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Abstract

In this paper we examine the behavior of a human-computer
system for crisis response. As one instance of crisis manage-
ment, we describe the task of responding to spills and fires in-
volving hazardous materials. We then describe INCA, an intel-
ligent assistant for planning and scheduling in this domain, and
its relation to human users. We focus on INCA’s strategy of re-
trieving a case from a case library, seeding the initial schedule,
and then helping the user adapt this seed. We also present three
hypotheses about the behavior of this mixed-initiative system
and some experiments designed to test them. The results sug-
gest that our approach leads to faster response development
than user-generated or automatically-generated schedules but
without sacrificing solution quality.

Introduction

Traditional cognitive science has focused on human cognition
and intelligent artifacts, but it has devoted less attention to
combined human-machine systems. Nevertheless, the same
theoretical approach—description in terms of computational
processes—and the same experimental method—studying the
effect of processes on measures of performance—applies
equally to such hybrid entities. Such research has been most
prevalent in the area of intelligent tutoring systems (Sleeman
& Brown, 1982), but it seems equally applicable to the study
of human interaction with intelligent assistants.

In the following pages, we describe a prototype intelligent
assistant for crisis response. In particular, we examine the
task of responding to chemical spills and fires, which we de-
scribe in the following section. Crises exhibit three primary
themes: threat, urgency, and uncertainty (Gervasio & Iba,
1997). In this paper, we are primarily interested in the ele-
ment of urgency and the impact that a computational assistant
can have on the effectiveness and timeliness of a response.
The need for a rapid response to such situations suggests a
case-based approach to computational support, in which the
human-machine combination retrieves and adapts structures
from a case library. We present INCA, an intelligent system
that embodies this design constraint, and we evaluate this ap-
proach to crisis response through experimental studies with
INCA and human subjects working together to construct a re-
sponse to a crisis. As an interactive computational assistant,
we claim that INCA supports the rapid development of high-
quality responses. In closing, we discuss related research and
describe some directions for future work.

The Hazardous Materials Domain
A hazardous materials incident occurs when a spill of some
chemical with hazardous properties endangers humans, prop-
erty, or the environment. Consider a situation involving a leak
of a toxic, flammable liquid from some old, corroded con-
tainers in a warehouse. The leak might result in a build-up
of noxious fumes that could prove fatal to any inhabitants.
In addition, sparks from nearby electrical equipment pose the
threat of an explosion. The leak may also seep into the ground
and contaminate the water supply, thus endangering the resi-
dent flora and fauna as well.

To prevent these disastrous events, a response team must
be able to effectively and efficiently eliminate the hazards
posed by the incident. A response involves many kinds of
actions, including containing and neutralizing the spilled ma-
terial, extinguishing any fires, evacuating or isolating nearby
populations, and cleaning up the involved area. A crisis re-
sponse team must decide on the most appropriate course of
action, based on factors such as the properties of the ma-
terial involved, the size of the spill, and the available re-
sources. Their job is complicated by the urgent nature of
the situation—delays in responding to the situation will result
in more negative environmental and economic consequences.
The incident is also fraught with uncertainty—incomplete in-
formation about the material involved, imperfect information
about the location of the containers, unpredictable durations
of the different activities, etc. Large-scale hazmat incidents
may require the participation of multiple agencies, introduc-
ing communication and coordination issues.

We have developed a computational assistant to aid hu-
man users in the construction of crisis responses. In order
to evaluate the resulting mixed-initiative system, we devel-
oped HAZMAT, a simulated world involving hazardous ma-
terials incidents. We designed this synthetic domain accord-
ing to information from the 1996 North American Emergency
Response Guidebook (NAERG) (Transport Canada, the U.S.
Department of Transportation, & the Secretariat of Commu-
nications and Transportation of Mexico, 1996), a handbook
for first responders that describes the appropriate responses
for different situations, providing information on the classi-
fication of hazardous materials and the different actions and
resources involved in a response.

The HAZMAT World
A HAZMAT incident is a spill, and possibly a fire, involving
one of 50 different classes of hazardous materials, varying
in form (solid, liquid, gas) and in hazardous properties (e.g.,



toxic, corrosive, and flammable). Incidents are categorized
as being large or small (involving no more than 50 gallons
of hazardous material), and they may occur indoors or out-
doors. There are four types of spills, varying in the amount
already spilled and the rate of spillage, and there are five types
of fires, varying in the amount of spilled material on fire and
if there is a fire, the rate of fire growth. HAZMAT thus in-
volves a space of 4000 different incident classes. Incidents
also have associated fire and health hazards that respectively
measure the probability of a fire starting (if there isn’t one
already) and the level of danger to one’s health. These sec-
ondary problem features are functions of the material, spill,
and fire comprising an incident.

