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This article reviews 

the cognitive systems 

paradigm and 

introduces the social 

cognition hypothesis: 

intelligence requires 

reasoning about others’ 

mental states. It reports 

artifacts exhibiting this 

capacity and identifies 

challenges for research 

on interactive cognitive 

systems.

such as proving theorems, generating plans to 
achieve physical goals, understanding written 
stories, and designing novel structures. But 
other tasks involving interaction—through 
natural language and other means—were also 
a central part of the vision, influenced by Tur-
ing’s1 early proposal that conversational abil-
ity might be used in tests for intelligence.

In this article, I review the cognitive sys-
tems movement, which adopts the same goals 
as early AI researchers. I state the assump-
tions that underlie this paradigm, recount 
two hypotheses that it adopts, and propose 
a new hypothesis about the key role of social 
cognition in intelligence. I examine some in-
teractive intelligent systems, both classical 
and more recent, that support this hypothe-
sis, and I propose a number of research chal-
lenges that deserve the field’s attention.

The Cognitive Systems  
Paradigm
Early research in AI adopted several as-
sumptions that distinguish it from most 
recent work. The cognitive systems move-
ment, named after a major DARPA initia-
tive launched by Brachman and Lemnios,2 
pursues the field’s original goal of construct-
ing computational artifacts that address the 
full range of human intelligence. The para-
digm also adopts similar postulates that 
guide its research efforts. Langley3 discusses 
six of its key assumptions:

• High-level cognition. Research focuses 
on abilities that are distinctively human, 
such as understanding language, com-
plex reasoning, and solving novel prob-
lems, as opposed to those shared with 
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Artificial intelligence was launched as a field at a 1956 meeting held at 

Dartmouth College. The aims were audacious: to understand the hu-

man mind in computational terms and to reproduce all known mental abilities 

in computational artifacts. Many of the latter involved single-agent activities,  
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dogs and cats, like perception, cat-
egorization, and motor control.

• Structured representations. The AI 
revolution revealed that comput-
ers are not mere number crunchers; 
they are general symbol processors 
that can encode, interpret, and ma-
nipulate rich mental structures, 
including substantial amounts of 
domain knowledge.

• Systems perspective. The paradigm 
makes progress not by focusing on 
component algorithms, but rather 
by developing integrated systems 
that clarify how intelligence arises 
from interactions among cognitive 
abilities.

• Human cognition. Researchers 
draw many of their ideas, inspira-
tion, and challenges from theories 
and empirical findings in cognitive 
psychology, especially the study of 
human language, reasoning, and 
problem solving.

• Heuristics and satisficing. The move-
ment assumes that intelligent be-
havior relies heavily on heuristic 
methods that do not guarantee the 
best or even any solution, but that 
typically reduce search and make 
complex cognition tractable.

• Exploratory research. Cognitive sys-
tems adopt a flexible approach to 
evaluation that encourages dem-
onstrations of new functionality, 
respects new approaches to well- 
established problems, values analyses 
of challenging tasks, and favors ar-
chitectures for integrated intelligence.

Taken together, these assumptions 
lead to a research style that differs 
substantially from what has become 
the AI mainstream and that has far 
more in common with the field’s ear-
liest days. This does not mean there 
is no value in work that violates some 
of these tenets, but it does mean re-
search in the cognitive systems para-
digm has both a venerable history 
and importance of its own.

Before proceeding, I should men-
tion the excitement among many AI 

researchers about recent progress on 
statistical methods for learning on 
tasks that involve pattern recogni-
tion and reactive control.4 Although 
these studies constitute clear progress 
over earlier approaches to such tasks, 
they have marginal relevance to prob-
lem solving, multistep reasoning, lan-
guage understanding, or other forms 
of high-level cognition. They focus on 
categorization during perception and 
stimulus-response schemes for action, 
which are important to any physical 
agent but are not abilities we associ-
ate with the term intelligence. In fact, 
these ideas have been linked histori-
cally with behaviorism and informa-
tion theory, two movements that the 
cognitive revolution of the 1950s re-
jected.5 They also ignore the central 
role of high-level cognition in human 
learning,6 which acquires knowledge 
far more rapidly than by mere induc-
tion. The cognitive systems paradigm 
builds on these insights, in contrast 
to recent statistical methods.

Three Hypotheses  
about Intelligence
Newell and Simon,7 in recounting 
their early contributions to AI and 
computer science, argued that every 
scientific field is built on qualitative 
hypotheses that lay the foundation 
for later work. They gave examples of 
such “laws of qualitative structure” 
from the history of science, including 
the cell doctrine in biology, the atom-
ic theory of matter, the germ theory 
of disease, and plate tectonics in ge-
ology. These hypotheses provided the 
context for more detailed and pre-
cise accounts of phenomena that ap-
peared later in each field.

