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Abstract

In this paper, we describe INCA, an adap-
tive, advisable assistant for crisis response.
The system lets users guide the search to-
ward particular schedules by giving high-
level, operational advice about the solu-
tions desired. Because traces of user inter-
actions provide information regarding the
user’s preferences among schedules, INCA
can draw on machine learning techniques
to construct user models that reflect these
preferences. We characterize the modeling
task as that of learning a weight vector for
a linear evaluation function that will lead
to the same pairwise preferences between
schedules as the user. INCA adapts to indi-
vidual users by adjusting the weights on its
evaluation function using a perceptron-type
learning algorithm. To evaluate the sys-
tem’s adaptive capabilities, we designed an
experiment involving four types of synthetic
users that differed in their evaluation func-
tions and in the level of advice they provide.
We present experimental results showing
that INCA achieves better performance with
more specific advice and with learning, even
on users with evaluation functions that have
nonlinearities or unobservable factors.

1 INTRODUCTION

In recent years, there has been a growing interest in
personalized software as the need has increased for sys-
tems that can tailor their behavior to different indi-
viduals. For example, the World Wide Web now has
electronic commerce sites that suggest new purchases
based on a user’s past buying behavior, portals that
choose banner ads depending on the links a user fol-
lows, and travel planners that suggest default choices

based on user-specified preferences. Many of these sys-
tems use simple heuristics or require a laborious initial
phase of user profile construction to achieve personal-
ization. In contrast, an adaptive user interface (Lang-
ley, 1999) uses traces of its interactions with users to
automatically build a model that influences the sys-
tem’s behavior to better suit the user’s preferences.
In this paper, we present one such system, INCA, an
adaptive scheduling assistant that learns user evalua-
tion functions over schedules by extracting preference
information from the schedules a user chooses during
interaction with the system.

INCA is a mixed-initiative system designed to aid hu-
man users in crisis response. The primary focus of our
work thus far has been wurgency, a defining theme of
crisis. We have addressed this issue through the use of
case-based reasoning techniques to provide initial can-
didate solutions (Iba et al., 1998), as well as through
the application of machine learning to better predict
a user’s schedule modifications (Gervasio et al., 1998),
both of which lead to more efficient construction of
high-quality solutions. In this paper, we extend our
work on adaptive assistance within a new framework
that allows advisable interaction with INCA. By let-
ting users interact with the system at higher levels of
abstraction, this new framework lets them more effec-
tively guide the development of a crisis response.

Users provide guidance in the form of advice that di-
rects INCA in its search through a highly undercon-
strained solution space. The advice users give and the
choices they make while interacting with the system
implicitly define an evaluation function over solutions.
For example, if a user directs INCA to modify a solu-
tion to improve its value along some dimension and
then accepts the modified solution, then the user is
indicating a preference for the new solution over the
old one. This presents an opportunity to adapt to indi-
vidual user preferences by examining interaction traces
and inducing user models that approximate these pref-
erences. In this paper, we describe an approach that
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learns evaluation functions over schedules by applying
a perceptron-type learning algorithm to pairwise pref-
erences that are drawn from such interaction traces.

We begin by providing an overview of INCA’s inter-
active response process in our application domain of
hazardous material incidents. We then discuss the mo-
tivations for higher-level interaction and present our
new framework for advisable scheduling assistance. In
the following section, we lay the groundwork for our
learning experiments by presenting INCA’s basic learn-
ing algorithm and discussing the representation of the
examples and the schedule evaluation function. After
this, we present our design for an experiment intended
to test our hypotheses on the effects of adaptation,
given different types of user evaluation functions and
different levels of advice. The results, which we discuss
in the succeeding section, support our hypotheses that
both learning and more specific advice would improve
performance. We conclude the paper by discussing re-
lated research and summarizing our plans for future
work on adaptive assistance.

2 HAZMAT INCIDENT RESPONSE
WITH INCA

INCA is a case-based, interactive, and adaptive compu-
tational assistant for crisis response. It uses a case li-
brary of previous solutions to seed the problem-solving
process with an initial candidate plan and schedule,
which lets users develop high-quality responses more
quickly (Iba et al., 1998). As a mixed-initiative sys-
tem, INCA benefits from the invaluable input of hu-
man users while letting them retain ultimate control
over the decision-making process. And by adapting to
different individuals, the system can increase the effi-
ciency of the response process by tailoring its assistant
behavior to user preferences (Gervasio et al., 1998). In
this paper, we focus primarily on the adaptive nature
of INCA and secondarily on the new kinds of interac-
tion introduced by the advisable framework.

