
From Proceedings of the Sixteenth International Conference on Machine Learning . Bled, Solvenia: Morgan Kaufmann.
Learning User Evaluation Functions forAdaptive Scheduling Assistance
Melinda T. Gervasio and Wayne Iba and Pat LangleyInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, California 94306fgervasio,iba,langleyg@isle.orgAbstractIn this paper, we describe Inca, an adap-tive, advisable assistant for crisis response.The system lets users guide the search to-ward particular schedules by giving high-level, operational advice about the solu-tions desired. Because traces of user inter-actions provide information regarding theuser's preferences among schedules, Incacan draw on machine learning techniquesto construct user models that re
ect thesepreferences. We characterize the modelingtask as that of learning a weight vector fora linear evaluation function that will leadto the same pairwise preferences betweenschedules as the user. Inca adapts to indi-vidual users by adjusting the weights on itsevaluation function using a perceptron-typelearning algorithm. To evaluate the sys-tem's adaptive capabilities, we designed anexperiment involving four types of syntheticusers that di�ered in their evaluation func-tions and in the level of advice they provide.We present experimental results showingthat Inca achieves better performance withmore speci�c advice and with learning, evenon users with evaluation functions that havenonlinearities or unobservable factors.1 INTRODUCTIONIn recent years, there has been a growing interest inpersonalized software as the need has increased for sys-tems that can tailor their behavior to di�erent indi-viduals. For example, the World Wide Web now haselectronic commerce sites that suggest new purchasesbased on a user's past buying behavior, portals thatchoose banner ads depending on the links a user fol-lows, and travel planners that suggest default choices

based on user-speci�ed preferences. Many of these sys-tems use simple heuristics or require a laborious initialphase of user pro�le construction to achieve personal-ization. In contrast, an adaptive user interface (Lang-ley, 1999) uses traces of its interactions with users toautomatically build a model that in
uences the sys-tem's behavior to better suit the user's preferences.In this paper, we present one such system, Inca, anadaptive scheduling assistant that learns user evalua-tion functions over schedules by extracting preferenceinformation from the schedules a user chooses duringinteraction with the system.Inca is a mixed-initiative system designed to aid hu-man users in crisis response. The primary focus of ourwork thus far has been urgency, a de�ning theme ofcrisis. We have addressed this issue through the use ofcase-based reasoning techniques to provide initial can-didate solutions (Iba et al., 1998), as well as throughthe application of machine learning to better predicta user's schedule modi�cations (Gervasio et al., 1998),both of which lead to more e�cient construction ofhigh-quality solutions. In this paper, we extend ourwork on adaptive assistance within a new frameworkthat allows advisable interaction with Inca. By let-ting users interact with the system at higher levels ofabstraction, this new framework lets them more e�ec-tively guide the development of a crisis response.Users provide guidance in the form of advice that di-rects Inca in its search through a highly undercon-strained solution space. The advice users give and thechoices they make while interacting with the systemimplicitly de�ne an evaluation function over solutions.For example, if a user directs Inca to modify a solu-tion to improve its value along some dimension andthen accepts the modi�ed solution, then the user isindicating a preference for the new solution over theold one. This presents an opportunity to adapt to indi-vidual user preferences by examining interaction tracesand inducing user models that approximate these pref-erences. In this paper, we describe an approach that



Learning User Evaluation Functions 153learns evaluation functions over schedules by applyinga perceptron-type learning algorithm to pairwise pref-erences that are drawn from such interaction traces.We begin by providing an overview of Inca's inter-active response process in our application domain ofhazardous material incidents. We then discuss the mo-tivations for higher-level interaction and present ournew framework for advisable scheduling assistance. Inthe following section, we lay the groundwork for ourlearning experiments by presenting Inca's basic learn-ing algorithm and discussing the representation of theexamples and the schedule evaluation function. Afterthis, we present our design for an experiment intendedto test our hypotheses on the e�ects of adaptation,given di�erent types of user evaluation functions anddi�erent levels of advice. The results, which we discussin the succeeding section, support our hypotheses thatboth learning and more speci�c advice would improveperformance. We conclude the paper by discussing re-lated research and summarizing our plans for futurework on adaptive assistance.2 HAZMAT INCIDENT RESPONSEWITH INCAInca is a case-based, interactive, and adaptive compu-tational assistant for crisis response. It uses a case li-brary of previous solutions to seed the problem-solvingprocess with an initial candidate plan and schedule,which lets users develop high-quality responses morequickly (Iba et