;|C;) is the probability of the instance I
given the class C;. After calculating these probabil-
ities for each description, the algorithm assigns I to
the class with the highest overall probability.

In order to make the above expression operational,
one must still specify how to compute the term
Naive Bayes assumes independence of
attributes within each class, which lets it use the
equality

/\UJ‘C Hp v;|Ci)

where the values p(v;|C;) represent the conditional
probabilities stored with the class. This approach
greatly simplifies the computation of class probabil-
ities for a given observation.

The Bayesian framework also lets one specify prior
probabilities for both the class and the conditional
terms. A common scheme makes use of ‘uninformed
priors’; which assign equal probabilities to each class
and to the values of each attribute. However, one
must also specify how much weight to give these pri-
ors relative to the training data. For example, one
can use a Dirichlet distribution to initialize proba-
bilities and give these priors the same influence as
a single training instance. Clark and Niblett (1989)
describe another approach (which we also use) that
does not require explicit priors, but instead esti-
mates P(C;) and p(v;|C;) directly from their pro-
portions in the training data. When no instances
of an attribute value for a given class have been ob-
served, it replaces the zero probability with p(C;)/N,
where N is the number of training cases.
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Learning in the naive Bayesian classifier is an al-
most trivial matter. The simplest implementation
increments a count each time it encounters a new in-
stance, along with a separate count for a class each
time it observes an instance of that class. Together
with the prior probabilities, these counts let the clas-
sifier estimate p(C;) for each class C;. In addition,
for each instance of a class that has a given nominal
value, the algorithm updates a count for that class-
value pair. Together with the second count, this
lets the classifier estimate p(v;|C;). For each nu-
meric attribute, the method retains and revises two
quantities, the sum and the sum of squares, which
let it compute the mean and variance for a normal
curve that it uses to find p(v;|C;). In domains that
can have missing attributes, it must include a fourth
count for each class-attribute pair.

In contrast to many induction methods, the naive
Bayesian classifier does not carry out an extensive
search through a space of possible descriptions. The
basic algorithm makes no choices about how to par-
tition the data, as with decision-tree methods, or
which direction to move in a weight space, as with
neural networks, and the resulting probabilistic sum-
mary is completely determined by the training data
and the prior probabilities. Nor does the order of
the training instances have any effect on the out-
put; the basic process produces the same description
whether it processes the data incrementally or all at
once. These features make the learning algorithm
both simple to understand and quite efficient.

But the naive Bayesian classifier buys these advan-
tages at the cost of two important assumptions.
First, it posits that each class can be summarized by
a single probabilistic description, and that these are
sufficient to distinguish the classes from one other.
This idea is closely related to the assumption of lin-
ear separability in early work on neural networks
and, like perceptrons, naive Bayes is typically lim-
ited to learning classes that can be separated by a
single decision boundary. Second, the approach as-
sumes that, within each class, the probability distri-
butions for attributes are independent of each other.
Clearly, this assumption is unrealistic for many real-
world domains, and one can easily design noninde-
pendent data sets on which naive Bayes does poorly.
These apparent drawbacks led most machine learn-
ing researchers to ignore this promising method for
many years.

However, experimental studies across a broad range
of domains show that the naive Bayesian classifier
often fares very well compared to much more sophis-
ticated induction algorithms like decision-tree induc-
tion (e.g., Langley et al., 1992). In some cases, this
reflects a representational bias that is more appro-

priate to the domain, since some class distinctions
are easier to represent using global evidence combi-
nation than with decision trees. However, compar-
isons to methods that construct full Bayesian net-
works, which use the same probabilistic representa-
tion but which do not make the independence as-
sumption, show that naive Bayes often outperforms
them as well (Provan & Singh, 1996). The natu-
ral explanation is that, because naive Bayes must fit
fewer parameters than more flexible techniques, it
has less chance of overfitting limited training data.
Recent analyses by Domingos and Pazzani (1997)
reveal other factors, including the fact that naive
Bayes learns the optimal classifier even in many do-
mains that involve significant dependencies.