They also made two analogous 
claims about the nature of intelligent 
behavior. The first, which they called 
the physical symbol system hypothe-
sis, stated that

a physical symbol system has the neces-
sary and sufficient means for general in-
telligent action.

They defined a symbol as some per-
sistent physical pattern that remains 
stable unless modified and a symbol 
structure as an organized set of sym-
bols. List structures stored on a digi-
tal computer are the classic example, 
but sentences on paper and equations 
on a blackboard are equally valid in-
stances. A physical symbol system 
has processes for creating, modify-
ing, and interpreting such symbol 
structures. Symbolic processing of 
this sort is the fundamental idea that 
has enabled most successes in ar-
tificial intelligence over its 60-year 
history.

Newell and Simon’s second claim 
elaborated on the first, focusing on 
structures and processes that under-
lie the ability to solve novel problems. 
This heuristic search hypothesis stat-
ed that

problem solving involves search through 
a space of candidate solutions guided by 
heuristics.

The problem solver represents can-
didate situations, actions, and so-
lutions as symbol structures, and it 
generates, modifies, and tests these 
structures, making it a form of phys-
ical symbol system. The search met-
aphor has been adopted widely by  
AI researchers, with many success-
ful breakthroughs depending on it, 
but the notion of heuristics has fared 
less well in the mainstream commu-
nity, where many have come to view 
them with disdain because they lack 
formal guarantees.

Both hypotheses are reflected in 
core assumptions of the cognitive 
systems paradigm. The first relates 
closely to the notion of structured 
representations and knowledge, 
an important class of symbolic ex-
pressions, whereas the second maps 
directly onto its reliance on heuris-
tics and satisficing to make problem 
solving tractable. However, they 
also suggest a third idea, not reflect-
ed extensively in early AI research, 
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that I call the social cognition 
hypothesis:

Intelligence depends on the ability to 
represent models of other agents’ men-
tal states, generate and reason over 
such models, and use them for informed  
interaction.

This claim builds directly on the other 
two, in that it posits that social cog-
nition relies on symbol processing and 
heuristic search, but it seems worth 
calling out because so many facets of 
human intelligence involve interaction 
with others. To my knowledge, this 
hypothesis has never been stated ex-
plicitly in the AI literature, although 
it has obvious links to Turing’s early 
proposal (however problematic) for 
testing computational intelligence 
through extended conversation. This 
third postulate suggests interesting 
challenges for research on cognitive 
systems, and, as we will see, implicit 
concern with this idea has also led to 
clear intellectual progress.

Classic Work on Interactive 
Cognitive Systems
In this section, I review three reason-
ably early computational artifacts 
that fit my characterization of in-
teractive cognitive systems and that 
exhibit facets of social intelligence. 
In each case, I describe the system’s 
abilities and underlying assumptions, 
what made it interesting and impor-
tant intellectually, and the issues that 
it still left unaddressed.

The SHRDLU System
One of the most visible and influen-
tial early AI efforts was Winograd’s8 
SHRDLU, which interacted with hu-
man users in natural language text. 
Exchanges focused on a simulated 
blocks world that humans could view 
on a graphics display and to which the 
system had direct access. Users guid-
ed the conversation by typing Eng-
lish sentences. These could include 
commands like, “Find a block which 

is taller than the one you are holding 
and put it into the box” and questions 
like, “Is there anything that is bigger 
than every pyramid but not as wide 
as the thing that supports it?” These 
inputs required not only the abil-
ity to parse quite complex structures 
and extract their meanings but also 
to draw inferences about relation-
ships and execute multistep activities. 
The innovative system handled simple 
anaphora, disambiguated word sens-
es, and had basic memory for its pre-
vious interactions.

SHRDLU was an important ad-
vance because it integrated sentence-
level understanding, reasoning about 
domain content, execution of mul-
tistep activities, and natural interac-
tion with human users. Nothing of its 
sort had existed before, and it offered 
a proof of concept that such an inte-
grated intelligent system was possible. 
This accomplishment relied on some 
important simplifying assumptions. 
SHRDLU operated in a narrow and 
well-defined domain, which limited 
the knowledge needed to understand 
sentences and carry out instructions, 

and it was constrained to grammati-
cal English sentences and vocabulary 
relevant to the blocks world. The sys-
tem had complete access to the entire 
state of simulated environment, and 
its actions always had the expected 
effects. Nevertheless, it was an im-
pressive achievement that fostered 
further work on intelligent agents.  
There have been few attempts to 
build on Winograd’s work, an impor-
tant exception being Playmate,9 a ro-
botic agent that carried out similar 
interactions in a physical setting and 
conversed in spoken English.