al., 1998). As a mixed-initiative sys-tem, Inca bene�ts from the invaluable input of hu-man users while letting them retain ultimate controlover the decision-making process. And by adapting todi�erent individuals, the system can increase the e�-ciency of the response process by tailoring its assistantbehavior to user preferences (Gervasio et al., 1998). Inthis paper, we focus primarily on the adaptive natureof Inca and secondarily on the new kinds of interac-tion introduced by the advisable framework.We have applied Inca to HazMat, a synthetic do-main for hazardous materials incidents that we de-veloped using the 1996 North American EmergencyResponse Guidebook (Transport Canada et al., 1996)and manuals of standard operating procedures for sev-eral �re departments. Figure 1 depicts the interactivecrisis response process with Inca. Problem solvingis triggered by an incident alarm, where an incidentconsists of a spill and possibly a �re involving somematerial with hazardous properties such as toxicity,corrosiveness, and 
ammability. Incidents vary in thetype and amount of material involved, the location ofthe incident, and the characteristics of the spill andany �re. The alarm drives Inca to retrieve a solu-tion to a similar incident from its case library, which
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current stateFigure 1: Interactive Crisis Response with Incait uses to seed the interactive planning and schedul-ing phases of crisis response. The primary purposeof planning is to choose a set of actions or jobs, anysubset of which may be allocated resources during thescheduling phase. Di�erent actions are appropriate fordi�erent incidents, with each action addressing par-ticular aspects of a HazMat problem and requiringsome minimum set of resources. During scheduling,decisions are made regarding the jobs to schedule and,for each job, the number of resources to allocate, theparticular resources to use, a duration, and start time.Scheduling in Inca is complicated by the fact that ac-tions may be allocated a variable number of resourcesand assigned arbitrary durations. Allocating more re-sources to an action will result in greater e�ects, butat the cost of greater resource consumption that willconstrain the other actions and their impact on thesituation. For example, assigning all available person-nel to combat the �re will extinguish the �re morequickly but will delay stopping the spill, which willresult in the release of more hazardous material intothe environment. Similarly, scheduling more actionsthat address a particular aspect of the incident willminimize the negative consequences along that dimen-sion, but possibly at the cost of greater negative con-sequences along another one. The resulting undercon-strained scheduling problem makes automation partic-ularly di�cult, calling for an interactive system suchas Inca and presenting the opportunity for learninguser models that support more productive interaction.3 ADVISABLE INTERACTIONIn previous versions of Inca, a user could only changethe retrieved solution at the level of schedule mod-i�cation operations: adding an action to the sched-ule, deleting a scheduled action, changing the durationof an action, shifting the start time of an action, orswitching an action to a di�erent resource. This type



154 Learning User Evaluation Functionsof interaction lets users make the exact changes theydesire, but it can also be quite tedious|something ofparticular concern in time-constrained crisis domains.We decided that more e�cient interaction might beachieved if we instead let Inca generate several candi-date schedules and have the user choose among them,basically shifting more of the scheduling responsibil-ity to the system. The problem remains, however,that autonomous scheduling is particularly di�cult inthis underconstrained domain. Our solution was to letthe user guide the search for a desirable solution byproviding particular types of advice, as dictated andsupported by the characteristics of the solution space.This makes Inca an instance of what Myers (1996)calls advisable planning systems.3.1 CHARACTERISTICS OF THESOLUTION SPACEA primary characteristic of the solution space for haz-ardous materials incident response is that it is highlyunderconstrained. There are many possible solutionsfor each problem and various ways of evaluating them,with di�erent parameters being more important forparticular problems and di�erent users. For example,in a large spill involving a highly toxic chemical in aheavily populated area, the priority in evacuating theinhabitants to safety will probably be on speed ratherthan cost. In a large �re, where there is a severeshortage of resources, more emphasis may be placedon suppressing the �re near occupied buildings thanon stopping the leak.Although the underconstrained nature of the solutionspace and the complexity of the objective functionmake automation di�cult, there are also character-istics that suggest a feasible method of navigation.First, we can de�ne a direct relationship between par-ticular parameters of solution quality and the methodsfor modifying a schedule. Second, we can de�ne a di-rect relationship between the method for improvementalong a particular parameter and the actions them-selves. These two properties help shape the kinds ofadvice Inca can easily operationalize and suggest theframework for our advisable system.3.2 LEVELS OF ADVICEThe �rst level of advice involves directing Inca's at-tention to improve a solution along a particular pa-rameter. We can characterize a solution in terms of itse�ects on a situation (i.e., its achievement of the prob-lem goals) as well as in terms of its cost (e.g., timetaken to reach the goal, number of resources used).In the case of crisis response, as with most real-worldproblems, we are interested in both|we want to eval-uate solutions in terms of their impact on the situa-