We have applied INCA to HAZMAT, a synthetic do-
main for hazardous materials incidents that we de-
veloped using the 1996 North American Emergency
Response Guidebook (Transport Canada et al., 1996)
and manuals of standard operating procedures for sev-
eral fire departments. Figure 1 depicts the interactive
crisis response process with INCA. Problem solving
is triggered by an incident alarm, where an incident
consists of a spill and possibly a fire involving some
material with hazardous properties such as toxicity,
corrosiveness, and flammability. Incidents vary in the
type and amount of material involved, the location of
the incident, and the characteristics of the spill and
any fire. The alarm drives INCA to retrieve a solu-
tion to a similar incident from its case library, which
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it uses to seed the interactive planning and schedul-
ing phases of crisis response. The primary purpose
of planning is to choose a set of actions or jobs, any
subset of which may be allocated resources during the
scheduling phase. Different actions are appropriate for
different incidents, with each action addressing par-
ticular aspects of a HAZMAT problem and requiring
some minimum set of resources. During scheduling,
decisions are made regarding the jobs to schedule and,
for each job, the number of resources to allocate, the
particular resources to use, a duration, and start time.

Scheduling in INCA is complicated by the fact that ac-
tions may be allocated a variable number of resources
and assigned arbitrary durations. Allocating more re-
sources to an action will result in greater effects, but
at the cost of greater resource consumption that will
constrain the other actions and their impact on the
situation. For example, assigning all available person-
nel to combat the fire will extinguish the fire more
quickly but will delay stopping the spill, which will
result in the release of more hazardous material into
the environment. Similarly, scheduling more actions
that address a particular aspect of the incident will
minimize the negative consequences along that dimen-
sion, but possibly at the cost of greater negative con-
sequences along another one. The resulting undercon-
strained scheduling problem makes automation partic-
ularly difficult, calling for an interactive system such
as INcA and presenting the opportunity for learning
user models that support more productive interaction.

3 ADVISABLE INTERACTION

In previous versions of INCA, a user could only change
the retrieved solution at the level of schedule mod-
ification operations: adding an action to the sched-
ule, deleting a scheduled action, changing the duration
of an action, shifting the start time of an action, or
switching an action to a different resource. This type
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of interaction lets users make the exact changes they
desire, but it can also be quite tedious something of
particular concern in time-constrained crisis domains.
We decided that more efficient interaction might be
achieved if we instead let INCA generate several candi-
date schedules and have the user choose among them,
basically shifting more of the scheduling responsibil-
ity to the system. The problem remains, however,
that autonomous scheduling is particularly difficult in
this underconstrained domain. Our solution was to let
the user guide the search for a desirable solution by
providing particular types of advice, as dictated and
supported by the characteristics of the solution space.
This makes INCA an instance of what Myers (1996)
calls advisable planning systems.

3.1 CHARACTERISTICS OF THE
SOLUTION SPACE

A primary characteristic of the solution space for haz-
ardous materials incident response is that it is highly
underconstrained. There are many possible solutions
for each problem and various ways of evaluating them,
with different parameters being more important for
particular problems and different users. For example,
in a large spill involving a highly toxic chemical in a
heavily populated area, the priority in evacuating the
inhabitants to safety will probably be on speed rather
than cost. In a large fire, where there is a severe
shortage of resources, more emphasis may be placed
on suppressing the fire near occupied buildings than
on stopping the leak.

Although the underconstrained nature of the solution
space and the complexity of the objective function
make automation difficult, there are also character-
istics that suggest a feasible method of navigation.
First, we can define a direct relationship between par-
ticular parameters of solution quality and the methods
for modifying a schedule. Second, we can define a di-
rect relationship between the method for improvement
along a particular parameter and the actions them-
selves. These two properties help shape the kinds of
advice INCA can easily operationalize and suggest the
framework for our advisable system.

3.2 LEVELS OF ADVICE

The first level of advice involves directing INCA’s at-
tention to improve a solution along a particular pa-
rameter. We can characterize a solution in terms of its
effects on a situation (i.e., its achievement of the prob-
lem goals) as well as in terms of its cost (e.g., time
taken to reach the goal, number of resources used).
In the case of crisis response, as with most real-world
problems, we are interested in both we want to eval-
uate solutions in terms of their impact on the situa-
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tion as well as on their cost of execution. However, in
our initial implementation, we decided to focus on the
former, using our HAZMAT simulator to project the
effects of a solution on the environment.