The Practical Algebra Tutor
Interactive cognitive systems have ob-
vious applications in education, where 
individual tutoring appears to play an 
important role in learners’ success. 
One system, the Practical Algebra Tu-
tor,10 presented students with word 
problems and traced their steps as 
they attempted to answer questions 
through algebraic manipulation. The 
system encoded knowledge about the 
domain as production rules, not only 
the target structures but also plausi-
ble misconceptions, which it used to 
track students’ behavior, infer what 
content they had mastered, and de-
cide where they needed assistance 
to provide personalized instruction. 
Experiments with students in three 
Pittsburgh high schools showed that 
its use led to substantial improvement 
on standardized tests, and a com-
mercial descendent of the system has 
since been adopted by hundreds of 
US campuses.

This tutoring system offered anoth-
er substantial advance for the field. 
Like the previous example, it inte-
grated several capabilities into a sin-
gle cognitive system that interacted 
with humans in a complex and chal-
lenging setting. The main limitations 
concerned its focus on procedural 
knowledge, which applies to some ed-
ucational topics but not others, and 
its highly stylized approach to inter-
acting with students. Constructing 

The problem solver 
represents candidate 
situations, actions, and 
solutions as symbol 
structures, and it 
generates, modifies, and 
tests these structures, 
making it a form of 
physical symbol system.
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the knowledge base that guided in-
struction was also a challenge, but 
less than in some applications be-
cause it was constrained and partly 
codified in textbooks. More impor-
tant was that its models of students’ 
mental states specified only what 
knowledge they had mastered or 
lacked, and that it ignored important 
social factors like emotions and mo-
tivation. A final limitation was the 
system’s particular interaction style, 
which has been partly addressed by 
more recent tutorial dialogue sys-
tems;11 these converse with students 
in spoken language, giving person-
alized instruction based on learners’ 
answers to questions.

The TacAir-Soar System
Another effort—even more audacious 
and impressive—resulted in TacAir-
Soar,12 an AI system that reproduced 
the behavior of human pilots on tacti-
cal air combat missions and operated, 
along with human participants, in a 
realistic simulated environment used 
for military war exercises. The system 
incorporated a large knowledge base 
that encoded established doctrine 
for air combat, implemented in the 
Soar architecture and organized as 
a hierarchical task network. TacAir-
Soar integrated abilities for reason-
ing about space and time, generating 
its own plans and recognizing those 
of others, executing plans reactive-
ly, and co ordinating with teammates 
using cons trained natural language 
text. The system flew 722 missions 
during the STOW-97 simulated train-
ing exercise, with human pilots re-
porting that the synthetic agents were 
indistinguishable from people.

TacAir-Soar was another im-
portant advance for AI. The proj-
ect showed how to organize large 
amounts of knowledge, about many 
different topics, and use it efficiently  
enough to simulate the behavior of 
highly trained humans on a very chal-
lenging task. Moreover, the system in-
teracted in real time not with a single 

adversary but with multiple oppo-
nents and with multiple allies, com-
municating with the latter as needed 
to coordinate complex joint activities. 
TacAir-Soar was efficient, effective, 
and robust, and human pilots judged 
it an excellent teammate in a domain 
far richer than chess. One drawback 
that emerged from the project con-
cerned the time and expense needed 
to construct the knowledge base that 
provided this expertise. Also, despite 
its expertise as a fighter pilot, the sys-
tem could not operate outside this 
complex but circumscribed domain.

Recent Progress on 
Interactive Cognitive Systems
Research in this arena did not halt at 
the end of the last century. Efforts to 
develop computational artifacts that 
demonstrate key features of social 
intelligence have continued. In this 
section, I examine some more recent 
examples, again describing their abil-
ities, the reasons they are interesting, 
and the simplifying assumptions on 
which they have relied.

The Façade System
Another important example of an in-
teractive cognitive system is Mateas 
and Stern’s13 Façade, which actually 
comprised multiple intelligent agents 

that operated in a simulated apart-
ment. Users could view this environ-
ment, including avatars for two of the 
agents, through a graphical interface, 
and they could interact with them us-
ing natural language text. The agents 
could understand these sentences, 
generate responses or initiate their 
own utterances, control their bod-
ies’ gaze, expression, and gestures, 
and exhibit emotional responses and 
distinct personalities. A third agent 
served as a high-level manager that 
modulated the avatars’ behavior to 
achieve certain dramatic goals. Many 
users felt they were interacting with a 
genuine but troubled couple.

