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Abstract

Crisis domains present the challenge of developing good
respounses in a timely manner. In this paper, we present
an interactive, case-based approach to crisis response
that provides users with the ability to rapidly develop
good responses while leaving ultimate decision-making
control to the users. We introduce INCA, the INterac-
tive Crisis Assistant we have implemented for planning
and scheduling in crisis domains. We also present HAz-
MAT, the artificial domain involving hazardous mate-
rial incidents that we developed for the purpose of eval-
uating different responses and various assistant mech-
anisms. We then discuss two preliminary studies that
we conducted to evaluate scheduling assistance in INCA.
Results from the first set of experiments indicate that
INCA’s case-based scheduling assistance provides users
with initial candidate solutions that enable users to
develop high quality responses more quickly. The sec-
ond set of experiments demonstrates the potential of
machine learning methods to further facilitate interac-
tive scheduling by accurately predicting preferred user
adaptations. Based on these encouraging results, we
close with directions for future work and a brief dis-
cussion of related research.

Introduction

Responding to crises like natural disasters and military
invasions is a complex activity that stands to benefit
from computational aids. Crisis response has a number
of characteristics, which we review elsewhere (Gervasio
& Tba, 1997), that distinguish it from other problems
involving the generation of plans and schedules. In this
paper we focus on two features: urgency, which indi-
cates the need for rapid response, and the combination
of human planners’ cognitive limitations in crisis and
their final decision making responsibility, which indi-
cates an interactive approach to support.

Previous systems for crisis response have been pre-
dominantly autonomous in nature. More recent sys-
tems often provide interactive modes that let hu-
man users directly control the plan development pro-
cess (e.g., OPLAN-2 (Tate et al., 1994), SOCAP (Bi-
enkowski, 1996)). Like these systems, the INteractive
Crisis Assistant (INCA) that we present in this paper
provides various forms of computational support while

allowing crisis managers to control the development of
a crisis response. In this paper, we focus on the evalua-
tion of the assistant mechanisms in INCA to determine
their utility in crisis response.

Organizations that respond to crises typically adopt
standard operating procedures that are situation spe-
cific, suggesting a case-based approach to computational
support. These procedures and the regular training ex-
ercises such organizations perform can serve as a case
library from which users can select the plans and sched-
ules most relevant to a new crisis. Typically, a retrieved
case will require some adaptation before it is appro-
priate to a new situation. INCA retrieves plans and
schedules from previous cases, and then lets the user
interactively adapt them using repair-space operators.

Interactive systems present the opportunity to gather
traces of user behavior and the potential to learn user
models. An adaptive user interface (Langley, 1997) can
capitalize on regularities in users’ behavior by present-
ing preferred options as default selections, or by more
carefully exploring the search space of problem states
that the user is likely to traverse. INCA exploits learned
user models by recommending the most probable adap-
tation operations during scheduling.

We will explore these issues in the context of a do-
main involving hazardous material incidents, which we
describe in the following section. Then we present
INCA, the crisis assistant that we developed for the in-
teractive construction of responses. We maintain that
our approach helps users develop responses to crises
more rapidly than they could from scratch. We also
predict that it will let them produce higher quality so-
lutions than a purely generative approach. As an adap-
tive interface, INCA can acquire user models from user
interaction, and we expect that INCA can utilize these
models to anticipate users’ repair operations, further
reducing the time required to generate an appropriate
response to a crisis. These hypotheses are subject to
empirical test, which led us to design and execute the
experiments that we report in the fourth and fifth sec-
tions. Our results support these hypotheses and thus
encourage us to continue exploring our case-based ap-
proach to crisis response. In the final section, we discuss
related work and outline some areas for future work.



The Hazardous Materials Domain

The hazardous materials domain exhibits the three pri-
mary themes of crisis: threat, urgency, and uncer-
tainty (Gervasio & Iba, 1997). A hazardous materials
incident occurs when a spill of some material with haz-
ardous properties poses a threat to humans, property,
or the environment. This entails a sense of urgency in
that delays in responding to the situation typically re-
sult in more negative environmental and economic con-
sequences. It also has uncertainty in various forms: in-
complete information about the material involved, im-
perfect information about the location of the containers,
unpredictable durations of the different activities, etc.