tion as well as on their cost of execution. However, inour initial implementation, we decided to focus on theformer, using our HazMat simulator to project thee�ects of a solution on the environment.The simulator tracks the development of the spill, the�re, and the �re and health hazards in terms of theamounts and derivatives of various quantities. Bycomparing the simulation of a response on the inci-dent with the simulation of an unabated situation, wecan come up with a measure of performance improve-ment along the di�erent parameters. For example, ifthe amount spilled in the unabated situation was su,while the amount spilled with a response was sa, thenthe improvement in the amount spilled is 1� su=sa.Thus, an improvement percentage of 1.00 would signifyan instantaneous stoppage of the spill, while 0.00 re-veals that the response had no e�ects whatsoever. Thesimulator keeps track of a total of �fteen parameters,which we can distill into three improvement percent-ages corresponding to spill improvement, �re improve-ment, and hazard improvement. At the �rst level, theuser can thus provide Inca with three types of pa-rameter advice: improve spill handling, improve �rehandling, or improve hazard handling.The second level of advice involves indicating the par-ticular modi�cation method to achieve the desired im-provement. As stated earlier, there is a direct relation-ship between the parameter being improved and theschedule modi�cation methods. A choice of improve-ment parameter constrains the modi�cation methodsthat may be applied. In our case, the three schedulequality parameters we have de�ned correspond to thesame four schedule modi�cation methods. Speci�cally,to improve a schedule along any parameter, Inca caneither add a new action, assign more resources to ascheduled action, increase the duration of a scheduledaction, or start a scheduled action earlier. Applyingany of these modi�cations on a relevant action is guar-anteed not to degrade the quality of the schedule withrespect to the chosen parameter.The third level of advice involves specifying the ac-tion or job on which to apply the chosen modi�cationmethod to achieve the desired improvement. An ac-tion is relevant to a particular parameter if it a�ectsthat parameter. Thus, a given parameter and modi�-cation method de�ne a �xed set of actions over whichthe next decision must be made. For example, if theuser directs Inca to improve �re handling by addingan action, then the only relevant choices are those un-scheduled actions that a�ect the �re, such as extin-guishment and �re suppression. But if improvementis to be achieved by means of shifting an action ear-lier, then the only relevant actions are those scheduledactions that do not already start immediately.



Learning User Evaluation Functions 155The fourth, and �nal, level of advice involves variableinstantiation|that is, specifying particular resources,start times, and durations for a job. Providing adviceat this level is equivalent to Inca's original mode ofinteraction in which users were required to specify theparticular schedule modi�cations they wanted.3.3 VARIABLE-LEVEL INTERACTIONThe basic interaction loop involves the user choosing aschedule from among the current candidates and giv-ing Inca direction on how to improve the solution byproviding advice at each level. However, at any level,the user may defer all remaining decisions to Incaby choosing the ANY option. With the user's advice,Inca then generates a set of candidates for the nextcycle, continuing in this manner until the user is sat-is�ed with one of the current solutions. In keepingwith the urgent nature of crisis response, we constrainInca to a �xed amount of computational resources oneach cycle. Thus, more speci�c advice lets Inca ex-pend more resources in exploring a smaller area of thesearch space, potentially �nding solutions it may nothave found with more abstract advice.In terms of Myers's (1996) three-level taxonomy of ad-vice, parameter speci�cation is a form of evaluationaladvice, which \encompasses constraints on some met-ric de�ned for the overall plan." Method speci�cationis a form of strategic advice, which \consists of recom-mendations on how goals and actions are to be accom-plished." Finally, action speci�cation and variable in-stantiation may be seen as forms of task advice, which\designates speci�c goals to be achieved and actions tobe performed." As in Myers's work on advisable plan-ning, our objective in incorporating advice taking intoInca was to enable users to more e�ectively in
uencethe problem-solving process.4 ADAPTIVE INTERACTIONThe traces of user interactions with Inca provide aready source of training data for adaptation and pre-vious versions of the system used such traces to learnto predict the schedule modi�cation operations a userwould choose next (Gervasio et al., 1998). The ideawas that, by accurately predicting a user's actions,Inca can facilitate the response development process.We can extend this work within the current frameworkby using similar inductive learning techniques to pre-dict the particular advice a user will give in the currentsituation, based on the user's previous behavior.However, the current advisable interaction frameworkalso provides an opportunity to explore a new learningtask. Inca currently employs a weighted linear evalu-ation function over schedules. If we let c be a particu-