Façade was another intellectual 
breakthrough for the field, offering 
the first believable agents that inter-
acted with users in a natural man-
ner over an extended period. These 
agents integrated several abilities that 
are central to human interaction and 
demonstrated their integration in a 
dramatic setting. They infer simple 
models of the user’s beliefs and goals, 
attempt to manipulate the user to 
achieve their own ends, and display a 
variety of emotions in the same situ-
ations as humans. One drawback of 
Façade, as with TacAir-Soar, was 
the time and effort needed to create 
its agents’ knowledge bases. More-
over, although they exhibited impres-
sive abilities in social cognition, these 
were nevertheless limited to the set-
ting in which they operated.

Human–Robot Interaction
Even more recently, Talamadupula  
and colleagues14 have reported a mo-
bile robotic system that interacts with 
a human teammate in the context of 
disaster relief scenarios, which in-
volve finding and treating injured 
people in dangerous spaces for which 
available maps might be unreliable. 
Interaction takes place through spo-
ken natural language, with the robot 
accepting commands and answering 
questions it receives from the team-
mate and then informing him of 

Interactive cognitive 
systems have obvious 
applications in education, 
where individual tutoring 
appears to play an 
important role in learners’ 
success.
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important events as they occur. Based 
on these communications, the robot-
ic agent interprets the human’s goals 
and intended plans, generates its own 
top-level goals to drive behavior, in-
terleaves generation of plans with 
their execution in pursuit of these 
goals, and even learns the meanings 
of new terms to extend its vocabu-
lary and improve its ability to interact 
with others more effectively.

This system is not as advanced as 
others I have considered: the project 
has not had access to the same level of 
engineering resources, but it offers a 
proof of concept that interactive cog-
nitive systems have an important role 
to play in robotics. Like the previous 
examples, this effort has shown that 
we can integrate language process-
ing, plan understanding, plan gener-
ation, reactive execution, and social 
cognition to support coordinated be-
havior in pursuit of complex joint ac-
tivities. Results with the system have 
been limited to reasonably narrow 
domains of application and to only 
a few participants, but it shows that 
the cognitive systems approach holds 
considerable promise for supporting 
human–robot coordination, an im-
portant topic that has been receiving 
increased attention.

Instructable Game Players
In other recent work, Hinrichs and 
Forbus15 have described an agent that 
learns to play games from instruction 
and demonstration. The human tea-
cher provides natural language text 
about participants, layout, entities, 
and moves that the system interprets 
using generic knowledge about games 
to resolve ambiguities. The instructor 
also demonstrates these ideas with 
diagrams on a sketch pad, which the 
program maps onto known concepts 
and activities. Once it has acquired 
this content, the system can use it to 
play the game by making legal, but 
not always good, moves at appro-
priate times. The developers dem-
onstrated their artifact’s abilities on 

Tic-Tac-Toe, which it learned from 
only 11 instructions, and Hexapawn, 
which it acquired from 16 utterances.

Like the previous effort, this system 
is still in its early stages, but it dem-
onstrates a novel capacity—learning 
to play games—by integrating natu-
ral language processing, sketch under-
standing, and multistep reasoning, as 
well as the ability to use the resulting 
knowledge in practice. The computa-
tional artifact uses multimodal inter-
action and background knowledge to 
constrain interpretations of the tutor’s 
input, letting it acquire complex pro-
cedures that take reasonable actions 

in a variety of different game-playing 
contexts. Kirk and Laird16 have re-
ported a similar system that learns—
and transfers across settings—entities 
and rules of games and puzzles with-
out sketch understanding but with the 
ability to ask clarification questions. 
These efforts offer a radically dif-
ferent—and far more human-like— 
approach to learning in games than 
assumed by techniques for reinforce-
ment learning17 that have become 
popular in some circles.

Other Progress  
on Social Cognition
This list does not exhaust research on 
the topic of interactive cognitive sys-
tems; I have examined only a sample 
of promising results that can serve as 
role models for future work. Some 
other impressive examples include the 
following:

• Allen, Miller, Ringger, and Sikor-
ski’s18 TRAINS system, an inter-
active assistant that integrated 
planning, language processing, and 
inference to help users create trans-
portation plans through mixed-ini-
tiative spoken dialogue;

• Rich, Sidner, and Lesh’s19 COLLA-
GEN, which assisted users in op-
erating complex devices through 
a graphical interface, asking them 
questions and giving advice as 
needed until they completed the 
joint activity successfully;

• Swartout and colleagues’20 Virtu-
al Humans project, which has cre-
ated several synthetic characters 
that interacted with users in realis-
tic settings by combining language, 
non verbal signaling, planning, emo-
tions, and social reasoning;

• Bohus and Horvitz’s21 Artificial 
Receptionist, a synthetic character 
that integrated spoken dialogue, vi-
sion, and inference to welcome visi-
tors to an office building and help 
them achieve their meeting-related 
goals;

• Playmate and related robotic sys-
tems9 that interacted with hu-
mans in spoken language and 
operated in physical settings to 
collaboratively carry out complex 
tasks; and

• McShane and colleagues’22 Mary-
land Virtual Patient, which com-
bined language understanding, 
reason ing, decision making, epi-
sodic memory, and language gener-
ation to engage in textual dialogues 
with a doctor about symptoms, 
medical treatments, and side effects 
it experienced.