The naive Bayesian classifier has another advantage:
it can be easily modified to take into account the cost
of errors. One formulation for two-class problems,
which we use below, specifies the relative cost as
a parameter —1 < ¢ < 1 and uses this constant
to compute utilities from the posterior probabilities
produced by naive Bayes. If we let U(r|x) be the
utility of classifying candidate x as a rooftop and let
U(n|x) be the utility of classifying x as a nonroof,
then
U(r|x) = P(r|x) + ¢- P(n|x)
and
U(nlx) = P(n[x) - ¢ P(n]x) .

where ¢ is positive when mislabeled roofs are more
expensive than mislabeled nonroofs. In other words,
one calculates the utility for each class by adding a
factor to the posterior probability of the more ex-
pensive class and by subtracting the same amount
for the less costly class. This modified Bayesian clas-
sifier then predicts the class with the highest utility.

2.3 Interactive Labeling of Training Data

Machine learning cannot occur without some train-
ing data to drive the process. We can use BUDDS
to generate candidate rooftops and their nine asso-
ciated features; indeed, the system generates thou-
sands of such candidates per image. But we also
need labels that specify whether each candidate
should be retained (a positive instance) or rejected
(a negative instance).

Since we could identify the vertices of each actual
rooftop in an image, we tried using their distance
from candidate vertices to determine class labels
automatically. But inspection of the results indi-
cated that this scheme assigned labels poorly, ap-
parently because many bad candidates had vertices
near those of actual rooftops. Also, we wanted the
classifier to retain candidates that looked like good
rooftops, but were not part of buildings, for rejec-
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Figure 1: Visualization interface for labeling rooftop candidates. The system presents candidates to a user
who labels them by clicking either the ‘Roof” or ‘Non-Roof’ button.

tion by later stages of BUDDS’ processing, since our
USC colleagues believed that the nine features were
not enough to identify rooftops on their own.

These concerns suggested that some form of manual
labeling by a human was needed, but the number
of candidates generated for each image made this a
daunting task. In response, we implemented an in-
teractive labeling system in JAVA, shown in Figure 1,
that successively displays each extracted rooftop to
the user. The interface draws a candidate over the
portion of the image from which it was extracted,
lets the user click buttons for ‘Roof’ or ‘Non-Roof’
to label it, and moves on to the next candidate.

We used this approach to generate data from two
images of Fort Hood, Texas, which were collected
as part of the RADIUS program (Firschein & Strat,
1997). These images, FHOV1027 and FHOV625,
cover the same area but were taken from different
viewpoints, one from a nadir angle and the other
from an oblique angle. We subdivided each image
into three subimages, focusing on locations that con-
tained concentrations of buildings, to maximize the
number of positive rooftop candidates. This gave us
three pairs of images, each pair covering the same
area but viewed from different aspects, as summa-
rized in Table 1. Even though the data set contained
17,829 rooftop candidates, the interface required
only about five hours to label them. This comes to

under one second per candidate, which seems rea-
sonably efficient. However, the task remains time
consuming and also raises questions about the relia-
bility of the labeling process; we will return to both
of these issues in Section 4.

3 Studies of Cost-Sensitive Learning

In a previous paper (Maloof et al., 1997), we re-
ported initial experimental studies of machine learn-
ing for rooftop classification using three different
techniques: decision-tree induction, nearest neigh-
bor, and the naive Bayesian classifier. Here we re-
port more extensive experiments that replicate and
extend our earlier results, but that focus on naive
Bayes, since it fared best in those studies.

3.1 Experimental Measures and Design

Our basic hypothesis was that a learned rooftop
classifier could outperform the handcrafted Bupbps
classifier. However, before we could test this claim
experimentally, we needed more than labeled ex-
amples of rooftop candidates; we also needed some
clear measure of performance. The most obvious
approach, usually taken in machine learning stud-
ies, was to use classification accuracy, but analysis
of the domain revealed a problem with this metric.
Briefly, a simple accuracy measure assumes that all
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Table 1: Characteristics of the images and data sets. We began with a nadir and an oblique image of an area
of Fort Hood, Texas, and we divided each into three subimages that contained concentrations of buildings.
We then used BUDDS to generate rooftop candidates and interactively labeled each as either a positive or

negative example of the concept “rooftop”.