lar candidate schedule, and sc, fc, and zc be its spill,�re, and hazard improvement, as de�ned earlier, thenInca's evaluation function is I(c) = wssc + wffc +wzzc, where wp is a weight associated with parameterp. We can thus characterize Inca's task of adapting toa user as that of learning a weight vector hws; wf ; wzithat will lead it to prefer (i.e., rank higher) the sameschedules as the user. More concretely, if we let thetarget function (i.e., the user's evaluation function) beU , then we can say that Incamodels the user perfectlyif 8c1;c2U(c1) > U(c2)! I(c1) > I(c2).Cast in this manner, Inca's learning task becomesvery similar to that of Roger et al.'s Adaptive RouteAdvisor (1999), which seeks to discover user prefer-ences over alternative driving routes. Drawing fromthat work, we decided to use a di�erential perceptron,which learns over sets of examples indicating pairwisepreferences|in our case, preferences between sched-ules. That is, each example is an ordered pair (c1; c2),where U(c1) > U(c2), and Inca's training task isto �nd an evaluation function that will minimize thenumber of examples over which it prefers the wrongcandidate.Without requiring the user to rank every set of can-didate schedules, we can still obtain these pairwisepreferences from a user's interactions with Inca. Inthe advisable framework, the user indicates a prefer-ence for a particular schedule over all other candidateswhen he directs the system to improve that schedule.Given that the user has so far had j interactions withInca in developing a response for a particular problemand now chooses the ith candidate in a set of n candi-dates, we can extract n� 1+ j pairwise preferences|speci�cally, n� 1 examples capturing the informationthat the user preferred the ith candidate over the n�1other candidates in the set, and j examples denotingthe user's preference of this ith candidate over all thecandidates chosen in the j previous interactions.Inca uses a batch update scheme, adjusting the per-ceptron weights once per epoch. Let E be that sub-set of a set of examples X where I prefers the wrongcandidate (i.e., E = f(c1; c2) 2 X jI(c1) � I(c2)g),and let pc be the value of parameter p for candidatec. Then the di�erential perceptron update rule willincrease the weight associated with p by the amount�pP(c1;c2)2E(pc1 � pc2), where �p is the learning rateassociated with p.1 Intuitively, Inca will move to-wards the correct preference by increasing the weightfor a parameter if that parameter had a higher valuefor the preferred candidate than for the non-preferred1To speed convergence, we use adaptive learning rates,where each parameter has its own learning rate determinedby the current indicated change on its associated weightas well as the direction and magnitude of previous recentchanges (Jacobs, 1988).



156 Learning User Evaluation Functionscandidate, and by decreasing it if it had a lower valueinstead. In standard perceptron training fashion, Incaiterates through its training examples until it makesno more errors or it has gone through more than somemaximum number of epochs.5 ADAPTATION EXPERIMENTSTo evaluate Inca's adaptive capabilities, we devel-oped a variety of synthetic users to test our hypothesesabout the e�ects of evaluation functions and advice onadaptation. While we might expect Inca to adapt tousers with evaluation functions similar to its own, wealso believe that Inca will be able to tailor its behaviorto users with evaluation functions of di�erent forms.Furthermore, we expect that more speci�c advice dur-ing scheduling will, in some sense, provide \better"examples and thus enable Inca to adapt more quickly.5.1 USER EVALUATION FUNCTIONWe designed three types of synthetic users to test ourhypothesis on Inca's ability to adapt to di�erent in-dividuals. Type 1 users had evaluation functions ofthe same form as Inca's weighted linear combinationover the spill, �re, and hazard improvement measures.They di�ered only in the speci�c weights they attachedto each parameter. We created �ve Type 1 users, eachwith a randomly generated weight vector. Type 2 usersalso used a linear evaluation function but this functionincluded three additional features (unknown to Inca)that measured, respectively, the number of scheduledjobs, the number of resources used, and the durationof the schedule. We created three Type 2 users, whoseweight distribution varied between the known and un-known features. Speci�cally, these three users had aweight ratio between known and unknown features of1:1, 1:3, and 3:1 respectively. Type 3 users used somenonlinear combination of the original three features,and we created three such users with di�erent nonlin-ear evaluation functions. Speci�cally, if we let s bethe spill improvement, f the �re improvement, and zthe hazard improvement, the �rst Type 3 evaluationfunction was sfz; the second was 3psfz; and the thirdwas sf1�z.5.2 LEVEL OF ADVICEWe created one more user type to evaluate our hypoth-esis on advice. By default, our synthetic users provideonly the highest level advice, namely that of instruct-ing Inca to improve the schedule along ANY param-eter. User Type 4 was a variant of User Type 1 whodi�ered only in that it gave advice at the parameterlevel, specifying the parameter along which improve-ment was desired. Speci�cally, a Type 4 user requests