HAZMAT currently includes 49 different actions for ad-
dressing a spill or a fire (e.g., stop the leak, extinguish with
alcohol-resistant foam) as well as the hazards presented by
the spill or fire (e.g., absorb with dry sand, eliminate ignition
sources, knock down vapors with water from a hydrant). Each
action requires some subset of the 25 types of resources cur-
rently provided in HAZMAT. These resources include crew
members, water sources such as pumpers (fire engines) and
hydrants, different kinds of extinguishers, and absorbent ma-
terial like sand and soda ash.

We can evaluate the effects of different actions on a sit-
uation using the HAZMAT simulator, which maintains pro-
cesses for tracking and updating the dynamic characteristics
of the domain for a given incident. Specifically, the state of
the world is simulated with numeric variables, corresponding
to the nominal-valued features of a HAZMAT incident. These
include: the size and rate of the spill, the size and rate of
any fire, and the sizes and rates of the fire and health hazard.
The values of these variables are determined by the simulated
processes such as the spill rate and fire growth rate and each
variable may also be influenced by particular actions initiated
by the crisis responder.

The HAZMAT Response Task
Given a particular type of hazardous material, NAERG de-
fines a subset of actions (which we call thelegal actions) to
be used in developing a response. For example, a fire in-
volving a flammable, toxic solid may be extinguished using
aCO2 or dry chemical extinguisher, but not a water or foam
extinguisher. Each HAZMAT problem involves some num-
ber, possibly zero, of each type of resource, and since each
action requires some minimum set of resources, some legal
actions may not be applicable to a problem either. In addi-
tion, each resource is associated with a capacity and a quan-
tity, thecapacitybeing the maximum number of actions that
may use the resource simultaneously and thequantitybeing
the amount of that resource available for consumption. The
actions that form a response must not violate the capacity or
quantity constraint of any resource.

The task faced by a HAZMAT crisis responder is to choose
a subset of the legal actions for a problem and to schedule
them on the available resources, without violating any re-
source constraints. In our case, the crisis responder is a hybrid
system consisting of a human user and our intelligent compu-
tational assistant.

Using HAZMAT, we can vary the severity of hazmat crisis
problems, and monitor and evaluate the effects of different re-
sponses through the simulator. We can also introduce various
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Figure 1: Mixed-initiative response to HAZMAT crises in-
volving INCA (the INteractive Crisis Assistant) a human user.

types of assistant mechanisms tailored to specific aspects of
the response task and evaluate their utility with respect to the
overall response. In our experiments, we used HAZMAT to
randomly generate problems with varied characteristics, and
to evaluate human performance in crisis response with a com-
putational assistant under different conditions.

HAZMAT Response with INCA
Crisis response teams often rely on standard operating pro-
cedures to guide their decisions. They also undergo numer-
ous training exercises which let them hone their skills as well
as refine their practices. Together, these suggested thecase-
basedapproach to crisis response that we decided to imple-
ment in INCA, our INteractive Crisis Assistant. Recent com-
putational approaches to crisis have also revealed the impor-
tance of maintaining human input in problem solving, hence
we have taken a mixed-initiative approach to crisis response.
Figure 1 depicts such a hybrid system for HAZMAT response
involving INCA and a human user.

To develop a solution, INCA first retrieves a case for a sim-
ilar problem from a library of previous solutions. INCA then
performs some initial adaptation of the solution, which in-
volves a plan and a schedule, and presents this candidate so-
lution to the user, who can perform additional adaptation as
desired. Responding to a HAZMAT incident thus involves
close interaction between INCA and the human user, who to-
gether must decide on the actions to include in a response and
assign them to be executed by specific available resources.

Case Retrieval and Initial Adaptation
INCA is responsible for finding a similar, previous case from
its library and performing an initial adaptation of the retrieved
solution. Acaseconsists of a problem, a set of resources, a
set of legal actions, a plan, and a schedule. Matching is per-
formed on the first three components, which are represented
by a feature vector, and the case with the greatest number of
features in common with the current situation is retrieved; ties
are broken arbitrarily.1

1In our experiments, we used a simpler matching function that
considered only the legal actions, which we found to result in com-
parable retrieval performance.