Image Original Positive Negative
Number Image Location Aspect Examples Examples
1 FHOV1027 1 Nadir 197 982
2 FHOV625 1 Oblique 238 1955
3 FHOV1027 2 Nadir 71 2645
4 FHOV625 2 Oblique 74 3349
5 FHOV1027 3 Nadir 87 3722
6 FHOV625 3 Oblique 114 4395

errors have the same cost, but we knew that this does
not hold for the task of building detection. Given ac-
tual costs for each error type, we could calculate a
weighted measure using the accuracy on each class,
but we knew only that labeling buildings as non-
buildings (which later BUDDS stages cannot correct)
was more expensive than the converse.

In such situations, a natural solution is to evaluate
a cost-sensitive method over a range of cost settings
and to report the results in a Receiver Operating
Characteristic (ROC) curve (Swets, 1988). The ba-
sic idea is to systematically vary some aspect of the
method or domain (in this case the cost ratio), then
plot the true positive rate against the false negative
rate for each situation. Although researchers have
used such ROC curves in psychology for decades,
this technique has only recently filtered into machine
learning (Bradley, 1997; Provost & Fawcett, 1997).

To generate ROC curves in the studies reported be-
low, we varied the cost parameter ¢ and measured
the resulting true positive and false positive rates
for naive Bayes on a given test set of rooftop can-
didates. However, rather than reporting a complete
ROC curve for each experimental condition, we of-
ten follow Swets’ recommendation and present the
area under this curve, which we approximated by
summing the areas of the trapezoids defined by each
pair of adjacent points.

Following the standard experimental method in ma-
chine learning, in each situation we trained the
induction algorithm on labeled data, in this case
rooftop candidates, that were separate from those
used to test the learned classifiers. Because the
BuDDs classifier was hand configured, it had no
training phase, so we applied it directly to the in-
stances in the test set, varying its threshold param-
eter to generate an ROC curve.

To guard against nonrepresentative samples, we re-
port results that are averaged over ten different par-
titions into training and test data. Unless stated
otherwise, we used 60% of the candidates for train-
ing and 40% for testing purposes. The experiments
differed in whether the training and test cases came
from the same or distinct images, which let us ex-
amine different forms of generalization beyond the
training data.

3.2 Within-Image Learning

Our first experimental study examined how naive
Bayes behaves on within-image learning, that is,
when generalizing to test cases taken from the same
image on which we trained it. Our research hypoth-
esis was that the learned classifier would be more ac-
curate, over a range of misclassification costs, than
the handcrafted classifier. Because our measure of
performance was area under the ROC curve, this
translates into a prediction that the ROC curves of
the learned rooftop classifiers would have larger ar-
eas than those for the BubpDS classifier.

Table 2: Approximate areas under the ROC curves,
along with 95% confidence intervals, for naive Bayes
and BUDDS on the within-image experiment.

Naive Bayes Bubpbs
Image 1 0.870+0.008 0.7174+0.009
Image 2 0.812+0.017 0.773+0.004
Image 3 0.962+0.013 0.899+0.015
Image 4 0.908+0.025 0.901+0.007
Image 5 0.869+0.016 0.833+0.021
Image 6 0.835+0.025 0.849+0.010




INTERACTIVE VISUAL LEARNING

o @ '
oo ©
<&
08 | o - .
<] o O
E < o g O
g 06 [ - o E
2
L o 4
v 0.4
= Naive Bayes <
028 Budds Classifier © i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
False Positive Rate

True Positive Rate

485

1 T T T T )
<&
o m]
0.8 |- o © o b
& O
06 N
. I~ BQD D 1
3
04 b
Naive Bayes ¢
02 b Budds Classifier © |
p
O 1 1 1 1
0 0.2 04 0.6 0.8 1
False Positive Rate

Figure 2: ROC curves for Images 1 (left) and 2 (right), which we obtained by training and testing on rooftop
candidates from the same image over a range of misclassification costs and averaging over ten runs. These
images cover the same location but from different aspects, with Image 1 giving a nadir view and Image 2

being oblique.