Table 1: Average Number of Interactions, Candidates,and Examples Generated for Di�erent User TypesDuring Problem SolvingUser interactions/ candidates/ examples/Type problem interaction problem set1 7.58 16.04 757.122 5.00 15.77 384.203 5.65 18.79 629.674 5.86 5.15 219.08all 6.02 13.94 497.52improvement along that parameter which has the po-tential to contribute the most to the overall scheduleevaluation, given that user's evaluation function. If welet p be the current improvement measure for a partic-ular parameter (spill, �re, hazard), then the amount ofpotential improvement associated with p is wpu(1�p),where wpu is the user's weight on feature p.5.3 TRAINING REGIMENLearning was carried out online using the perceptrontraining algorithm presented earlier, with random ini-tial weights and the maximum number of epochs setto 100.2 After each interaction, new examples wereextracted from the current set of candidates and theuser's choice, and these were were added to the set ofall examples. Inca was then retrained on the wholeset, starting with the �nal set of weights from the pre-vious training episode.To control for the e�ects of problem sequence on learn-ing and of speci�c problems on performance, each userwas trained �ve times using �ve di�erent problem sets,each consisting of a sequence of �ve randomly gen-erated problems. That is, each user responded totwenty-�ve di�erent problems broken up into �ve sep-arate training sequences, with the problems and se-quences constant across all users. Also, problem solv-ing was always started with an empty schedule. Onaverage, each response to a problem required 6.02 in-teractions, with each interaction resulting in an aver-age of 13.94 candidates. Each problem set also gener-ated an average of 497.52 examples over the course ofsolving all �ve problems in the set. Table 1 provides amore detailed breakdown by user type. The baselineswere determined by running Inca's default evaluationfunction (which assigns equal weights to the parame-ters) over the same �ve problem sets.2The adaptive learning rates �p were initialized to 0.01for each parameter p, with � = 0:1, � = 0:5, and � = 0:7.
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Table 2: Predictive Errors for Di�erent User Types,Averaged Over All Users and Problem SetsUser Baseline With LearningType mean std. err. mean std. err.1 10.59 1.61 4.24 0.402 5.49 0.95 6.11 1.083 10.48 2.11 6.76 1.204 1.12 0.48 0.83 0.435.4 PERFORMANCE MEASURESThe objective of adaptation in Inca is to learn topresent the user with those candidate schedules thathe �nds desirable. As discussed earlier, one measureof the quality of a user model is how well its inducedpreferences over a set of schedules mimic those of theuser's. Recall that learning is applied on a set of ex-amples derived from interaction with a user U , witheach example being an ordered pair (c1; c2), whereU(c1) > U(c2) and Inca is in error if I(c1) � I(c2).The predictive error of a hypothesis I on a set of ex-amples X , where it makes errors on the subset E � X ,is thus de�ned simply as jEj=jX j.We can measure the e�ects of learning in an onlinefashion by testing the current user model after everyinteraction on the set of new examples generated fromthat interaction, prior to retraining. This achievesthe necessary separation between training and testing,since Inca is always evaluated on examples it did notsee during learning. If we let ej be the number of errorsInca makes on the xj new examples generated frominteraction j, then we can calculate Inca's predictiveerror over a problem set involving n interactions as(Pnj=1 ej)=(Pnj=1 xj). We can similarly establish thebaseline predictive error by summing the errors Incamakes using its default evaluation function and divid-ing by the total number of examples, the only di�er-ence being that, since no training is involved, testingmay be done after all the examples are generated.A second measure of model goodness is based on therank r of the candidate a user chooses. Inca presentsthe set of candidates in ranked order, depending ontheir value according to its current evaluation func-tion. Thus, if Inca had a perfect user model, the userwould always choose the highest ranked schedule (i.e.,r = 1) in the set of candidates the system presents.As before, we can measure the e�ects of learning inan online fashion by looking at the immediate resultof an interaction, prior to retraining. More concretely,let rj be the rank of the candidate the user choosesat interaction j, where the new candidates were or-dered according to the current model. Then Inca's