Moreover, the system 
interacted in real time not 
with a single adversary but 
with multiple opponents 
and with multiple allies, 
communicating with 
the latter as needed to 
coordinate complex joint 
activities.
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Like earlier examples, each of these 
engineering efforts produced an im-
pressive interactive cognitive system 
that showed specific technical ad-
vances and lent credence to the social 
cognition hypothesis.

Despite their successes, these arti-
facts shared some limitations that 
deserve greater attention from the 
research community. One is that 
they constructed simple models of 
other agents’ beliefs and goals, typi-
cally only what was needed for their 
particular task, which reduced their 
extensibility. Another issue is that 
they carried out little reasoning 
about users’ emotions or person-
alities, which would have let them 
adapt to these individual differenc-
es. A related constraint is that their 
interactions with users were rea-
sonably short, meaning they could 
not gain enough experience with 
them to infer deeper models of this 
type. I do not intend these as cri-
tiques, since each system achieved 
its aims, but rather as guides for fu-
ture research.

Challenges for Interactive 
Cognitive Systems
I maintain that previous work on 
interactive cognition has led to gen-
uine insights about the social char-
acter of intelligence but also that 
much remains to be done. On what 
problems should future research-
ers focus their energies? One feature 
that the highlighted efforts had in 
common is that they started with a 
challenging and audacious task, then 
designed and implemented a system 
that achieved it, using available com-
ponents where possible and devel-
oping new ones when necessary. In 
this section, I pose four challenge 
problems that could drive additional  
progress in the area. I do not at-
tempt to define them formally, only 
to outline the generic task in each 
case. I also propose component-level 
research that would support these 
integrative efforts.

Deep Conversational Assistants
Spoken-language dialogue is the nat-
ural mode for aiding users on many 
tasks, such as driving, cooking, and 
shopping. Systems like Siri and Cor-
tana provide some abilities along 
these lines, but they are very limited 
in scope and do not engage in very 
long or very deep conversations. A 
few prototypes have inferred models 
of their users’ long-term preferences, 

such as Thompson, Göker, and Lang-
ley’s23 destination advisor, which 
engaged in personalized dialogues 
based on user profiles it inferred from 
earlier interactions. However, even 
these systems have emphasized re-
trieval from memory rather than so-
cial inference and reasoning.

We need additional research on 
deep conversational assistants that 
carry out extended dialogues about 
goal-directed activities. These inter-
active cognitive systems should take 
into account the surrounding task 

context, infer joint beliefs and goals 
(what Clark24 has called common 
ground), and store and utilize content 
about previous interactions with the 
user. Gabaldon, Langley, and Mead-
ows25 reported one such system that 
assisted people in carrying out com-
plex procedures about which it had 
more knowledge, inferring the user’s 
beliefs and goals over the course of 
their dialogue. However, it utilized 
logical statements for inputs and out-
puts, and future assistants of this 
sort should combine deep processing 
of natural language with reasoning 
about others’ mental states, drawing 
on social cognition to help achieve 
their users’ aims.

Richer Nonplayer  
Game Characters
Another obvious area for interactive 
cognitive systems is computer games, 
which Laird and van Lent26 have ar-
gued is the “killer application” for AI. 
Synthetic characters have played key 
roles in this setting for decades, but 
despite improved graphical depiction, 
they typically remain very shallow. 
Much of the AI research in this area 
has focused on improved algorithms 
for finding paths or techniques for ex-
ecuting behavior trees that support 
conditional reactive control. These 
efforts, and their parallels in the 
game industry, have led to more en-
tertaining experiences, but they have 
not delivered on Laird and van Lent’s 
vision. Façade remains one of the few 
environments that incorporate deeper 
forms of synthetic participants.

There remains both a need and an 
opportunity to develop richer, more 
human-like nonplayer characters for 
interactive games. These should infer 
human players’ beliefs and goals, then 
take them into account in selecting 
their own actions, so they can better 
aid their allies and counter their oppo-
nents. They should communicate with 
human players in natural language 
dialogue, keeping track of earlier dis-
cussions and commitments, and they 

The computational 
artifact uses multimodal 
interaction and 
background knowledge to 
constrain interpretations 
of the tutor’s input, 
letting it acquire complex 
procedures that take 
reasonable actions in a 
variety of different game-
playing contexts.
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should develop joint plans that involve 
coordination, monitoring them for un-
expected events that require replan-
ning. This will let the agents cooperate 
with people on extended tasks of com-
mon interest and even form long-term 
relationships based on their interac-
tions, thus providing a much fuller in-
teractive experience.