After the most similar previous case is retrieved, INCA per-
forms an initial adaptation of the case’s plan and schedule.
Adapting the plan involves two operations: deleting actions
that were legal for the case problem but are illegal for the
current problem, and adding actions that were illegal for the
case problem but are legal for the current problem. In this
way, INCA prevents the user from considering any illegal ac-
tions and ensures that the user is aware of all the legal actions.
Adapting the schedule involves two steps: matching one-to-
one the case’s resource list to the resources available in the
current problem, and removing previously scheduled actions
that have no corresponding resources in the current problem.
Any actions without corresponding resources and the new le-
gal actions are left unscheduled.

Interactive Adaptation

After INCA retrieves a case and completes its initial adapta-
tion of the case plan and schedule, it presents the candidate
solution to the human user for additional modifications that
are desired. In our experiments, we considered only schedule
adaptation, so we will focus on that process here. However,
the plan adaptation process is also interactive—the user may
modify the hierarchical plan by expanding or deleting nodes,
thereby affecting the actions or jobs available for scheduling.

As discussed earlier, every action has a minimum resource
requirement and every resource has associated capacity and
quantity constraints. Allocating resources to an action in-
volves choosing some number of multiples of its minimum
requirement and choosing the specific resources themselves,
subject to the constraints imposed by the resources. In addi-
tion, the scheduler must choose a duration based on the num-
ber of resources allocated to the action and whether there are
any simultaneous actions that also have an effect on the world
state variables affected by the action. For example, the dura-
tion for the action of extinguishing a fire with water from a
hydrant would be shorter with more men and more hoses or
if another extinguishment action—say, extinguishment with
dry sand—will also take place.

A scheduled action thus corresponds to four decisions: the
number of resources allocated to the job, the specific re-
sources chosen, the start time, and the duration. The initial
candidate solution that INCA adapts from a retrieved case and
presents to the user will typically contain some scheduled
jobs and some unscheduled jobs. By interacting with INCA,
the user can modify or repair this schedule in five ways. The
user can add jobs to the schedule, delete jobs from the sched-
ule, shift the start time of a scheduled job, change the duration
of a job, or switch a job from one resource to another.

INCA interacts with the user through a menu-driven graphi-
cal user interface and provides assistance during the schedule
adaptation process in various ways. After the user chooses
a particular repair operator, INCA takes the user through the
necessary set of decisions. For example, if the user chooses
to shift the start time of an action, INCA first asks whether the
user wishes to shift the job earlier or later, and then it asks for
the amount by which to shift the start time. INCA may also
suggest default values, which the user may accept or ignore
as desired. The user can recognize a schedule that violates a
capacity or quantity constraint by its graphical layout as well
as the textual information provided in the display. However,

INCA also checks for this and prevents the execution of such
illegal schedules.

HAZMAT incident response is a real-time problem—the
situation continues to develop even as the crisis responder
is constructing a response.2 At any point during problem
solving, the user may decide topostthe schedule, which be-
gins the execution of the scheduled actions at their respective
times. The user may also request situation updates and con-
tinue to interact with INCA to modify the solution according
to changes in the world revealed by the updates. The crisis
response cycle ends when the crisis situation reaches a sta-
ble point—either when the execution of the scheduled actions
successfully stops the spill and any fire, or all the material
spills and any fire burns out.

Empirical Studies
In designing INCA, we decided that a case-based approach
to crisis planning and scheduling would support more rapid
response than a generative approach. This decision embodies
our primary hypothesis, which we can test experimentally,
along with a secondary intuition that this scheme would also
produce higher quality responses. In this section we report
preliminary studies that examine both of these claims.

Experimental Setting and Dependent Measures

We have already stated our basic hypotheses, but to test
them we must move beyond the intuitive level to operational
claims. We used the HAZMAT domain and its associated sim-
ulator as our testbed, with each problem consisting of a sin-
gle incident (a spill and possibly a fire). In each situation, we
gave the subjects a description of the incident and they used
the graphical interface to produce a schedule that addresses
the problem. However, we also needed dependent measures,
independent variables, and reasonable control conditions.

Naturally, a case-based approach requires a case library.
We decided to utilize the library construction process as our
control condition. We presented a sequence of fifty problems
to the subjects who were required to develop response sched-
ules entirely from scratch. Subjects selected unscheduled
jobs and assigned them to specific resources, also choosing
start times and durations.When a subject was satisfied that
their schedule adequately addressed the current incident or
could not be further improved, the subject quit that problem
and began the next one. The final solution for each problem
was stored, as were the adaptations made by the user to gener-
ate the response as well as the time taken for each adaptation;
this data was used for later evaluation. We collected the solu-
tions and stored them as cases, thereby forming the respective
case libraries used in conditions three and four.