The Idealized HAZMAT World

We have developed an artificial hazardous materi-
als world, HazMaAT, for the purpose of evaluating
problem solvers’ responses to hazardous materials in-
cidents. In developing HAzZMAT, we consulted the
1996 North American Emergency Response Guidebook
(NAERG) (Transport Canada et al., 1996), a handbook
for first responders that describes the appropriate re-
sponses for different hazardous materials situations. It
provides information on the classification of hazardous
materials and the different actions and resources in-
volved in a response.

There are 50 classes of hazardous materials, varying
in form (solid, liquid, gas) and in hazardous proper-
ties (e.g., toxic, corrosive, flammable). A HAZMAT in-
cident is a spill, and possibly a fire, involving one of
these hazardous materials. Incidents are categorized as
being large or small (involving no more than 50 gallons
of hazardous material), and they may occur indoors
or outdoors. There are four types of spills, varying
in the amount already spilled and the rate of spillage,
and there are five types of fires, varying in the amount
of spilled material on fire and the rate of fire growth.
These parameters combine to form a space of 4000 dif-
ferent incident classes. In addition, these incidents are
associated with fire and health hazards that measure
the probability of a fire starting (if there isn’t one al-
ready) and the level of danger to one’s health. These
secondary problem features are functions of the mate-
rial, spill, and fire comprising an incident.

In HAzMAT, there are 25 types of resources, such
as hydrants, dry chemical extinguishers, soda ash, and
crew members. These resources are used by the 49 dif-
ferent actions available for responding to an incident,
with different actions requiring different resources. The
actions address a spill or fire (e.g., stop the leak, extin-
guish with alcohol-resistant foam) as well as the hazards
presented by the spill or fire (e.g., absorb with dry sand,
eliminate ignition sources, knock down vapors with wa-
ter from a hydrant).

Task Description

A HAZMAT problem consists of one or more incidents
and some number (possibly zero) of each type of re-
source. Given a particular type of hazardous material,

NAERG defines a subset of actions (which we call the
legal actions) to be used in developing a response. For
example, a fire involving a flammable,; toxic solid may
be extinguished using a C'Oy or dry chemical extin-
guisher, but not a water or foam extinguisher.

The HAzZMAT response task is to choose a subset of
the legal actions for a problem and to schedule them on
the available resources so that they can be executed to
deal with the incident. Unlike traditional planning and
scheduling, there is no clear delineation between plan-
ning and scheduling responsibilities here. Determining
the set of actions to schedule (i.e., planning) is inter-
leaved with assigning resources to those actions (i.e.,
scheduling). We will elaborate on this matter in the
section describing the crisis assistant.

Simulation

HAZMAT includes a simulator for evaluating various re-
sponses (including no response) to an incident. The
simulator maintains processes that track and update
the dynamic characteristics of the domain for a given
incident. The state of the world is defined by eight nu-
meric variables, corresponding to the nominal-valued
features of a HAZMAT incident: the size and rate of
the spill, the size and rate of any fire, and the sizes and
rates of the fire and health hazards. The values of these
variables are influenced by the specifics of the given in-
cident and the actions initiated by the problem solver.
Each action has the potential to impact some subset
of these parameters. For example, extinguishment re-
duces the size and rate of a fire, while knocking down
vapors reduces the fire and health hazards.

Using HAzZMAT, we can vary the severity of crisis
problems, as well as monitor and evaluate the effects
of different responses through the simulator. We can
also introduce various types of assistant mechanisms
tailored to specific aspects of the response task and eval-
uate their utility with respect to the overall response. In
this initial implementation of HAzMAT, we focused on
individual problem solvers, and we excluded the evacu-
ation and first aid operations that are part of the com-
plete response.

INCA: A Crisis Response Assistant

Now we can describe the system we have developed to
assist users respond to HAZMAT incidents. INCA (the
INteractive Crisis Assistant) takes an interactive, case-
based approach to crisis response. Given an incident,
INCA retrieves a solution for a similar problem from a
case library of previous solutions and performs some
initial adaptation. INCA presents this candidate solu-
tion to the user, who performs additional adaptation as
needed. We first discuss case retrieval and initial adap-
tation followed by the interactive adaptation of plans
and schedules. After this, we briefly describe the graph-
ical user interface, and, finally, we present additional
aspects of INCA that set the stage for our empirical
evaluation.



