
to appear in the mlw-89 session on combining empirical and explanation-based learningUnifying Themes in Empirical and Explanation-Based LearningPat Langley (Langley@ics.uci.edu)Department of Information & Computer Science, University of California, Irvine, CA 92717 USAThe Need for Uni�ed Theories of LearningA central activity of science is the search for unifying principles that account for apparently diversephenomena within a single framework. However, recent work in machine learning has tended to emphasizethe di�erences between learning methods. In this paper, I argue that two of the major paradigms { inductionand explanation-based learning { are more similar than the literature suggests, and that we must focus onthese similarities before we can build a uni�ed theory of learning mechanisms.Signi�cant di�erences certainly exist between explanation-based and empirical methods, but the per-ceived chasm is far greater than the actual one. This perception has resulted partly from a literature thatabounds with rhetorical statements claiming superiority of one method over another. Other causes for theperceived distinction include divergent notations and di�erent measures of performance, which hide the un-derlying similarity of mechanisms and tasks. In this paper, I present examples of misleading rhetoric andconicting metrics that the �eld must overcome before it can approach a uni�ed theory of learning.Learning from One Instance and Many InstancesOne common claim is that empirical methods require many instances to learn, whereas EBL can learnfrom a single instance (e.g., Mitchell, Keller, & Kedar-Cabelli, 1986, pp. 47{48). This misleading statementprobably results from comparisons between explanation-based methods (which are typically incremental)and nonincremental induction methods, such as Quinlan's (1986) ID3. However, if one examines incrementalinductive methods, such as Fisher's (1987) Cobweb, the true situation becomes apparent. Any incrementalapproach to induction (even neural networks) can learn something from a single instance, though it may notlearn as much as an EBL technique.The above claim also suggests that EBL methods can learn everything they need to know from a singleinstance, but this is clearly false as well. Analytic techniques require one instance for each proof structurethey compile. For example, Pazzani's (1988) Occam acquires four schemata for recognizing when economicsanctions will fail and three schemata for predicting when they will succeed; thus, it requires not one traininginstance for this domain, but seven. Although EBL techniques may learn more rapidly than empiricalmethods, this is a di�erence in learning rate, not a di�erence between one and many instances.Learning With and Without SearchA second popular belief is that empirical methods require extensive search, whereas explanation-basedmethods can learn without search. Again, this statement is misleading on two fronts. First, it focuseson inductive methods like Mitchell's (1982) version-space algorithm, which use memory-intensive searchtechniques to consider competing hypotheses. However, many inductive methods rely on memory-limitedmethods such as greedy algorithms (Quinlan, 1986) and incremental hill climbing (Fisher, 1987). Althoughsuch methods operate within a space of hypotheses, they do not `search' in the usual sense of this term.On the other hand, if one views the explanation process as a component of learning (rather than asperformance), then EBL itself can involve extensive search through the space of explanations. Work in thisparadigm has not emphasized this search because, to date, most tests have involved relatively small domaintheories. In addition, one goal of EBL is to improve e�ciency, and Minton (1988) has shown that adding



unifying themes for machine learning page 2compiled rules to the knowledge base sometimes produces just the opposite e�ect. To deal with this issue,his Prodigy system computes statistics for learned rules, deleting those that are not worth retaining. Onecan view this process as search through a space of compiled rules, just as empirical methods search a spaceof induced rules. Whether one labels either activity as `search' is less important than the realization thatboth frameworks must deal with large rule spaces.Learning With and Without Domain KnowledgeYet another claim is that explanation-based methods take domain knowledge into account during learn-ing, whereas empirical methods are knowledge free (e.g., Mitchell et al., 1986, p. 48). The �rst part ofthis statement is true enough, but the second half ignores the fact that any incremental induction systeminevitably changes its knowledge level over time. After such a system has seen n instances, it will processinstance n + 1 di�erently than if it had seen it �rst. For example, Fisher's (1987) Cobweb constructs aconcept hierarchy that organizes instances it has encountered, and the structure of this memory inuencesnot only the predictions it makes on new instances, but the learning that occurs. Thus, Cobweb takesadvantage of domain knowledge to direct the learning process. The fact that it acquires this knowledge itself(rather than receiving it from the programmer) makes it no less knowledge intensive.As another example, consider Wol�'s (1982) SNPR algorithm, which is generally viewed as lying at theextreme end of the tabula rasa spectrum. This system accepts a sequence of letters as input, and carries outa hill-climbing search through the space of phrase-structure grammars, using two basic operators. The �rstnotes frequently occurring sequences of symbols and de�nes new `chunks', which correspond to words andphrases. The second learning operator notes when sets of symbols tend to occur in the same context (i.e.,next