Our concern with rapid response to crises suggested speed
as an obvious dependent variable. More precisely, we tracked
the time a subject took to transform an initial schedule pro-
vided by the system into one they found acceptable enough
to execute. The second issue, quality, posed more challenges,
since there is no right or wrong response to a HAZMAT inci-

2However, in an attempt to prevent a confound, we did not count
the time taken to generate a response when evaluating the effective-
ness of that response. That is, we artificially removed the real-time
nature of the crisis response task for the purposes of our experiments.



dent and different subjects may judge schedules according to
different subjective standards.

As a means of measuring quality, we used the simulator
to compute an improvement metric reflecting the benefit of
executing the user’s response compared to letting the inci-
dent proceed without intervention. Toward this end, we ran
a given test problem through the HAZMAT simulator with-
out any response—the spill and any fire were allowed to pro-
ceed unabated until all the material was spilled and/or burned.
During this process, we recorded particular world-state pa-
rameters (e.g., the amount of material spilled, the spill rate,
and the health hazard level). We then simulated the same test
problem together with the response constructed by the sub-
ject, collecting the data on the same state variables. We mea-
sured the percent improvement for each state variable as the
difference between the variables’ unabated values and their
values with the response generated by the user, divided by the
original unabated value. Although users may differ in the rel-
ative importance they place on respective state variables (and
the corresponding improvements), for the sake of uniformity
we counted each variable equally by taking a simple aver-
age over these variables. Our overall percent improvement
measure reflects the average reduction in amount of material
spilled and burned and how much the hazards were reduced
as a result of the user’s response.

Case Seeding vs. Manual Generation

Our basic prediction is that INCA’s seeding of schedules
with retrieved cases will improve the overall behavior of the
human-machine system. Testing this claim requires us to
compare the standard version of INCA, in which users inter-
actively repaired a schedule that the system retrieved from its
case library, with the control condition, where the seed sched-
ule was empty and the user was required to construct the en-
tire schedule from scratch.3 The intuition is that retrieved
cases, to the extent that they are appropriate to the problem,
give users a head start compared to starting with an empty
schedule; therefore, subjects could finish sooner and spend
more time improving quality.

The first and second rows of Table 1 show the experimental
results for these two conditions on both dependent measures,
based on two subjects, each of whom dealt with thirty prob-
lems in the seeding condition and fifty in the control situa-
tion. First, we see a strong effect in the time taken to generate
a response where the case-seeded trials (row 1) required sig-
nificantly less time than the control condition (row 2). Com-
paring quality for these rows also shows a slight advantage
for the case-seeded condition but this difference is not sta-
tistically significant. We believe that one explanation for the
absence of an effect in quality is that the experimental de-
sign did not put subjects under time pressure during response
generation. Consequently, the extra time spent in the control
condition may have been used to bring the level of quality
to that of the case-seed condition. This suggests future ex-
periments where we strictly control response time so that we
can compare quality across conditions at corresponding times
during response generation.

3This control condition consisted of the same runs used to con-
struct the case libraries.

Table 1: Scheduling time and schedule quality with 95%
confidence intervals for each experimental condition.

time quality

personal case seeded127:35� 19:91 34:33� 4:64
user generated 168:98� 17:07 33:67� 4:06
system generated 203:27� 30:88 29:52� 4:42
other case seeded 126:58� 15:82 31:83� 4:53

Case Seeding vs. Automatic Generation

Although the above comparison provided a clear test of our
hypotheses, the dual facets of the INCA-user collaboration
suggest another test involving a separate control condition,
in which the intelligent assistant rather than the user gener-
ates a schedule from scratch. The intuition here is that even
though both the schedule from the retrieved case and the one
from the autonomous scheduler are complete, the latter will
tend to require more adaptation because it is less cognitively
compatible with solutions expected and desired by the user.
Therefore, responses to problems in this condition should
take longer to complete and be ultimately less effective.

To conduct this test, we developed an autonomous sched-
uler that uses a variety of heuristics to choose jobs, resource
multiples, resources, durations, and start times. Jobs are
chosen arbitrarily from the list of unscheduled jobs, and re-
sources are chosen based on minimum requirements and ear-
liest availability. The duration is chosen to be the average
expected duration given the problem and the action.4 Pro-
vided there are sufficient quantities of the chosen resources
for the chosen duration, the jobs are then scheduled as early
as possible on the chosen resources, subject to capacity con-
straints. With these heuristics, the autonomous scheduler
tends to schedule as many actions as early as possible, using
the least number and amount of resources as possible.