Case Retrieval and Initial Adaptation

The case retrieval component is responsible for finding
a similar, previous case from the case library. A case
consists of a problem, a set of resources, a set of legal
actions, a plan, and a schedule. Each case is encoded as
a feature vector, with similarity measured by a simple
count of matching features.

After INCA retrieves the most similar case, it per-
forms some initial adaptation. Modifying the case plan
involves two operations: removing actions that were
legal in the case problem but are illegal in the current
problem, and adding actions that were illegal in the case
problem but are legal in the current problem. INCA
thus ensures that no illegal actions are executed and
that no legal actions are excluded without the user’s
knowledge. Modifying the case schedule also involves
two steps: matching one-to-one the resources of the case
and the currently available resources, and removing pre-
viously scheduled actions that have no corresponding
resources in the current problem. INCA leaves unsched-
uled the new legal actions and those actions with no
corresponding resources.

This approach to adaptation takes advantage of two
aspects of the domain. First, there are no causal sup-
ports between the actions of a problem that is, an ac-
tion does not establish preconditions for any other ac-
tion. Thus, an action can be scheduled independently
of other actions. Second, the resources are naturally
grouped into pools, the members of which are com-
pletely substitutable. Thus, a resource of a particular
type in one problem is just as good as another resource
of the same type in another problem.

Interactive Plan Adaptation

A plan for HAZMAT response is a special form of a hi-
erarchical task network. The root node of every plan
is the abstract action handle-incident. A node at
one level expands to a set of nodes at the next lower
level. These nodes are neither conjunctive nor disjunc-
tive in that any subset of an expansion may eventu-
ally be executed. Thus, both a null plan and a plan
including all legal actions are valid solutions; the dif-
ference is in their impact on the incident. The leaves
of the plan constitute the actions to be scheduled on
the available resources. Only primitive actions (i.e., ac-
tions with no further expansions) may be scheduled;
thus, unexpanded nodes cannot be scheduled.
Interactive adaptation allows the user to modify the
initially adapted case plan in two ways. First, the user
may expand any unexpanded nodes to explore addi-
tional courses of action. This has the effect of adding
to the set of jobs for scheduling. Second, the user may
delete any subtree of the network. This has the effect
of removing both scheduled and unscheduled jobs.
Although we discuss planning and scheduling sepa-
rately, there is not a clear division of responsibilities.
In contrast to the traditional planning and scheduling
framework, the actions or jobs selected in the planning

phase do not all have to be allocated to resources in
the scheduling phase. Decisions about which actions to
schedule (i.e., planning) are also made during schedul-
ing. However, the planning component can delete large
groups of actions, thus limiting the size of the set of
jobs to be considered by the scheduler. For example,
if there is already a fire, removing the high-level node
prevent-fire limits the scheduler’s attention to the
more relevant handle-fire actions. We expect that fu-
ture applications of this system, including an expanded
HAzMAT domain, will require more of the traditional
planning operations such as the determination of bind-
ing and ordering constraints.

Interactive Schedule Adaptation

The resources associated with a problem are organized
into pools of identical resources. Fach resource is as-
sociated with a capacity and a quantity, the capacity
being the maximum number of jobs that may be simul-
taneously scheduled on that resource and the quantity
being the amount of that resource available for con-
sumption. For example, a pumper may have capacity 4
and quantity 1000 (units of water).

Every action is associated with a minimum resource
requirement constraint. For example, the action of ex-
tinguishing with water using a pumper requires a mini-
mum of two crew members, one hose, and one pumper,
and it will consume ten units of water per minute. Al-
locating resources to this action involves choosing some
number of multiples of this minimum set and choosing
the specific resources themselves, subject to the capac-
ity and quantity constraints imposed by the resources.

The scheduling process is complicated by the fact
that, in this domain, jobs have variable duration. To il-
lustrate, consider the action of extinguishing a fire with
water from a hydrant. The appropriate duration of this
action will depend not only on the size and growth rate
of the fire but also on how many resources are allocated
to the action and on any simultaneous actions that also
address the fire. Extinguishment will be faster with
more crew members and more hoses and if extinguish-
ment with dry sand is also taking place. Scheduling
a job thus involves four decisions: the number of re-
sources to allocate to the job, the specific resources to
allocate, the duration, and the start time.