to a common symbol); this de�nes new disjunctive classes, which correspond to parts of speech andalternative forms of phrases.If one looks only at the relation between SNPR's inputs and outputs, it appears to be the prototypical`knowledge free' induction system. However, the algorithm is semi-incremental, in that it processes only partof its input at a given time, using the knowledge it gains from earlier data in processing its later experience.Speci�cally, SNPR constructs a partial grammar to summarize the letter sequences it has observed, and ituses this grammar to rewrite new strings at a higher level of description (i.e., using nonterminal symbols inthe grammar). One can view this activity as constructing partial explanations of the input, and one can viewthe later stages of grammar induction as a form of knowledge-intensive learning that involves extending anincomplete domain theory (the set of grammar rules). Although phrase-structure grammars are a constrainedform of domain theory, they are very similar in structure to those used by many EBL systems.Justi�ed and Unjusti�ed LearningA fourth claim is that explanation-based methods are justi�ed, whereas empirical learning is inherentlyunjusti�ed (e.g., Mitchell et al., 1986, p. 48). The latter statement is clearly true, since empirical learninginvolves an inductive leap from instances to general rules. However, the justi�ed nature of EBL is not soclear. Rules generated by analytic methods are guaranteed to be as accurate as the original domain theory,since the deductive closure does not change. However, they may not be as e�cient as the original ruleset. The common assumption that EBL will improve e�ciency is based on the belief that training and testinstances will follow similar distributions. Thus, analytic methods make an inductive leap with respect toe�ciency that is no more justi�ed than the leap made by empirical methods regarding accuracy.In addition, one can extend the basic explanation-based learning framework to domains in which theinference rules, rather than being deductively valid, are plausible or probabilistic. In such domains, theprocess of compiling multi-step explanations may generate `bad' inference rules that have very low predictiveability, since transitivity does not hold for probabilistic inference chains as it does for deductive chains. In



unifying themes for machine learning page 3such an extended framework, analytic learning methods are not even justi�ed with respect to predictiveaccuracy. Given a reasonably accurate domain theory, such methods may still lead to more rapid learning,but they are not any more `correct' than inductive methods.Accuracy and E�ciency in Machine LearningThe term learning suggests some change in performance, and the empirical and explanation-basedcommunities have been further divided by their concern with di�erent performance measures. Most researchon induction has focused on improving predictive accuracy, whereas most analytical work has (implicitly ifnot explicitly) focused on e�ciency. However, both measures of performance have an important role to playin both approaches to learning.For example, any performance system has limited memory size and processing time; thus, adding rulesthat reduce memory load or increase speed can let one �nish complex tasks that were impossible before learn-ing. This means that EBL can produce improvements in predictive accuracy, and suggests that researchersshould measure it in future studies. Similarly, any induction system that deals with a complex domainwill create many di�erent concepts. If organized ine�ectively, this acquired knowledge may drastically slowthe performance system. This means that retrieval time is a central issue in empirical learning, and thatinduction researchers should examine this performance measure as well.As work in both paradigms starts to bridge this gap, it may reveal previously unsuspected connectionsbetween induction and EBL. For instance, psychological studies suggest that humans recognize certain basic-level categories more rapidly than other concepts. Fisher's (1987) Cobweb/2 { an empirical learning system{ models this e�ect with a mechanism that creates direct indices to some nodes in its concept hierarchy andthat bypasses other concepts. In spirit, this operation is remarkably similar to the caching process by whichmany EBL methods store operationalized de�nitions of concepts to improve retrieval e�ciency.Like the examples in previous sections, this connection suggests that empirical and explanation-basedmethods have much more in common than the literature leads one to expect. If researchers in the twoparadigms can rise above the rhetoric and assumptions that have kept them apart, they can move togethertoward a uni�ed science of machine learning that incorporates insights from both frameworks.ReferencesFisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering . Doctoral dissertation,Department of Computer Science, University of California, Irvine.Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. Proceedingsof the Seventh National Conference on Arti�cial Intelligence (pp. 564{569). St. Paul, MN: MorganKaufmann.Mitchell, T. M. (1982). Generalization as search. Arti�cial Intelligence, 18 , 203{226.Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: A unifyingview. Machine Learning , 1 , 47{80.Pazzani, M. (1988). Learning causal relationships: An integration of empirical and explanation-based tech-niques . Doctoral dissertation, Department of Computer Science, University of California, Los Angeles.Quinlan, J. R. (1986). Induction of decision trees. Machine Learning , 1 , 81{106.Wol�, J. G. (1982). Language acquisition, data compression, and generalization. Language and Communi-cation, 2 , 57{89.