The simulator tracks the development of the spill, the
fire, and the fire and health hazards in terms of the
amounts and derivatives of various quantities. By
comparing the simulation of a response on the inci-
dent with the simulation of an unabated situation, we
can come up with a measure of performance improve-
ment along the different parameters. For example, if
the amount spilled in the unabated situation was s,,
while the amount spilled with a response was s,, then
the improvement in the amount spilled is 1 — s,,/5,.

Thus, an improvement percentage of 1.00 would signify
an instantaneous stoppage of the spill, while 0.00 re-
veals that the response had no effects whatsoever. The
simulator keeps track of a total of fifteen parameters,
which we can distill into three improvement percent-
ages corresponding to spill improvement, fire improve-
ment, and hazard improvement. At the first level, the
user can thus provide INCA with three types of pa-
rameter advice: improve spill handling, improve fire
handling, or improve hazard handling.

The second level of advice involves indicating the par-
ticular modification method to achieve the desired im-
provement. As stated earlier, there is a direct relation-
ship between the parameter being improved and the
schedule modification methods. A choice of improve-
ment parameter constrains the modification methods
that may be applied. In our case, the three schedule
quality parameters we have defined correspond to the
same four schedule modification methods. Specifically,
to improve a schedule along any parameter, INCA can
either add a new action, assign more resources to a
scheduled action, increase the duration of a scheduled
action, or start a scheduled action earlier. Applying
any of these modifications on a relevant action is guar-
anteed not to degrade the quality of the schedule with
respect to the chosen parameter.

The third level of advice involves specifying the ac-
tion or job on which to apply the chosen modification
method to achieve the desired improvement. An ac-
tion is relevant to a particular parameter if it affects
that parameter. Thus, a given parameter and modifi-
cation method define a fixed set of actions over which
the next decision must be made. For example, if the
user directs INCA to improve fire handling by adding
an action, then the only relevant choices are those un-
scheduled actions that affect the fire, such as extin-
guishment and fire suppression. But if improvement
is to be achieved by means of shifting an action ear-
lier, then the only relevant actions are those scheduled
actions that do not already start immediately.
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The fourth, and final, level of advice involves variable
instantiation that is, specifying particular resources,
start times, and durations for a job. Providing advice
at this level is equivalent to INCA’s original mode of
interaction in which users were required to specify the
particular schedule modifications they wanted.

3.3 VARIABLE-LEVEL INTERACTION

The basic interaction loop involves the user choosing a
schedule from among the current candidates and giv-
ing INCA direction on how to improve the solution by
providing advice at each level. However, at any level,
the user may defer all remaining decisions to INCA
by choosing the ANY option. With the user’s advice,
INCA then generates a set of candidates for the next
cycle, continuing in this manner until the user is sat-
isfied with one of the current solutions. In keeping
with the urgent nature of crisis response, we constrain
INCA to a fixed amount of computational resources on
each cycle. Thus, more specific advice lets INCA ex-
pend more resources in exploring a smaller area of the
search space, potentially finding solutions it may not
have found with more abstract advice.

In terms of Myers’s (1996) three-level taxonomy of ad-
vice, parameter specification is a form of evaluational
advice, which “encompasses constraints on some met-
ric defined for the overall plan.” Method specification
is a form of strategic advice, which “consists of recom-
mendations on how goals and actions are to be accom-
plished.” Finally, action specification and variable in-
stantiation may be seen as forms of task advice, which
“designates specific goals to be achieved and actions to
be performed.” As in Myers’s work on advisable plan-
ning, our objective in incorporating advice taking into
INCA was to enable users to more effectively influence
the problem-solving process.

4 ADAPTIVE INTERACTION

The traces of user interactions with INCA provide a
ready source of training data for adaptation and pre-
vious versions of the system used such traces to learn
to predict the schedule modification operations a user
would choose next (Gervasio et al., 1998). The idea
was that, by accurately predicting a user’s actions,
INCA can facilitate the response development process.
We can extend this work within the current framework
by using similar inductive learning techniques to pre-
dict the particular advice a user will give in the current
situation, based on the user’s previous behavior.