The comparison between the case-seed condition and the
system generated seed (rows 1 & 3 of Table 1, respectively)
shows an even stronger effect than we see between case-
seeding and generation from scratch. The results in the ta-
ble reveal that the users spent much more time modifying the
schedule generated by the system than they did on the sched-
ule from the retrieved case. However, once again the appar-
ent differences in response effectiveness between rows 1 and
3 are not significant; we believe the same explanation applies
as before.

The table also shows that even generating the schedule en-
tirely from scratch (row 2) required much less time than re-
pairing an autonomously generated one, although this differ-
ence was not significant. This finding surprised us but tends to
support our intuition that solutions generated autonomously
are cognitively incompatible with those desired by users. It
also suggests the need for improved heuristics to guide the
autonomous scheduler’s search for good solutions.

4The expected duration was computed using only the equivalent
gross ranges for the problem feature values, and not throughany
projection or simulation mechanism.



Individual Differences
The above results suggest that INCA provides an appropriate
mixture of human and computer initiative for crisis responses,
at least in the HAZMAT domain. Case seeding combined with
user repair fared better, at least in speed, than either human or
system generated schedules. But the results say nothing about
the source of the retrieved schedules. This suggests another
hypothesis: that users benefit more (again, in both speed and
quality) from cases they developed themselves than they do
from cases constructed by someone else. We tested this pre-
diction by running subjects in a fourth condition where cases
were retrieved from the other subject’s case library instead of
their own.

The results from this study do not support either of our hy-
potheses. The differences shown in Table 1 between personal
case seed (row 1) and other case seed (row 4) are not signifi-
cant for either speed or quality. Separate analyses of the data
for the two subjects reveal a main effect on the case library
that is used rather than the predicted interaction between case
library and subject. That is, one user’s case library is better
in terms of scheduling time for both subjects. (Again, there
were no significant differences in quality.) There are at least
two explanations for this, the first being that one subject’s
cases were simply better and required less revision for either
subject. An alternative explanation is that we did not suffi-
ciently eradicate learning effects and one of the subjects was
still improving across conditions. Because we could not prop-
erly mix the control or case construction condition, we did
not mix any of the conditions; now that we have several case
libraries, future experiments will properly randomize presen-
tation of problems from each condition.

Discussion and Conclusions
In the previous sections, we described our basic hypothe-
ses and analyzed data from preliminary experiments using
the INCA system. The empirical results supported one of
our primary hypotheses—case-based retrieval and adaptation
mechanisms initialize a response schedule such that it can be
adapted by a crisis response manager more quickly than if
the schedule had been seeded by another mechanism. How-
ever, we did not find statistically significant support for our
second hypothesis—case-based initialization methods should
yield more effective responses than alternative initializations.
At this time, the most we can confidently claim is that case-
based seeding allows faster response without sacrificing qual-
ity. Based on this, we also claim that INCA provides an ap-
propriate, effective and efficient approach to crisis response
deserving of further investigation.

Although we found mixed results for our main hypotheses,
we are not yet ready to abandon our prediction of improved
quality through case-seeding. First, we note that in crisis re-
sponse, responses must be both effective and timely and that
these issues are inextricably entwined. If we discount im-
provements in outcome by the time taken to generate the re-
sponse, the results do support significant differences between
the two case-seed conditions vs. the user generated condition.
More importantly, our experimental design failed to control
for total response time and consequently our quality measure
may be revealing a ceiling effect. An additional problem for
our pilot study was that differences between problem inci-

dents were greater than differences across conditions. That is,
the differences in response generation time between difficult
and easy problems was greater than that for a single problem
under varied conditions. This observation was even more ap-
parent when considering response effectiveness or quality. If
we give subjects a sufficiently limited amount of time across
all conditions and control for problem difficulty, we are confi-
dent that we will find the differences in response effectiveness
that we predicted.