Multifunctional Game Players
The General Game Playing competi-
tion, first described by Genesereth, 
Love, and Pell,27 has encouraged 
progress toward general intelligence 
by providing a venue for demonstrat-
ing and evaluating systems that play 
a variety of games. The competition 
ensures generality and sidesteps the 
knowledge-acquisition bottleneck by 
providing entrants with the rules for 
novel games in a standard formalism. 
Rather than being fine-tuned for one 
arena, such as chess, systems must 
have the ability to handle any game 
in the language with reasonable ef-
fectiveness. However, the framework 
focuses on playing games, which is 
only one facet of game-related activ-
ity. In contrast, humans can use their 
domain knowledge in different ways, 
and we should develop interactive 
systems with the same versatility.

The field would benefit from an ex-
panded competition that fosters devel-
opment of systems that are not only 
general but that are also multifunc-
tional. This would require that, given 
the rules for a particular game, enter-
ing systems should do more than sim-
ply play it effectively. They would also 
need to discuss details of their previ-
ous games with humans, provide run-
ning commentary on games played by 
others, analyze and converse about 
particular game situations, and even 
teach the games to human novices. 
Evaluating success on each function 
would be more difficult than counting 
wins and losses, but it would measure 
breadth of intellectual ability in addi-
tion to generality and domain inde-
pendence. This would reward research 

on more versatile cognitive systems 
that reflect the multidimensional char-
acter of intelligence.

Synthetic Character Actors
Elsewhere,28 I have outlined challenge 
problems that could drive research on 
integrated cognitive systems. Some 
readers have found my proposals for 
building synthetic entertainers, attor-
neys, and politicians to be overly fan-
ciful, so I will not repeat them here. 
However, they suggest another type of 
challenge problem—devising synthetic 
character actors—that would be more 

tractable and equally compelling. Com-
puter-generated extras are already used 
widely in cinema, but they have simple 
reactive controllers and lack higher-
level cognition. In contrast, a character 
actor must interpret a script and back-
ground story, take on the beliefs, goals, 
emotions, and personality of the role, 
and use this construct to breathe life 
into the lines that he or she recites.

Developing synthetic character ac-
tors would force the community to 
delve more deeply into these aspects of 
cognition in a constrained setting that 
is nevertheless highly social. The result-
ing systems would read and internal-
ize brief but radically different scripts, 
with alternative background stories, 
as though auditioning for the parts. 
This would demonstrate their gener-
ality, much as in the General Game 

Playing competition. Evaluation would 
be more subjective, but this could be 
handled by a panel of judges that rates 
actors on expressiveness, believability, 
and the like, just as in many human 
competitions. Moreover, people would 
enjoy watching and critiquing the audi-
tions, thus exposing cognitive systems 
technology, and demonstrating its po-
tential, to the broader public.

Component-Level Research
As its name suggests, research on 
cognitive systems emphasizes the cre-
ation of integrated computational ar-
tifacts from existing components, but 
it does not rule out work on the el-
ements themselves. Developing inter-
active intelligent agents of the types 
just described could also require ad-
vances at the component level, in-
cluding the following:

• improved representations for oth-
er agents’ mental states, including 
not only their beliefs, goals, inten-
tions, and knowledge, but also de-
scriptions of their emotions, their 
personalities, and even their moral 
tenets;

• better methods for reasoning about 
such models of other agents based 
on incomplete observations, using 
abductive inference mechanisms 
that introduce plausible default as-
sumptions, rather than deductive 
techniques;

• extended approaches to plan under-
standing that infer, from another 
agent’s behavior, not only its be-
liefs, goals, and intentions but also 
how that agent’s decisions them-
selves take into account its own 
models of others’ mental states;

• along similar lines, novel methods 
for generating and executing plans 
that alter the beliefs, goals, and in-
tentions of other agents, in some 
cases to help them achieve shared 
objectives but in others to take ad-
vantage of them through omission, 
misdirection, and even outright de-
ception; and

We need additional 
research on deep 
conversational assistants 
that carry out extended 
dialogues about goal-
directed activities.
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• incorporating these advances into 
mechanisms for understanding and 
generating task-oriented dialogue, 
especially in situations that involve 
long-term interaction, which would 
benefit greatly from detailed mod-
els of others’ mental states.