Interactively adapting the case schedule involves one
of five operations: adding jobs to the schedule, delet-
ing jobs from the schedule, shifting the start time of
a scheduled job, changing the duration of a scheduled
job, or switching a job from one resource to another.!
A schedule is infeasible if it violates any capacity or
quantity constraint; the scheduling assistant prevents
the execution of infeasible schedules.

!There is also an operator to change the number of re-
sources assigned to a job, and we are currently exploring
other similar higher level operators (i.e., scheduling macros).
However, the scheduling component in the experiments had
only the five simple operators.



HAZMAT incident response is a real-time problem—
the situation continues to evolve even as the user (crisis
responder) is developing a response. Thus, at any point
during problem solving, the user may post the sched-
ule to begin execution of the scheduled actions. The
user may also request situation updates and continue
to modify both the plan and the schedule accordingly.
The crisis response cycle ends either when the execu-
tion of the scheduled actions successfully stops the spill
and extinguishes the fire, or all the material is spilled
and burned.

Graphical User Interface

INCA includes a graphical front-end that provides the
user with a point-and-click interface for making plan
and schedule modifications. The interface is organized
into two screens, one for plan adaptation and one for
schedule adaptation, and the user may switch between
the two arbitrarily. The planning screen displays the
current problem description, the available resources,
and the current plan in the form of a nested list of
actions reflecting the hierarchical structure of the plan.
The user adapts the plan by clicking on an action (node)
and selecting a command (e.g., expand, delete) from the
pop-up menu that appears next to it.

The scheduling screen displays the current problem
description, the scheduled and unscheduled jobs, and
the assignment of jobs to resources (i.e., the schedule).
Each scheduled job is color coded, and appears as a
set of colored job-resource blocks in the schedule, one
for each resource used by the job. The user adapts
the schedule by clicking on a job-resource block and se-
lecting a command (e.g., add a job, switch to another
resource) from a pop-up menu. Figure 1 shows the
scheduling screen with the user about to perform an
adaptation operation. INCA’s graphical interface also
serves as an interface to the HAZMAT simulator, al-
lowing the user to request problem updates and post
schedules for execution by the simulator.

Preparation for Evaluation

We designed INCA to be an interactive, case-based plan-
ning and scheduling assistant for crisis response. The
experiments discussed in the following sections focus on
the interactive schedule adaptation aspect of INCA. To
this end, we developed assistant technology for the au-
tonomous generation and adaptation of HAZMAT re-
sponses. The autonomous planner uses heuristics to
prune out all illegal and some undesirable actions. We
used this planning assistant to determine the set of jobs
to be scheduled during case development, and to au-
tomatically expand newly legal actions and prune out
undesirable actions during initial plan adaptation.
The autonomous scheduler uses a variety of heuris-
tics to choose jobs, resource multiples, resources, du-
rations, and start times. We used this scheduling as-
sistant in one of the experimental conditions to pro-
vide an initial starting schedule in lieu of retrieving and
adapting a previous schedule from a case. We also used

Figure 1: INCA scheduling screen showing the user
changing the duration of an action to correct a resource
overallocation.

the heuristics to suggest default values to the user dur-
ing interactive scheduling, although no evaluation was
performed on the usefulness of these heuristics. The
scheduling heuristics used in the experiments tended
toward scheduling as many jobs as early as possible,
using the fewest resources for each job.

Case-Based Seeding

We predicted that the tools provided by INCA would
let users more efficiently construct crisis responses of
higher quality. This claim formed the basis for our ex-
perimental hypotheses and motivated the design of the
pilot study discussed in this section. It also pointed to
the dominating dependent measures we considered
efficiency and quality. We first describe the experimen-
tal design and setup and introduce the independent and
the dependent measures before presenting our hypothe-
ses and results.

Experimental Design and Setup

In this study, subjects were given a description of a
HAzMAT problem and instructed to develop a response
through INCA’s interactive graphical interface. Each
problem consisted of a single incident, and the effective-
ness of the solutions was determined using the HAzZMAT
simulator. To prevent a confound between response
generation time and response effectiveness, we removed
the real-time nature of the response problem. Thus, no
constraints were placed on the speed of response gener-
ation, and the subjects did not receive runtime feedback
regarding the effectiveness of their response.

Our goal in this study was to evaluate the utility
of the case-based retrieval and adaptation mechanisms
that provide the initial schedule, or seed, for the user’s
response. The experimental design was thus geared to-
wards evaluating the efficiency and quality of solutions



resulting from alternative initialization strategies. We
tested subjects over a number of trials in four experi-
mental conditions, with each trial corresponding to the
development of a schedule for one problem.