However, the current advisable interaction framework
also provides an opportunity to explore a new learning
task. INCA currently employs a weighted linear evalu-
ation function over schedules. If we let ¢ be a particu-
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lar candidate schedule, and s., f., and z. be its spill,
fire, and hazard improvement, as defined earlier, then
INCA’s evaluation function is I(c) = wgs, + wy fe +
w; Z., where w,, is a weight associated with parameter
p. We can thus characterize INCA’s task of adapting to
a user as that of learning a weight vector (ws, wy,w,)
that will lead it to prefer (i.e., rank higher) the same
schedules as the user. More concretely, if we let the
target function (i.e., the user’s evaluation function) be
U, then we can say that INCA models the user perfectly
if VCI,CQU(Cl) > U(Cg) — I(Cl) > 1(62).

Cast in this manner, INCA’s learning task becomes
very similar to that of Roger et al.’s Adaptive Route
Advisor (1999), which seeks to discover user prefer-
ences over alternative driving routes. Drawing from
that work, we decided to use a differential perceptron,
which learns over sets of examples indicating pairwise
preferences—in our case, preferences between sched-
ules. That is, each example is an ordered pair (¢1, ¢2),
where U(e;) > U(cz), and INCA’s training task is
to find an evaluation function that will minimize the
number of examples over which it prefers the wrong
candidate.

Without requiring the user to rank every set of can-
didate schedules, we can still obtain these pairwise
preferences from a user’s interactions with INCcA. In
the advisable framework, the user indicates a prefer-
ence for a particular schedule over all other candidates
when he directs the system to improve that schedule.
Given that the user has so far had j interactions with
INCA in developing a response for a particular problem
and now chooses the ith candidate in a set of n candi-
dates, we can extract n — 1 + j pairwise preferences—
specifically, n — 1 examples capturing the information
that the user preferred the ith candidate over the n—1
other candidates in the set, and j examples denoting
the user’s preference of this ith candidate over all the
candidates chosen in the j previous interactions.

INCA uses a batch update scheme, adjusting the per-
ceptron weights once per epoch. Let E be that sub-
set of a set of examples X where I prefers the wrong
candidate (i.e., E = {(c1,c2) € X|I(c1) < I(e2)}),
and let p. be the value of parameter p for candidate
c¢. Then the differential perceptron update rule will
increase the weight associated with p by the amount
M D_(cr,e0)e 2 (Per — Pes), Where 1, is the learning rate
associated with p.! Intuitively, INCA will move to-
wards the correct preference by increasing the weight
for a parameter if that parameter had a higher value
for the preferred candidate than for the non-preferred

'To speed convergence, we use adaptive learning rates,
where each parameter has its own learning rate determined
by the current indicated change on its associated weight
as well as the direction and magnitude of previous recent
changes (Jacobs, 1988).
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candidate, and by decreasing it if it had a lower value
instead. In standard perceptron training fashion, INCA
iterates through its training examples until it makes
no more errors or it has gone through more than some
maximum number of epochs.

5 ADAPTATION EXPERIMENTS

To evaluate INCA’s adaptive capabilities, we devel-
oped a variety of synthetic users to test our hypotheses
about the effects of evaluation functions and advice on
adaptation. While we might expect INCA to adapt to
users with evaluation functions similar to its own, we
also believe that INCA will be able to tailor its behavior
to users with evaluation functions of different forms.
Furthermore, we expect that more specific advice dur-
ing scheduling will, in some sense, provide “better”
examples and thus enable INCA to adapt more quickly.

5.1 USER EVALUATION FUNCTION

We designed three types of synthetic users to test our
hypothesis on INCA’s ability to adapt to different in-
dividuals. Type 1 users had evaluation functions of
the same form as INCA’s weighted linear combination
over the spill, fire, and hazard improvement measures.
They differed only in the specific weights they attached
to each parameter. We created five Type 1 users, each
with a randomly generated weight vector. Type 2 users
also used a linear evaluation function but this function
included three additional features (unknown to INCA)
that measured, respectively, the number of scheduled
jobs, the number of resources used, and the duration
of the schedule. We created three Type 2 users, whose
weight distribution varied between the known and un-
known features. Specifically, these three users had a
weight ratio between known and unknown features of
1:1, 1:3, and 3:1 respectively. Type 3 users used some
nonlinear combination of the original three features,
and we created three such users with different nonlin-
ear evaluation functions. Specifically, if we let s be
the spill improvement, f the fire improvement, and z
the hazard improvement, the first Type 3 evaluation
function was sfz; the second was /sfz; and the third
was sf17%.