Table 3: Rank Error for Di�erent User Types, Aver-aged Over All Users and Problem SetsUser Baseline With LearningType mean std. err. mean std. err.1 1.93 0.36 0.63 0.082 0.82 0.13 0.92 0.153 2.34 0.49 1.39 0.264 0.07 0.04 0.05 0.03rank error over a set of interactions J is de�ned as(Pj2J (rj�1))=jJ j, with perfect models having a rankerror of zero. We can again establish the baseline ina similar fashion by using Inca's default evaluationfunction and summing the relative ranks of the chosencandidates, and then dividing by the total number ofinteractions.3In summary, our two independent variables were usertype (evaluation function) and level of advice, and ourtwo dependent variables for measuring performancewere predictive error on pairwise preferences and rankerror on the user's chosen candidates. Our two pri-mary hypotheses were that online learning would leadto better performance, and that adaptation would beeasier (i.e., performance would be better) on users whoprovided more speci�c advice. A secondary hypothe-sis was that adaptation would be more di�cult (i.e.,performance would be worse) on users with complexevaluation functions.6 EXPERIMENTAL RESULTSThe results of our experiment are summarized in Ta-bles 2 and 3, with the error for each user type aver-aged over all the problem sets and the di�erent usersfor that type (i.e., twenty-�ve data points for Types 1and 4, �fteen for Types 2 and 3). In general, the re-sults support all our hypotheses regarding the bene�tsof learning and more speci�c advice. Predictive error(Table 2) was signi�cantly lower with learning for allbut User Type 2 (where there was no signi�cant di�er-ence), and rank error (Table 3) was also signi�cantlylower except for User Types 2 and 4 (where there wereagain no signi�cant di�erences), thus supporting ourhypothesis that learning would improve performance3With a variable number of candidates at each interac-tion, an alternative would be to look at some normalizedranking. However, because of the di�culty of graphicallydisplaying many candidates and the additional cognitiveload this presents to human users, we feel that absoluterank is a better measure of performance.
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Figure 2: Online Learning Curves Showing Decreasein Predictive Error with Number of Training Examplesover the baseline.4 Errors were also lower when usersprovided more speci�c advice (Type 4 vs. Type 1).However, the Type 4 baselines were also much lower, soall we can conclude is that more speci�c advice simpli-�es the learning problem and results in better overallperformance. The results also support our secondaryhypothesis that adaptation will be more di�cult onusers with more complex evaluation functions (Types2 and 3).The results on users with di�erent evaluation functions(Types 2 and 3) provide some insight into the di�cul-ties that can arise when the assumptions of the percep-tron algorithm are not met. In particular, target func-tions with additional features unknown to Inca (Type2) were more di�cult to learn than nonlinear functionsusing only known features (Type 3). A deeper investi-gation into the results with Type 2 users reveals thatperformance with learning was worst with the seconduser, who gave 75% weight to the unknown features.Performance was best with the third, who gave only25% weight to these features. This satis�es the in-tuition that Inca will adapt better to users who donot place too much weight on features unknown to thesystem when evaluating schedules.Recall that the results reported in Tables 2 and 3 areaveraged over the course of online learning. We ex-pect that, while both types of error may be high earlyon, they will gradually decrease as more examples aregathered and the system undergoes more training. Analternative, and perhaps more informative, summaryof the results are the learning curves shown in Fig-ures 2 and 3, which reveal that, under all conditions,4All di�erences presented are signi�cant (paired t-test,p < 0:05) unless stated otherwise.
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Figure 3: Online Learning Curves Showing Decreasein Rank Error with Number of Training Examplesthe predictive error and rank error tended to decreaseas the number of training examples increased.5 Con-sistent with the results presented in Tables 2 and 3,the curves show the least improvement for User Type2. They also highlight the fact that the baseline errorsfor User Type 4 were very low to begin with, leavingso little room for improvement that the resulting non-signi�cant decrease in rank error was not surprising.The experimental results generally support our hy-pothesis that learning will enable Inca to successfullyadapt to di�erent users, as shown by a decrease inpredictive error of pairwise preferences over all users,and a decrease in the rank error on the user's chosencandidates. In deploying a system such as Inca, wewould not want to overwhelm the user with all pos-sible candidates at each interaction, as was done hereto avoid confounding factors. Thus, predictive error|which measures the global goodness of a hypothesis|is particularly important, as lower errors along thisdimension should translate to greater ability to choosethe correct top candidates for presentation to the user.In addition, because schedules are complex entities, wemight expect a scheduling assistant to be able to dis-play only one schedule at a time. This makes low rankerror particularly important, as it would mean display-ing the preferred candidate sooner rather than later,thereby saving valuable time in urgent crisis situations.5Because di�erent users and problem sets will lead todi�erent numbers of examples, we ended the plot once therewere less than 80% of the maximum number of data pointsavailable (i.e., we required at least twenty data points overwhich to average for User Types 1 and 4, and twelve forTypes 2 and 3). Using the number of interactions insteadof the number of examples leads to learning curves thatexhibit similar patterns.