Figure 2 presents the ROC curves for Images 1 and
2, in which naive Bayes clearly fares better than the
handcrafted BUDDS classifier, producing fewer false
positives (nonroofs mislabeled as roofs) for a given
level of true positives (correctly labeled roofs). For
all except Image 6, the learned classifier produced
curves with areas greater than those for BUDDS, thus
generally supporting our research hypothesis.

3.3 Generalization Over Aspect

Although the results from the previous study were
encouraging, we also wanted to understand better
how the knowledge learned from one image general-
izes to other images. Our hypothesis here was a re-
fined version of the previous one: classifiers learned
from one set of images would be more accurate on
unseen images than handcrafted classifiers. How-
ever, we also expected that between-image learning
would give lower accuracy than the within-image sit-
uation, since differences across images would make
generalization more difficult.

Thus, our second experiment focused on how naive
Bayes generalizes over aspect. Recall from Table 1
that we had images from two aspects (i.e., nadir and
oblique) and from three locations. This let us train
the algorithm on an image from one aspect and test
the learned classifier on an image from another as-
pect but from the same location. As an example,
for the nadir aspect, we chose Image 1 and then
tested on Image 2, which is an oblique image of the
same location. We ran naive Bayes in this manner
using the images from each location, while varying
the cost parameter and measuring its true positive
and false positive rates. We then averaged these
measures across the three locations and plotted the
results as ROC curves, as shown in Figure 3. The

areas under these curves and their 95% confidence
intervals appear in Table 3.

One obvious conclusion is that the nadir images ap-
pear to pose an easier problem than the oblique im-
ages, since the curves for testing on nadir candidates
are generally higher than those for testing on data
from oblique images. For example, Table 3 shows
that naive Bayes generates a curve with an area of
0.878 for the nadir images, but produces one with
an area of 0.842 for the oblique images. In contrast,
the BUDDSs classifier gives an area of 0.837 for the
nadir condition and 0.831 for the oblique condition.

Table 3: Approximate areas under the ROC curves,
along with 95% confidence intervals, for naive
Bayes and BUDDS when generalizing across aspect
(A), generalizing across location (L), and general-
izing within an image (W). The labels ‘nadir’ and
‘oblique’ indicate the testing condition.

Naive Bayes Bupbs
(A) Nadir 0.8784+0.042 0.837+0.085
Oblique 0.842+0.063 0.831+0.068
(L)  Nadir 0.901+0.079 0.837+0.085
Oblique  0.8314+0.067 0.831+0.068
(W) Nadir 0.900+0.012 0.837+0.085
Oblique 0.8514+0.022 0.831+0.068

3.4 Generalization Over Location

A similar study examined generalization over loca-
tion. To this end, we trained naive Bayes on pairs
of images from one aspect and tested on the third
image from the same aspect. As an example, for the
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Figure 3: ROC curves for the experiment that tested generalization over aspect.
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For each location, we

trained a classifier on the oblique image and tested it on the nadir image (left), then reversed the procedure
by training on nadir images and testing on oblique ones (right).

nadir images, one of the three learning runs involved
training on rooftop candidates from Images 1 and 3,
then testing on candidates from Image 5. We then
ran each of the algorithms across a range of costs,
measuring the false positive and true positive rates.
We plotted the averages of these measures across all
three learning runs for one aspect in an ROC curve,
as shown in Figure 4.

In this context, we again see evidence that the
oblique images presented a more difficult recogni-
tion task than the nadir aspect, since the oblique
areas are less than those for the nadir images. Com-
paring the behavior of the various methods, Table 3
shows that, for the nadir aspect, naive Bayes per-
forms somewhat better than the BupDs classifier,
which give areas of 0.901 and 0.837, respectively.
When generalizing over location on the oblique im-
ages, naive Bayes and the BUDDS classifier produced
ROC curves with equal areas of 0.831.

Recall that we also anticipated generalizing across
images would give lower accuracies than generaliz-
ing within images. To test this hypothesis, we must
compare the results from these experiments with
those from the within-image experiments in Table 2.
Simple calculation shows that, for the within-image
condition, naive Bayes produced an average ROC
area of 0.9 for the nadir images and 0.851 for the
oblique images. Thus, the results are not entirely
consistent with our prediction, since naive Bayes did
equally well when generalizing over location for the
nadir image.