We can use these in the context of 
challenge problems such as those 
outlined earlier, but we can also ex-
amine them in simpler settings like 
classic fables, as studied by Meehan29 
and by Pearce and colleagues;30 these 
raise many of the same issues in ide-
alized scenarios but require substan-
tially less domain content and thus 
less knowledge engineering.

In this article, I reviewed the goals 
and assumptions of the cognitive 

systems paradigm, described two 
core hypotheses it adopts, and intro-
duced a third claim, about social in-
telligence, that motivates an interest 
in interactive cognitive systems. I re-
viewed both classic examples of such 
intelligent agents and more recent in-
stances that show interest in the topic 
remains active. Each of these com-
putational artifacts made simplify-
ing assumptions but also contributed 
substantially to our understanding of 
distinctive mental abilities. In addi-
tion, I proposed classes of challenge 
problems that could guide research 
on social intelligence in exciting new 
directions.

Critics of the cognitive systems 
movement, as I have defined it, and 
its historical antecedents often claim 
that its assumptions and methods have 
“failed.” The examples reviewed in 
this article offer clear evidence that 
the paradigm has succeeded in con-
structing sophisticated artifacts that 
reproduce key aspects of human in-
telligence, including ones that involve 
social cognition. Moreover, recent 
progress in the area indicates that 
the research community remains ac-
tive and continues to advance our 

understanding of the mind. State-
ments that the paradigm has reached a 
dead end seem highly premature, and 
attempts to associate the “cognitive 
systems” label with statistical tech-
niques are simply inappropriate. His-
torically, both the pattern recognition 
and behaviorist movements have been 
antithetical to the study of high-level 

cognition,5,6 and there is little evidence 
that their modern incarnations—
deep neural networks and reinforce-
ment learning—offer as productive 
paths toward replicating social intel-
ligence as does the cognitive systems  
framework. 

Acknowledgments
The analyses presented here were sup-
ported by Grant No. N00014-15-1-2517 
from the Office of Naval Research, which 
is not responsible for its contents. I thank 
Alfredo Gabaldon, Ben Meadows, Chris 
Pearce, Ted Selker, and Jim Spohrer for 
useful discussions about interactive cogni-
tive systems.

References
 1. A. Turing, “Computing Machinery and 

Intelligence,” Mind, vol. 59, 1950,  
pp. 433–460.

 2. R. Brachman and Z. Lemnios, “DARPA’s  
New Cognitive Systems Vision,” Com-
puting Research News, vol. 14, 2002, 
p. 1.

 3. P. Langley, “The Cognitive Systems 
Paradigm,” Advances in Cognitive 
Systems, vol. 1, 2012, pp. 3–13.

 4. J. Schmidhuber, “Deep Learning in Neu-
ral Networks: An Overview,” Neural 
Networks, vol. 61, 2015, pp. 85–117.

 5. G.A. Miller, “The Cognitive Revo-
lution: A Historical Perspective,” 
TRENDS in Cognitive Sciences, vol. 7, 
2003, pp. 141–144.

 6. P. Langley, “The Central Role of Cogni-
tion in Learning,” Advances in Cogni-
tive Systems, vol. 4, 2016, pp. 3–12.

 7. A. Newell and H.A. Simon, “Computer 
Science as Empirical Enquiry: Symbols 
and Search,” Comm. ACM, vol. 19, 
1976, pp. 113–126.

 8. T. Winograd, “Understanding Natural 
Language,” Cognitive Psychology,  
vol. 3, 1972, pp. 1–191.

 9. H.I. Christensen et al., eds., Cognitive 
Systems, Spring-Verlag, 2010.

 10. K.R. Koedinger et al., “Intelligent Tutor-
ing Goes to School in the Big City,” Int’l 
J. Artificial Intelligence Education,  
vol. 8, 1997, pp. 30–43.

 11. A.C. Graesser et al., “Intelligent 
Tutoring Systems with Conversational 
Dialogue,” AI Magazine, vol. 22, 2001, 
pp. 39–51.

 12. R.M. Jones et al., “Automated Intelligent 
Pilots for Combat Flight Simulation,” AI 
Magazine, vol. 20, 1999, pp. 27–42.

 13. M. Mateas and A. Stern, “Structuring 
Content in the Façade Interactive Drama 
Architecture,” Proc. Artificial Intelli-

 T H E  A U T H O R
Pat Langley is director of the Institute for the Study of Learning and Expertise. His  
research interests include unified cognitive architectures, computational scientific discov-
ery, and interactive cognitive systems. Langley has a PhD from Carnegie Mellon Univer-
sity. Contact him at patrick.w.langley@gmail.com.

The field would benefit 
from an expanded 
competition that fosters 
development of systems 
that are not only 
general but that are also 
multifunctional.