5.2 LEVEL OF ADVICE

We created one more user type to evaluate our hypoth-
esis on advice. By default, our synthetic users provide
only the highest level advice, namely that of instruct-
ing INCA to improve the schedule along ANY param-
eter. User Type 4 was a variant of User Type 1 who
differed only in that it gave advice at the parameter
level, specifying the parameter along which improve-
ment was desired. Specifically, a Type 4 user requests
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Table 1: Average Number of Interactions, Candidates,
and Examples Generated for Different User Types
During Problem Solving

User | interactions/ | candidates/ | examples/
Type problem interaction | problem set
1 7.58 16.04 757.12
2 5.00 15.77 384.20
3 5.65 18.79 629.67
4 5.86 5.15 219.08

all 6.02 13.94 497.52

improvement along that parameter which has the po-
tential to contribute the most to the overall schedule
evaluation, given that user’s evaluation function. If we
let p be the current improvement measure for a partic-
ular parameter (spill, fire, hazard), then the amount of
potential improvement associated with p is wp, (1 —p),
where w,,, is the user’s weight on feature p.

5.3 TRAINING REGIMEN

Learning was carried out online using the perceptron
training algorithm presented earlier, with random ini-
tial weights and the maximum number of epochs set
to 100.2 After each interaction, new examples were
extracted from the current set of candidates and the
user’s choice, and these were were added to the set of
all examples. INCA was then retrained on the whole
set, starting with the final set of weights from the pre-
vious training episode.

To control for the effects of problem sequence on learn-
ing and of specific problems on performance, each user
was trained five times using five different problem sets,
each consisting of a sequence of five randomly gen-
erated problems. That is, each user responded to
twenty-five different problems broken up into five sep-
arate training sequences, with the problems and se-
quences constant across all users. Also, problem solv-
ing was always started with an empty schedule. On
average, each response to a problem required 6.02 in-
teractions, with each interaction resulting in an aver-
age of 13.94 candidates. Each problem set also gener-
ated an average of 497.52 examples over the course of
solving all five problems in the set. Table 1 provides a
more detailed breakdown by user type. The baselines
were determined by running INCA’s default evaluation
function (which assigns equal weights to the parame-
ters) over the same five problem sets.

2The adaptive learning rates 7, were initialized to 0.01
for each parameter p, with k = 0.1, ¢ = 0.5, and 6 = 0.7.
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Table 2: Predictive Errors for Different User Types,
Averaged Over All Users and Problem Sets

User Baseline With Learning
Type | mean | std. err. | mean | std. err.
1 10.59 1.61 4.24 0.40

2 5.49 0.95 6.11 1.08
3 10.48 2.11 6.76 1.20
4 1.12 0.48 0.83 0.43

5.4 PERFORMANCE MEASURES

The objective of adaptation in INCA is to learn to
present the user with those candidate schedules that
he finds desirable. As discussed earlier, one measure
of the quality of a user model is how well its induced
preferences over a set of schedules mimic those of the
user’s. Recall that learning is applied on a set of ex-
amples derived from interaction with a user U, with
each example being an ordered pair (c1,c2), where
U(c1) > U(cz) and INCA is in error if I(cy) < I(ca).
The predictive error of a hypothesis I on a set of ex-
amples X, where it makes errors on the subset £ C X,
is thus defined simply as |E|/| X]|.

We can measure the effects of learning in an online
fashion by testing the current user model after every
interaction on the set of new examples generated from
that interaction, prior to retraining. This achieves
the necessary separation between training and testing,
since INCA is always evaluated on examples it did not
see during learning. If we let e; be the number of errors
INCcA makes on the z; new examples generated from
interaction j, then we can calculate INCA’s predictive
error over a problem set involving n interactions as
(351 i)/ (32— ¢j). We can similarly establish the
baseline predictive error by summing the errors INCA
makes using its default evaluation function and divid-
ing by the total number of examples, the only differ-
ence being that, since no training is involved, testing
may be done after all the examples are generated.

A second measure of model goodness is based on the
rank r of the candidate a user chooses. INCA presents
the set of candidates in ranked order, depending on
their value according to its current evaluation func-
tion. Thus, if INCA had a perfect user model, the user
would always choose the highest ranked schedule (i.e.,
r = 1) in the set of candidates the system presents.
As before, we can measure the effects of learning in
an online fashion by looking at the immediate result
of an interaction, prior to retraining. More concretely,
let 7; be the rank of the candidate the user chooses
at interaction j, where the new candidates were or-
dered according to the current model. Then INCA’s
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Table 3: Rank Error for Different User Types, Aver-
aged Over All Users and Problem Sets

User Baseline With Learning
Type | mean | std. err. | mean | std. err.