3.5 Rates of Learning

We were also interested in naive Bayes’ behavior as it
processed increasing amounts of training data. Both
theoretical analyses (Langley et al., 1992) and exper-
imental results in other domains (Langley & Sage,

1994) suggest that this induction method achieves
high accuracy from relatively few training cases. To
see if similar effects held for rooftop classification,
we carried out a final study in which we systemati-
cally varied the number of training cases available to
the algorithm. Here we used the rooftop candidates
available from all six images, again splitting the data
into training (60%) and test (40%) sets, but further
dividing the training set randomly into ten subsets
(10%, 20%, ..., 100%). We ran naive Bayes on each
training subset and evaluated the resulting classifiers
on the reserved test data, averaging our results over
25 separate training/test splits.

Figure 5 shows the resulting learning curve, each
point of which corresponds to the average area un-
der the ROC curve for a given number of training
cases. The graph also includes a flat curve for the
BUDDSs classifier, since it involves no training and we
simply applied it to the same test set for each num-
ber of training cases. Naturally, the naive Bayesian
classifier improves with increasing amounts of train-
ing data. More important, its performance exceeds
that for Bunpnps almost from the start, after observ-
ing only 10% of the training data (less than the num-
ber of candidates from one image) and levels off af-
ter processing 30% of the cases. Not only did naive
Bayes outperform BubpDS and other induction meth-
ods, but it was able to accomplish this feat using
very little of the available training data.

4 Studies of Interactive Labeling

The experiments above showed that a learned
Bayesian classifier typically outperforms the hand-
crafted BupDS classifier, that the learning method
generalizes across both aspect and location, and that
it achieves good results from little training data.
But these results relied on an interactive scheme in
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Figure 4: ROC curves for the experiment that tested generalization over location. For each pair of images
with the nadir aspect, we trained on that pair and tested on the third nadir image (left), then applied the
same methodology to images with the oblique aspect (right).

which a human labeled the candidates generated by
BubpbDs, and the studies left unanswered some cen-
tral questions about the role of the developer in this
process. We now present some more recent exper-
iments that directly address the interactive aspects
of our framework, in particular the reliablity of la-
beling decisions and the potential for reducing the
number of rooftop candidates that one must label.

4.1 Consistency of Human Labeling

We developed the interactive labeling software to
provide classified cases for training and testing. As
described in Section 2, this interface presents the
user with candidates (appearing as highlighted par-
allelograms in the image), each of which he must
label as a roof or nonroof. This task seems straight-
forward, but the complex shape of some buildings,
the existence of similar candidates, and the sheer
length of a labeling session can all introduce sub-
jectivity and uncertainty into user decisions. This
raises questions about labeling consistency, and thus
about the reliability of our results, both across dif-
ferent users and within a single user.

To address this issue, we examined the results of
the labeling process in some detail. We combined
records of labeling decisions made by one team mem-
ber (Maloof) with more recent recordings from an-
other member (Ali), who labeled the same candi-
dates in two separate sessions. Our comparisons fo-
cused on Images 1 and 2 from Table 1, which consti-
tuted nadir and oblique views of the same Fort Hood
location. Our aim was to understand how consistent
these users were at labeling rooftop candidates and
to understand the effects of their disagreement on

the behavior of learned classifiers.

Our initial analysis examined consistency in the la-
beling decisions made by the two users. To this end,

we generated a confusion matrix for their decisions
that included the number of items they agreed were
roofs or nonroofs, as well as the number one classi-
fied as a roof and the other as a nonroof. Table 4
shows the confusion matrix between Maloof’s and
Ali’s labels on Image 1. If we treat the Maloof la-
bels as correct, then Ali had 69% true positive can-
didates (which they agreed were roofs) and a 6%
false negative rate (which Ali labeled as nonroofs
and Maloof as roofs). Treating the Ali labels as cor-
rect gives nearly the same rates, and both points
fall just above the naive Bayes curve for Image 1 in
Figure 2. In other words, Maloof and Ali were little
better at predicting each other’s labels than was the
naive Bayesian classifier, and we found qualitatively
similar results for Image 2. This suggests that the
learning method may be doing as well as one can
reasonably expect, considering the apparent unreli-
ability of human labelers.