Learning User Evaluation Functions 1597 RELATED WORKMuch of the earlier work on personalization has beenin the realm of computer-aided instruction (e.g., Self,1974; Clancey, 1979; Sleeman & Smith, 1981). Inthese systems, detailed student models are built forthe purpose of determining level of expertise and se-lecting lessons to address de�ciencies in a student'sknowledge while utilizing what he already knows. Thesystem controls the interaction and the goal is to en-sure that a student acquires particular skills. In con-trast, adaptive computational assistants such as Incaare designed only to aid users during problem solv-ing, the goal being to facilitate the development of asolution while letting users retain control of the pro-cess. Inca thus develops user models for the purposeof anticipating a user's choices or identifying a user'spreferred solutions. In addition, while the unobtrusiveacquisition of user models is highly desirable for com-putational assistants, tutoring systems are necessarilyproactive and can probe speci�c areas of a student'sknowledge to develop better models.More recently, there has been work on adaptive userinterfaces (Langley, 1999)|systems that, like Inca,learn user models for the purpose of modifying theirbehavior to better re
ect user preferences. Most ofthese systems have focused on the task of recom-mending items such as news stories (Lang, 1995),music (Shardanand & Maes, 1995), web pages (Paz-zani & Billsus, 1997), and movies (Basu et al., 1998)that are consistent with user preferences. Our sys-tem di�ers in that its suggestions are more complexstructures (schedules) that entail the generation ofcandidate solutions aside from rating those solutions.In this sense, Inca is more similar to adaptive in-terfaces such as Clavier (Hinkle & Toomey, 1994),which suggests con�gurations for autoclave loading;Hermens & Schlimmer's (1994) form-�lling assistant,which suggests default �eld values for standard forms;and CAP (Dent et al., 1992), a calendar assistant thatsuggests meeting times and rooms when scheduling ap-pointments. While Clavier uses case-based reasoningtechniques to retrieve and adapt a previous solution tosolve a new problem, Inca learns an evaluation func-tion over solutions to guide the search for and rank-ing of candidates for a new problem within a mixed-initiative framework. And while the form-�lling assis-tant and CAP learn separate models for the individualcomponents of a solution, Inca learns a single predic-tive model over schedules.As stated earlier, Inca borrows the di�erential per-ceptron algorithm used by the Adaptive Route Advi-sor (Rogers et al., 1999). Aside from the di�erencein application domain, the two systems vary in theirapproach towards �nding a solution. The Route Ad-visor always presents an optimal solution according to

its current user model, with exploration of the solu-tion space to generate training examples achieved bytweaking the weights (e.g., by placing all the weighton number of turns to generate a route with a min-imal number of turns). In contrast, because of thehighly underconstrained nature of its solution space,Inca always presents a set of sub-optimal candidatesand relies on user advice to guide the search for bet-ter solutions, while also extracting training examplesbased on the candidate a user chooses at each inter-action. Inca performs online learning, and there hasbeen a signi�cant body of work on this topic in thecomputational learning theory community. Much ofthat work has addressed simpli�ed decision tasks andhas focused on proving theoretical bounds on weightedmajority algorithms and various extensions (e.g., Lit-tlestone & Warmuth, 1984; Freund & Schapire, 1997),in contrast to our focus on practical performance incomplex problem-solving domains. However, we maystill be able to gain insight and direction from their re-sults in our continued search for simple, e�cient learn-ing algorithms.Most earlier work on learning for scheduling has fo-cused on improving the performance of autonomoussystems by applying learning techniques to generatehigher quality solutions (e.g., Eskey & Zweben, 1990;Zhang & Dietterich, 1995; Schneider et al., 1998) or togenerate them more e�ciently (e.g., Gratch & Chien,1993). An exception is CABINS (Miyashita & Sycara,1995), an assistant for job-shop scheduling that ac-quires optimization preferences by learning the user'spreferred repairs on schedules. CABINS is a case-based system that stores repair cases, which it usesto direct an iterative schedule repair procedure in fu-ture situations. The user model is thus embodied inthese cases, which are gathered during a knowledgeacquisition phase wherein the user directs CABINS totry particular repairs, rates the resulting schedule asacceptable or unacceptable, and assigns salience values(i.e., weights) to the case features. In contrast, Inca'suser model takes the form of a linear evaluation func-tion over schedules, which the system uses to order thecandidate schedules it presents to the user. Inca alsoextracts its training examples unobtrusively from itsinteractions with the user during problem solving.8 FUTURE WORKThe work described in this paper provides some valida-tion of our work on adaptive, interactive systems, butthere is much room for further investigation. Inca cur-rently lets the user direct improvement only with re-spect to the outcome of the solution. We are currentlyextending Inca's advice-taking capability by incorpo-rating parameters that measure schedule properties,such as the ones employed by User Type 2. This has,