1 1.93 0.36 0.63 0.08
2 0.82 0.13 0.92 0.15
3 2.34 0.49 1.39 0.26
4 0.07 0.04 0.05 0.03

rank error over a set of interactions .J is defined as
(X_jes(r; —1))/|J|, with perfect models having a rank
error of zero. We can again establish the baseline in
a similar fashion by using INCA’s default evaluation
function and summing the relative ranks of the chosen
candidates, and then dividing by the total number of
interactions.?

In summary, our two independent variables were user
type (evaluation function) and level of advice, and our
two dependent variables for measuring performance
were predictive error on pairwise preferences and rank
error on the user’s chosen candidates. Our two pri-
mary hypotheses were that online learning would lead
to better performance, and that adaptation would be
easier (i.e., performance would be better) on users who
provided more specific advice. A secondary hypothe-
sis was that adaptation would be more difficult (i.e.,
performance would be worse) on users with complex
evaluation functions.

6 EXPERIMENTAL RESULTS

The results of our experiment are summarized in Ta-
bles 2 and 3, with the error for each user type aver-
aged over all the problem sets and the different users
for that type (i.e., twenty-five data points for Types 1
and 4, fifteen for Types 2 and 3). In general, the re-
sults support all our hypotheses regarding the benefits
of learning and more specific advice. Predictive error
(Table 2) was significantly lower with learning for all
but User Type 2 (where there was no significant differ-
ence), and rank error (Table 3) was also significantly
lower except for User Types 2 and 4 (where there were
again no significant differences), thus supporting our
hypothesis that learning would improve performance

#With a variable number of candidates at each interac-
tion, an alternative would be to look at some normalized
ranking. However, because of the difficulty of graphically
displaying many candidates and the additional cognitive
load this presents to human users, we feel that absolute
rank is a better measure of performance.
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Figure 2: Online Learning Curves Showing Decrease
in Predictive Error with Number of Training Examples

over the baseline.* Errors were also lower when users
provided more specific advice (Type 4 vs. Type 1).
However, the Type 4 baselines were also much lower, so
all we can conclude is that more specific advice simpli-
fies the learning problem and results in better overall
performance. The results also support our secondary
hypothesis that adaptation will be more difficult on
users with more complex evaluation functions (Types
2 and 3).

The results on users with different evaluation functions
(Types 2 and 3) provide some insight into the difficul-
ties that can arise when the assumptions of the percep-
tron algorithm are not met. In particular, target func-
tions with additional features unknown to INca (Type
2) were more difficult to learn than nonlinear functions
using only known features (Type 3). A deeper investi-
gation into the results with Type 2 users reveals that
performance with learning was worst with the second
user, who gave 75% weight to the unknown features.
Performance was best with the third, who gave only
25% weight to these features. This satisfies the in-
tuition that INcA will adapt better to users who do
not place too much weight on features unknown to the
system when evaluating schedules.

Recall that the results reported in Tables 2 and 3 are
averaged over the course of online learning. We ex-
pect that, while both types of error may be high early
on, they will gradually decrease as more examples are
gathered and the system undergoes more training. An
alternative, and perhaps more informative, summary
of the results are the learning curves shown in Fig-
ures 2 and 3, which reveal that, under all conditions,

4 All differences presented are significant (paired #-test,
p < 0.05) unless stated otherwise.
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Figure 3: Online Learning Curves Showing Decrease
in Rank Error with Number of Training Examples

the predictive error and rank error tended to decrease
as the number of training examples increased.® Con-
sistent with the results presented in Tables 2 and 3,
the curves show the least improvement for User Type
2. They also highlight the fact that the baseline errors
for User Type 4 were very low to begin with, leaving
so little room for improvement that the resulting non-
significant decrease in rank error was not surprising.

The experimental results generally support our hy-
pothesis that learning will enable INCA to successfully
adapt to different users, as shown by a decrease in
predictive error of pairwise preferences over all users,
and a decrease in the rank error on the user’s chosen
candidates. In deploying a system such as INCA, we
would not want to overwhelm the user with all pos-
sible candidates at each interaction, as was done here
to avoid confounding factors. Thus, predictive error—
which measures the global goodness of a hypothesis—
is particularly important, as lower errors along this
dimension should translate to greater ability to choose
the correct top candidates for presentation to the user.
In addition, because schedules are complex entities, we
might expect a scheduling assistant to be able to dis-
play only one schedule at a time. This makes low rank
error particularly important, as it would mean display-
ing the preferred candidate sooner rather than later,
thereby saving valuable time in urgent crisis situations.