Table 4: Confusion matrix for two users (Maloof and
Ali) on Image 1.

ALl ALl
Roor NONROOF
MALOOF
RooOF 134 61
MALOOF
NONROOF 63 921

In our second analysis, we examined the consistency
within a single human labeler (Ali) across two dif-
ferent sessions on Image 1. Table 5 presents the
resulting confusion matrix. If we treat Ali; as cor-
rect, then Ali; has an 86% true positive rate and
a 5% false negative rate. These numbers are much
better than the between-user rates, but they are not
as high as one might hope given a single labeler.
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Figure 5: Learning curve for naive Bayes (left), plotting area under the ROC curve against size of the training
set, averaged over 25 runs on data from all six images, and (right) ROC curves produced by training and
testing naive Bayes on rooftops labeled by two users in three separate sessions, along with the curve for the

BubDDS classifier.

Overall, these analyses suggest that the task of la-
beling rooftop candidates is a difficult one, and that
the naive Bayesian classifier is doing fairly well given
the inherent noise in its data.

We also wanted to study the effects of labeler dif-
ferences on the behavior of learned classifiers, so we
turned again to ROC analysis. Figure 5 shows four
ROC curves for Image 1, one for naive Bayes trained
and tested on candidates labeled by Maloof, two for
naive Bayes using labels from separate sessions by
Ali, and the last for the BUDDS classifier tested on
Maloof labels. As before, we used 60% of the labeled
candidates for training and the rest as test cases, us-
ing a variety of cost coefficients during testing. We
repeated this process over ten random training/test
partitions to obtain average values.

Table 5: Confusion matrix for different sessions (Aliy
and Aliy) of one user on Image 1.

ALy ALl
Roor NONROOF
ALy
Roor 167 28
ALy
NONROOF 49 935

The figure’s most striking aspect is the rough sim-
ilarity of the three learned curves when contrasted
with the curve for BunpDps. This suggests that, de-
spite apparent variations in labeling decisions both
between and within users, we can remain confident
in our general results. However, there are some im-
portant differences. For instance, to achieve a 90%
true positive rate, one must tolerate a false positive
rate of 28% for Image 1 candidates that Ali labeled

in his second session. In contrast, achieving this 90%
level requires a 30% false positive rate for Maloof la-
bels and 42% false positives for labels produced in
Ali’s first session. Thus, the labeled candidates from
some sessions are more difficult for naive Bayes to
master than those from others.

4.2 Active Learning for Reduced Labeling

Another of our concerns centered on the arduous
and lengthy nature of the interactive labeling pro-
cedure. Although we were able to label all 17,829
rooftop candidates for our initial studies in around
five hours, this study involved only six images. For
interactive labeling to play a practical role in de-
veloping future vision systems, which would involve
training on many more images, we must find some
way to reduce the labeler’s effort. But recall that the
learning curve for naive Bayes in Section 3 showed
the method reaching reasonable levels after seeing
only a fraction of the training data.

This observation suggested that we modify the la-
beling interface to present candidate rooftops more
selectively. In response, we augmented the software
to update the naive Bayesian summaries after each
newly labeled case, then used the revised classifier
to decide whether to present the next candidate for
labeling. In particular, the system showed the user
only those cases about which it was uncertain, that
is, on which the probability of the most likely class
fell below a certain level. This approach is similar in
aims and method to work on active learning (e.g.,
Cohn, Ghahramani, & Jordan, 1996), which is also
motivated by domains with high labeling costs.

One design decision that arose in modifying the in-
terface concerned the uncertainty threshold. To bet-
ter understand naive Bayes’ behavior, we plotted
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Figure 6: Distribution of actual rooftops (left) in the test set as a function of p(roof) and distribution of

actual nonroofs (right) as a function of p(nonroof).

its distribution of errors on earlier runs as a func-
tion of classification confidence, or the maximum of
p(roof) and p(nonroof). For example, the left por-
tion of Figure 6 shows the distribution for p(roof)
that naive Bayes produced for test cases that were
actually roofs.