160 Learning User Evaluation Functionsin turn, required the identi�cation and inclusion of ad-ditional schedule modi�cation methods to achieve im-provement along the new dimensions. In providing theuser with more options, however, we must be carefulnot to introduce too many|otherwise, we risk cogni-tive overload. In addition, increasing the number ofparameters complicates Inca's learning task.We chose to use a simple linear evaluation functionand a perceptron-type algorithm because we wantedto achieve fast adaptation. However, as seen in theresults with User Type 2, this simplicity may preventInca from adapting to user types that are not that un-likely. Using more sophisticated representations andlearning methods may solve this problem, but prob-ably at the cost of slower adaptation and infeasibleonline learning. A possible hybrid approach might useonline learning to learn a good approximate user modelquickly during problem-solving, and then to use moreexpressive representations and more powerful learningtechniques o�ine to acquire more accurate models ofuser preferences.In this paper, we demonstrated Inca's ability to adaptto a variety of synthetic users but, ultimately, we areinterested in its ability to adapt to human users. Thus,we plan to run experiments with actual users to eval-uate Inca's adaptation capabilities as well as to bet-ter understand the space of real user preferences. Aninteresting empirical issue is whether linear functionswith a small number of features are in fact adequatefor useful adaptation, which would obviate the needfor more complex representations and learning algo-rithms. We expect that as we continue to investigatedi�erent ways in which computational assistants canadapt to individual users, we will be able to betteridentify the di�erent kinds of adaptations possible andthe approaches that make them feasible.Another avenue for future work involves taking ad-vantage of user advice to more directly manipulatethe weights on the schedule evaluation function. Cur-rently, Inca only trains on the preferences implied bythe particular schedule a user chooses from a set ofcandidates. However, a user's advice to improve theschedule along a particular parameter may also be usedto directly increment the weight associated with thatfeature. We might also let the user indicate a will-ingness to sacri�ce some improvement along a partic-ular parameter, which would lead to decrementing theweight associated with that feature.Inca is part of an ongoing project to develop adaptivecomputational assistants for crisis response. We re-cently replaced the system's automated case retrievaland interactive planning with a new planning mod-ule that employs conversational case-based reason-ing (Mu~noz-Avila et al., in press). In the near future,we also plan to begin development of information-

gathering assistants, which would actively seek out in-formation that the user needs to make decisions, andalso �lter incoming information to present the userwith relevant information in a timely fashion. Both re-visions open up new opportunities for adaptation, suchas tailoring the case retrieval's ranking mechanism toorder cases by user preference and learning the typesof information a user requests when making particulardecisions. Also, although we have studied adaptationwithin the application domain of hazardous materialincidents, we believe that our approach will also proveuseful elsewhere. In particular, we expect similar bene-�ts from advisability and adaptation in domains whereoptimization rather than satisfaction is the key issue,and we are exploring other domains to identify areasthat may bene�t from adaptation to user preferences.9 SUMMARYIn this paper, we presented Inca's advisable interac-tion framework, in which users can give advice at vari-able levels of speci�city to guide the search towarddesirable solutions. This new framework provided theopportunity to apply a perceptron-type learning algo-rithm to adapt the schedule evaluation function to dif-ferent users. We drew on synthetic users with distincttypes of evaluation functions and advice strategies toexperimentally investigate Inca's ability to adapt todi�erent individuals. The results support our hypothe-ses that performance would improve with learning andwith more speci�c advice, as measured by the errorin predicting users' pairwise preferences and the rankerror on users' chosen candidate solutions. The cur-rent interest in personalization, and the trend towardmixed-initiative systems that assist rather than replacehuman users, present exciting new opportunities forapplying machine learning in real-world domains, mak-ing it increasingly important to develop and evaluateadaptive, interactive computational assistants such asInca.AcknowledgmentsThis work was supported by the O�ce of Naval Re-search under Grant N000014-96-1-1221.ReferencesBasu, C., Hirsh, H., & Cohen, W. (1998). Recom-mendation as classi�cation: Using social and content-based information in recommendation. Proceedings ofthe Fifteenth National Conference on Arti�cial Intel-ligence (pp. 714{720).Clancey, W. J. (1979). Dialogue management for rule-based tutorials. Proceedings of the Sixth InternationalJoint Conference on Arti�cial Intelligence.
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