30  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

C O G N I T I V E  C O M P U T I N G

gence and Interactive Digital Entertain-
ment, 2005, pp. 93–98.

 14. K. Talamadupula et al., “Coordination 
in Human-Robot Teams Using Mental 
Modeling and Plan Recognition,” Proc. 
IEEE/RSJ Int’l Conf. Intelligent Robots 
and Systems, 2014, pp. 2957–2962.

 15. T.R. Hinrichs and K.D. Forbus, “X 
Goes First: Teaching Simple Games 
through Multimodal Interaction,” 
Advances in Cognitive Systems, vol. 3, 
2014, pp. 31–46.

 16. J.R. Kirk and J.E. Laird, “Interactive 
Task Learning for Simple Games,” 
Advances in Cognitive Systems, vol. 3, 
2014, pp. 13–30.

 17. G. Tesauro, “Temporal Difference 
Learning and TD-Gammon,” Comm. 
ACM, vol. 38, 1995, pp. 58–68.

 18. J.F. Allen et al., “A Robust System for 
Natural Spoken Dialogue,” Proc. 34th 
Ann. Meeting Assoc. Computational 
Linguistics, 1996, pp. 62–70.

 19. C. Rich, C.L. Sidner, and N. Lesh, 
“COLLAGEN: Applying Collaborative 

Discourse Theory to Human-Computer 
Interaction,” AI Magazine, vol. 22, 
2001, pp. 15–26.

 20. W.R. Swartout et al., “Toward Virtual 
Humans,” AI Magazine, vol. 27, 2006, 
pp. 96–108.

 21. D. Bohus and E. Horvitz, “Models for 
Multiparty Engagement in Open-World 
Dialog,” Proc. 10th Ann. SIGDIAL 
Meeting Discourse and Dialogue, 2009, 
pp. 225–234.

 22. M. McShane et al., “Inconsistency as 
a Diagnostic Tool in a Society of Intel-
ligent Agents,” Artificial Intelligence in 
Medicine, vol. 55, 2012, pp. 137–148.

 23. C.A. Thompson, M.H. Göker, and  
P. Langley, “A Personalized System for 
Conversational Recommendations,”  
J. Artificial Intelligence Research,  
vol. 21, 2004, pp. 393–428.

 24. H.H. Clark, Using Language, Cam-
bridge Univ. Press, 1996.

 25. A. Gabaldon, P. Langley, and  
B. Meadows, “Integrating Meta-Level 
and Domain-Level Knowledge for  

Task-Oriented Dialogue,” Advances  
in Cognitive Systems, vol. 3, 2014,  
pp. 201–219.

 26. J.E. Laird and M. van Lent, “Human-
Level AI’s Killer Application: Interactive 
Computer Games,” AI Magazine,  
vol. 22, 2001, pp. 15–25.

 27. M. Genesereth, N. Love, and  
B. Pell, “General Game Playing:  
Overview of the AAAI Competition,” 
AI Magazine, vol. 26, 2005,  
pp. 63–72.

 28. P. Langley, “Four Research Challenges 
for Cognitive Systems,” Advances in 
Cognitive Systems, vol. 3, 2014,  
pp. 3–11.

 29. J.R. Meehan, “TALE-SPIN: An Interac-
tive Program That Writes Stories,” Proc. 
5th Int’l Joint Conf. Artificial Intelli-
gence, 1977, pp. 91–98.

 30. C. Pearce et al., “Social Planning:  
Achieving Goals by Altering Others’ 
Mental States,” Proc. 28th AAAI  
Conf. Artificial Intelligence, 2014,  
pp. 402–408.

Call for Software Engineering Award Nominations
Established in memory of Harlan D. Mills to recognize researchers and 

practitioners who have demonstrated long-standing, sustained, and impactful 
contributions to software engineering practice and research through the 

development and application of sound theory. The award consists of a $3,000 
honorarium, plaque, and a possible invited talk during the week of the annual 

International Conference on Software Engineering (ICSE), co-sponsored by the 
IEEE Computer Society Technical Council on Software Engineering.

The award nomination requires at least 3 endorsements. 
Self-nominations are not accepted. 
Nominees/nominators do not need

to be IEEE or IEEE Computer Society members.

Harlan
D. Mills
Award

Deadline for 2018 Nominations:
1 October 2017

Nomination site:
awards.computer.org


	mex20170400c1
	mex20170400c2
	mex2017040001
	mex2017040003
	mex2017040005
	mex2017040006
	mex2017040022
	mex2017040031
	mex2017040035
	mex2017040040
	mex2017040048
	mex2017040059
	mex2017040064
	mex2017040072
	mex2017040078
	mex2017040087
	mex20170400c3
	mex20170400c4