This distribution is surprising on two counts. First,
the classifier was much more certain about many
predictions than we expected, with 60% receiving a
probability above 0.9. Second, some 20% of the can-
didates received near-zero probabilities, even though
they reflected actual rooftops, whereas very few
cases fell in the middle range. The pattern repeats
for the nonroof cases and the nonroof predictions, as
the right part of the figure reveals. This has unfor-
tunate consequences for any scheme that associates
high confidence with lower error, as seems natural
in an active learning scenario. The bimodal distri-
bution means that p(nonroof) will be near 1.0 for
many actual roofs and that p(roof) will approach
1.0 for many nonroof cases.

Figure 7 presents the resulting distribution of er-
rors as a function of p(roof). The graph shows that
if p(nonroof) is near to 1.0, then the error rate is
quite low, but that errors are more common when
p(roof) is near 1.0. Based on this observation, we
decided to implement an assymetrical form of active
learning in which the interface withheld candidates
from the user only when p(nonroof) was high, but
which presented any cases that the current classi-
fier would label as a roof. We selected the threshold
p(nonroof) > 0.9, since calculations showed that
this level would incur only five percent errors.

Another design decision concerned the number of
cases the interface should collect before active learn-
ing takes over. Since rooftops are both rare and more
important, it seemed prudent to require the system
to process a certain minimum number of rooftops

seen before this occurred, whereas introducing such
a threshold for nonrooftops seemed less important.
Preliminary studies suggested 30 as a good threshold
for the minimum number of rooftops, which repre-
sents 15% of the rooftops in Image 1.

Naturally, we wanted to examine the effect of em-
bedding active learning in the interactive labeling
system. We hoped that this modification would re-
duce labeling effort substantially but cause little re-
duction in the learned classifier’s performance, so
we used the number of labeled cases and ROC areas
as our dependent measures. We were interested in
comparing a passive learning scenario, in which the
interface asked the user to label all training cases,
with an active learning situation, in which the sys-
tem presented only those cases about which it was
uncertain.

As usual, we wanted to average over different runs
but, for active learning, this would mean asking the
user to revisit the interface many times to collect
reliable results. Instead, we simulated this experi-
mental condition by reusing labels the user gener-
ated in the passive condition. That is, the human
first labeled all rooftop candidates from a given im-
age and, for a given run with passive learning, we
divided these data into separate training and test
sets. Next, for each step in the corresponding run
with active learning, the system selected an uncer-
tain training case and assigned it the same label as
it received in the first condition. This scheme had
the added advantage that it reduced variance due to
within-user inconsistency.

For each run in each condition, we used the learned
Bayesian classifier to classify the same test cases, all
of which were labeled by the same user. As before,
we invoked these classifiers with varying costs to ob-
tain ROC curves and their associated areas, and we
averaged over ten different partitions of the data into
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Figure 7: Test error rate for the naive Bayesian clas-
sifier as a function of p(roof).

training and test sets. We carried out this experi-
mental procedure for Images 1 and 2 from Table 1.

Figure 8 presents the ROC curves for Image 1. The
key result is that we obtained very similar curves
when the user (Ali) labeled all training cases and
when the simulated user labeled only about 35% of
the rooftop candidates. Thus, active learning re-
duced the user’s labeling effort by two-thirds on this
image with little reduction in classification perfor-
mance. In fact, the area under the passive learning
curve is 0.866 and that for active learning is 0.849, so
the latter comes to 98% of the former. Both curves
are substantially better than that for the BubpDS
classifier, which had 0.717 for its area.

We can also use the ROC curves to determine the
percentage of false positives (nouroofs classified as
roofs) that one must tolerate to find a given percent-
age of the rooftops. For example, to detect 90% of
the roofs, the classifier built through passive learn-
ing mislabels 42% of the nonroofs, the active-learned
classifier mislabels 50%, and the BubpDS classifier
some 82% of them. From this perspective, present-
ing only 33% of the rooftops candidates to the hu-
man labeler incurs an extra 8% false positive rate.