5Because different users and problem sets will lead to
different numbers of examples, we ended the plot once there
were less than 80% of the maximum number of data points
available (i.e., we required at least twenty data points over
which to average for User Types 1 and 4, and twelve for
Types 2 and 3). Using the number of interactions instead
of the number of examples leads to learning curves that
exhibit similar patterns.
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7 RELATED WORK

Much of the earlier work on personalization has been
in the realm of computer-aided instruction (e.g., Self,
1974; Clancey, 1979; Sleeman & Smith, 1981). In
these systems, detailed student models are built for
the purpose of determining level of expertise and se-
lecting lessons to address deficiencies in a student’s
knowledge while utilizing what he already knows. The
system controls the interaction and the goal is to en-
sure that a student acquires particular skills. In con-
trast, adaptive computational assistants such as INCA
are designed only to aid users during problem solv-
ing, the goal being to facilitate the development of a
solution while letting users retain control of the pro-
cess. INCA thus develops user models for the purpose
of anticipating a user’s choices or identifying a user’s
preferred solutions. In addition, while the unobtrusive
acquisition of user models is highly desirable for com-
putational assistants, tutoring systems are necessarily
proactive and can probe specific areas of a student’s
knowledge to develop better models.

More recently, there has been work on adaptive user
interfaces (Langley, 1999)—systems that, like INCA,
learn user models for the purpose of modifying their
behavior to better reflect user preferences. Most of
these systems have focused on the task of recom-
mending items such as news stories (Lang, 1995),
music (Shardanand & Maes, 1995), web pages (Paz-
zani & Billsus, 1997), and movies (Basu et al., 1998)
that are consistent with user preferences. Our sys-
tem differs in that its suggestions are more complex
structures (schedules) that entail the generation of
candidate solutions aside from rating those solutions.
In this sense, INCA is more similar to adaptive in-
terfaces such as CLAVIER (Hinkle & Toomey, 1994),
which suggests configurations for autoclave loading;
Hermens & Schlimmer’s (1994) form-filling assistant,
which suggests default field values for standard forms;
and CAP (Dent et al., 1992), a calendar assistant that
suggests meeting times and rooms when scheduling ap-
pointments. While CLAVIER uses case-based reasoning
techniques to retrieve and adapt a previous solution to
solve a new problem, INCA learns an evaluation func-
tion over solutions to guide the search for and rank-
ing of candidates for a new problem within a mixed-
initiative framework. And while the form-filling assis-
tant and CAP learn separate models for the individual
components of a solution, INCA learns a single predic-
tive model over schedules.

As stated earlier, INCA borrows the differential per-
ceptron algorithm used by the Adaptive Route Advi-
sor (Rogers et al., 1999). Aside from the difference
in application domain, the two systems vary in their
approach towards finding a solution. The Route Ad-
visor always presents an optimal solution according to

159

its current user model, with exploration of the solu-
tion space to generate training examples achieved by
tweaking the weights (e.g., by placing all the weight
on number of turns to generate a route with a min-
imal number of turns). In contrast, because of the
highly underconstrained nature of its solution space,
INCA always presents a set of sub-optimal candidates
and relies on user advice to guide the search for bet-
ter solutions, while also extracting training examples
based on the candidate a user chooses at each inter-
action. INCA performs online learning, and there has
been a significant body of work on this topic in the
computational learning theory community. Much of
that work has addressed simplified decision tasks and
has focused on proving theoretical bounds on weighted
majority algorithms and various extensions (e.g., Lit-
tlestone & Warmuth, 1984; Freund & Schapire, 1997),
in contrast to our focus on practical performance in
complex problem-solving domains. However, we may
still be able to gain insight and direction from their re-
sults in our continued search for simple, efficient learn-
ing algorithms.

Most earlier work on learning for scheduling has fo-
cused on improving the performance of autonomous
systems by applying learning techniques to generate
higher quality solutions (e.g., Eskey & Zweben, 1990;
Zhang & Dietterich, 1995; Schneider et al., 1998) or to
generate them more efficiently (e.g., Gratch & Chien,
1993). An exception is CABINS (Miyashita & Sycara,
1995), an assistant for job-shop scheduling that ac-
quires optimization preferences by learning the user’s
preferred repairs on schedules. CABINS is a case-
based system that stores repair cases, which it uses
to direct an iterative schedule repair procedure in fu-
ture situations. The user model is thus embodied in
these cases, which are gathered during a knowledge
acquisition phase wherein the user directs CABINS to
try particular repairs, rates the resulting schedule as
acceptable or unacceptable, and assigns salience values
(i.e., weights) to the case features. In contrast, INCA’s
user model takes the form of a linear evaluation func-
tion over schedules, which the system uses to order the
candidate schedules it presents to the user. INCA also
extracts its training examples unobtrusively from its
interactions with the user during problem solving.