Finally, there are a few additional problems that we believe
may be confounding our results in other ways. First, char-
acteristics of the HAZMAT crisis response domain make it
very difficult to develop heuristics for effective autonomous
scheduling and our comparison to the system generated re-
sponse may be too weak of a straw man. Second, INCA, and
in particular INCA’s graphical interface, places limitations on
the user’s ability to easily make certain schedule modifica-
tions, potentially increasing the time required to recover from
poor seeds. Third, interviews with the subjects suggest the
need for exploratory mechanisms that facilitate a user’s ex-
ploration and discovery of solutions. With respect to quality,
if we are seeing an artificially lowered ceiling effect due to
insufficient feedback during response generation, such tools
could raise the achievable level of performance and reveal dif-
ferences between conditions. Addressing these issues is one
part of our future work.

Related Work
While early approaches to crisis response planning were pre-
dominantly autonomous in nature, more recent systems pro-
vide interactive modes that, like INCA, let humans directly
control the plan development process (e.g., OPLAN-2 (Tate,
Drabble, & Kirby, 1994) and SOCAP (Bienkowski, 1996)).
Unlike INCA, however, these systems aid users in develop-
ing solutions from scratch rather than help them in adapting
solutions from previous cases.

CLAVIER (Hinkle & Toomey, 1994), a case-based system
for autoclave loading, is an early example of a system that in-
teractively adapts previous solutions. In the context of case-
based systems for crises, JMCAP (desJardins, Francis, &
Wolverton, 1998) uses a hybrid planner for the development
of maritime evacuation operations, and CHARADE (Perini &
Ricci, 1995) determines initial intervention plans to control
forest fires. Like INCA, these systems also use a case-seeding
mechanism to initialize the development of a response. INCA
differs in that it is anadaptive user interface(Langley, 1997)
that can acquire user models to alter its behavior to provide
personalized assistance (Gervasio, Iba, & Langley, 1998).
This paper also focused on an explicit evaluation of the ben-
efits of case seeding in a mixed-initiative setting.

DIAL (Leake, 1995) is a case-based disaster response plan-
ner that can also learn from user interaction. In contrast
to INCA, DIAL learns adaptation casesinstead ofsolution
cases; DIAL also takes a predominantly automated approach
in that it resorts to interactive adaptation only if it does not al-
ready have an applicable adaptation case. Thus, DIAL serves
as a learning apprentice while INCA is more of an adaptive
assistant. CABINS (Miyashita & Sycara, 1995) is an inter-
active case-based assistant for job-shop scheduling that, like
INCA, learns user preferences for the purpose of tailoring its
behavior to individual users. CABINS uses case-based meth-



ods to learn preferences in the form ofrepair casesbut INCA
uses case-based reasoning to seed the response process and
employs other inductive learning techniques to acquire user
preferences.

Future Work

The results from this pilot study have been encouraging but
considerable work still remains. The most straightforward
task involves refining our experimental design and re-running
the revised experiments with additional subjects, including
experts in the hazardous materials domain, to replicate our
findings regarding the superiority of case-seeded crisis re-
sponses over solutions generated from scratch or initialized
by other means. An interesting issue is the degree to which
different experts prefer distinct solutions, which will shed
light on the importance of personalization in this domain.

We also plan to extend INCA in various directions. We in-
tend to involve the user in the case retrieval process—which
is currently INCA’s sole responsibility—by employing inter-
active dialogues, as in the adaptation process, that let the user
direct retrieval to appropriate, preferred cases. We have also
developed and are testing advisory mechanisms for recom-
mending repairs/cases that users can accept or override as
they deem necessary. Naturally, we plan to design and ex-
ecute experiments to evaluate the rate at which human users
accept the recommendations, as well as recommendations’
objective utility in terms of quality of the resulting solutions.
Our main interest is in advisors that will make recommenda-
tions based on models learned from an individual’s previous
interactions with INCA. We anticipate that advisory mecha-
nisms will further improve efficiency, particularly in the case
of learned models, where we expect a greater likelihood of
suggesting repairs that the user will find desirable.

In the longer term, we hope to expand our software to sup-
port coordination among multiple crisis managers. This will
involve detecting resource conflicts among different users’
schedules and recommending steps to resolve those conflicts
while still meeting each user’s goals. Traces of such con-
flicts and their resolutions will again provide data for learn-
ing, which should let the system improve its ability to recom-
mend resolutions that are likely to work for particular sets of
users. Such adaptive models of user interaction are a natural
extension to the approach we have taken with individual crisis
response.

The results from this pilot study and other ongoing work
with INCA indicate that we have developed an exceptionally
fertile framework for exploring issues of interactive crisis re-
sponse. They also suggest that we have a promising candidate
for computational assistance in crisis settings that merits ad-
ditional attention.
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