Figure 8 also shows corresponding results on Im-
age 2. This oblique image is more difficult because
BuDDS’ uses features that favor rooftop candidates
with corners close to 90 degrees. The areas under the
ROC curve are less than they were for their analogs
on Image 1, but again we find similar results for
passive learning (0.791) and active learning (0.775).
On this image, the selective interface presented only
24% of the rooftop candidates, an even greater sav-
ings than on the first one. Inspection of the ROC
curves shows that active learning does slightly worse
than passive learning in part of the space, but over-
all the two curves are difficult to distinguish, giving
further evidence that active learning is effective.

5 Related and Future Research

The relationship between image processing and ma-
chine learning has a long history. Indeed, research
on pattern recognition has assumed for decades that
learning can contribute to the creation of robust
recognizers, and more recent work on ‘appearance-
based’ vision often takes a similar attitude (Nayar &
Poggio, 1996). The combination of machine learning
with multi-level computer vision systems has been
less common, but Bowyer et al. (1994) review some
work along these lines, most of which addresses the
acquisition of 2D or 3D models for object classes.

In contrast, our approach uses machine induction to
improve the reliability of decisions within an exist-
ing image understanding system. One other effort
that shares this goal is reported by Draper (1996),
who also focuses on recognizing rooftops and other
objects in aerial images. His formulation relies on re-
inforcement learning to assign credit in a multi-stage
recognition system similar to BUDDS, combined with
backpropagation in neural networks to learn when
to select alternative operators. The most important
difference between our frameworks is that Draper
hopes to eliminate user interaction by automating
the assignment of credit, whereas our scheme as-
sumes continuing reliance on a human expert while
trying to minimize demands on his time. However,
the two approaches are not mutually exclusive, and a
combined framework could well inherit benefits from
both parents.

Although our experimental studies have clarified the
potential for machine learning, combined with in-
teractive labeling, to produce more robust vision
systems, there remain many avenues for future re-
search. One natural direction would involve modify-
ing the learning algorithm to further improve the
process of rooftop recognition. Previous research
has shown that, when the predictive attributes are
not normally distributed, one can improve the naive
Bayesian classifier by using kernel estimators (John
& Langley, 1995) or by discretizing their values. Au-
tomatic feature selection can also give substantial
improvements in some domains (Langley & Sage,
1994). Moreover, this latter technique holds promise
as a development tool that would let researchers
evaluate the usefulness of new features for use in
building recognition.

However, a more fundamental issue concerns extend-
ing our approach to other levels of the BUDDS soft-
ware. As we noted in Section 2, the system makes
earlier decisions about which junctions, parallels,
and U constructs to pass on to the rooftop stage,
and also takes steps after this level. Each stage holds
potential for improvement through machine learn-
ing, and we intend to adapt our interactive labeling
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Figure 8: ROC curves for passive and active learning on the nadir Image 1 (left) and the oblique Image 2
(right). The ‘passive learning’ curves correspond to runs in which the user labeled the entire training set. The
‘active learning’ curves come from runs in which the interface selected uncertain training cases for labeling
and ignored the rest. The other curves represent the BubpDS classifier.

software to operate at these other levels. One goal
for such learning is to reduce BUDDS’ complexity by
removing poor candidates before it aggregates them
into larger structures. More important, we know the
system misses some rooftops because it never gener-
ates their components. We suspect that, by moving
constraints on candidate generation into the filtering
step, which can then be learned, we can reduce such
omissions without increasing computational cost.

In the longer term, we hope to modify BUDDS to
incorporate our software for learning and interac-
tive labeling. Our intent is to support incremental
improvement of the vision system as it encounters
new images that cause it difficulty. When noting
that the system fails to recognize a building or in-
fers an imaginary one, the user would interactively
trace its reasoning to assign blame to some particu-
lar inference step, then provide the correct labels for
use in learning at that decision point. Such knowl-
edge refinement would seem necessary to maintain
any large-scale system for image understanding.

In summary, our studies have shown that machine
learning can improve the behavior of an existing im-
age understanding system, and that interactive la-
beling can play a important role in that process. We
also showed encouraging results about the ability of
learning to generalize across images and about the
potential for active learning to reduce the effort of
labeling training cases. Considerable work remains
to be done, including the extension of interactive
labeling and learning to other stages of BUDDS, but
that does not minimize the progress to date. We an-
ticipate that machine learning will come to occupy
an increasingly central place in the development and
maintenance of software for computer vision.
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