8 FUTURE WORK

The work described in this paper provides some valida-
tion of our work on adaptive, interactive systems, but
there is much room for further investigation. INCA cur-
rently lets the user direct improvement only with re-
spect to the outcome of the solution. We are currently
extending INCA’s advice-taking capability by incorpo-
rating parameters that measure schedule properties,
such as the ones employed by User Type 2. This has,
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in turn, required the identification and inclusion of ad-
ditional schedule modification methods to achieve im-
provement along the new dimensions. In providing the
user with more options, however, we must be careful
not to introduce too many otherwise, we risk cogni-
tive overload. In addition, increasing the number of
parameters complicates INCA’s learning task.

We chose to use a simple linear evaluation function
and a perceptron-type algorithm because we wanted
to achieve fast adaptation. However, as seen in the
results with User Type 2, this simplicity may prevent
INCA from adapting to user types that are not that un-
likely. Using more sophisticated representations and
learning methods may solve this problem, but prob-
ably at the cost of slower adaptation and infeasible
online learning. A possible hybrid approach might use
online learning to learn a good approximate user model
quickly during problem-solving, and then to use more
expressive representations and more powerful learning
techniques offline to acquire more accurate models of
user preferences.

In this paper, we demonstrated INCA’s ability to adapt
to a variety of synthetic users but, ultimately, we are
interested in its ability to adapt to human users. Thus,
we plan to run experiments with actual users to eval-
uate INCA’s adaptation capabilities as well as to bet-
ter understand the space of real user preferences. An
interesting empirical issue is whether linear functions
with a small number of features are in fact adequate
for useful adaptation, which would obviate the need
for more complex representations and learning algo-
rithms. We expect that as we continue to investigate
different ways in which computational assistants can
adapt to individual users, we will be able to better
identify the different kinds of adaptations possible and
the approaches that make them feasible.

Another avenue for future work involves taking ad-
vantage of user advice to more directly manipulate
the weights on the schedule evaluation function. Cur-
rently, INCA only trains on the preferences implied by
the particular schedule a user chooses from a set of
candidates. However, a user’s advice to improve the
schedule along a particular parameter may also be used
to directly increment the weight associated with that
feature. We might also let the user indicate a will-
ingness to sacrifice some improvement along a partic-
ular parameter, which would lead to decrementing the
weight associated with that feature.

INCA is part of an ongoing project to develop adaptive
computational assistants for crisis response. We re-
cently replaced the system’s automated case retrieval
and interactive planning with a new planning mod-
ule that employs conversational case-based reason-
ing (Munoz-Avila et al., in press). In the near future,
we also plan to begin development of information-
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gathering assistants, which would actively seek out in-
formation that the user needs to make decisions, and
also filter incoming information to present the user
with relevant information in a timely fashion. Both re-
visions open up new opportunities for adaptation, such
as tailoring the case retrieval’s ranking mechanism to
order cases by user preference and learning the types
of information a user requests when making particular
decisions. Also, although we have studied adaptation
within the application domain of hazardous material
incidents, we believe that our approach will also prove
useful elsewhere. In particular, we expect similar bene-
fits from advisability and adaptation in domains where
optimization rather than satisfaction is the key issue,
and we are exploring other domains to identify areas
that may benefit from adaptation to user preferences.

9 SUMMARY

In this paper, we presented INCA’s advisable interac-
tion framework, in which users can give advice at vari-
able levels of specificity to guide the search toward
desirable solutions. This new framework provided the
opportunity to apply a perceptron-type learning algo-
rithm to adapt the schedule evaluation function to dif-
ferent users. We drew on synthetic users with distinct
types of evaluation functions and advice strategies to
experimentally investigate INCA’s ability to adapt to
different individuals. The results support our hypothe-
ses that performance would improve with learning and
with more specific advice, as measured by the error
in predicting users’ pairwise preferences and the rank
error on users’ chosen candidate solutions. The cur-
rent interest in personalization, and the trend toward
mixed-initiative systems that assist rather than replace
human users, present exciting new opportunities for
applying machine learning in real-world domains, mak-
ing it increasingly important to develop and evaluate
adaptive, interactive computational assistants such as
INcA.
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