In the first condition (no seed, the control condition),
subjects had to develop a schedule entirely from scratch.
The solutions generated under this condition were also
used to construct personal case libraries. In the second
condition (auto seed), INCA initialized the scheduling
process for each incident using the autonomous sched-
uler. The third and fourth conditions relied on INCA’s
case retrieval and adaptation mechanisms to provide
the initial schedule. INCA used the subject’s personal
case library in the third condition (own seed), and an-
other subject’s case library in the fourth condition (for-
eign seed). A subject ended the scheduling process and
moved on to the next trial when he was satisfied that
the current schedule adequately addressed the incident
or could not be improved further.

In determining the dependent measures for compar-
ing subjects’ performance over the different experimen-
tal conditions, we focused on two specific characteris-
tics of performance: efficiency and quality. We mea-
sured efficiency by the total time required by the user
to develop a solution, and we measured quality as the
improvement realized through the application of the ac-
tions specified in the constructed schedule.

To compute this improvement, we simulated each
problem twice: first, without any intervention, allow-
ing the spill and any fire to proceed unabated, and
then, with the user’s scheduled response. During each
simulation, we recorded the parameters characterizing
the state of the world (e.g. amount spilled, burn rate,
health hazard level). Then we calculated the percent-
age improvement using the differences between corre-
sponding parameter values in the two simulations. We
report this as a reduction percentage, with higher num-
bers representing increasing quality (i.e., 0% means no
improvement and 100% means infinite improvement).
The quality measure thus reflects how much less mate-
rial was spilled and burned and how much the hazards
were reduced through the intervention of the user.

To summarize the setup, there were two primary in-
dependent measures: 1) whether an initial seed was
provided or not, and 2) what particular type of seeding
was used—heuristic scheduling, personal case library,
or foreign case library. There were also two primary
dependent measures: 1) the time taken to construct a
response (efficiency), and 2) the performance improve-
ment due to the response (quality). Each subject solved
fifty problems in the no seed condition and thirty prob-
lems in each of the remaining conditions. For further
details on these experiments, see (Iba et al., 1998).

Experimental Hypotheses and Results

We expected seeding to facilitate the development of
a response, since it starts the scheduling process with
a partial solution. In particular, we expected to see
advantages for the case-seeded conditions because the
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Figure 2: Mean scheduling time (with 95% confidence
intervals) for each subject under the various experimen-
tal conditions.

cases were generated by the users in the first place and
we propose that schedules based on these cases con-
strain the space of solutions to those that are “cogni-
tively compatible” with a user.

Hypothesis 1: Response time (scheduling time) will
be lower with schedule seeding than with no seeding.

Specifically, we expected a progression of faster re-
sponse times, with auto seed being faster than no seed,
foreign seed faster still than auto seed, and own seed
being the fastest of all.

Figure 2 shows the average time taken by each user to
develop a response in each of the four experimental con-
ditions. The results partially support our hypothesis.
For both subjects, scheduling was most efficient with
case seeding. However, scheduling in the auto seed con-
dition seemed to be even slower than scheduling with
no seed, particularly for the second subject. Also, while
the own seed condition resulted in slightly better effi-
ciency than the foreign seed condition for the second
subject, the reverse was true for the first subject.

A possible explanation for the negative results re-
garding the auto seed condition is that the heuristics
used by the autonomous scheduler may have resulted in
schedules that were highly incompatible with the users’
preferences. Indeed, interviews with the users revealed
that they often spent a considerable amount of time
clearing schedules under the auto seed condition. The
mixed results regarding the case-seeded conditions may
be explained by the second subject having stronger in-
dividual preferences than the first subject. That is, the
second subject exhibited a stronger bias for his own
schedules, while the first subject exhibited a bias only
against the schedules of the heuristic scheduler.

We also expected seeding to yield higher quality solu-
tions. The intuition is that users will have more oppor-
tunity to improve the quality of a response if they do
not have to spend time generating it in the first place.

Hypothesis 2: Solutions derived from seeded sched-
ules will be more effective than responses generated
from scratch.
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Figure 3: Mean performance improvement (with 95%
confidence intervals) for each subject under the various
experimental conditions.

Figure 3 shows the percentage improvement realized
by the solutions of each user under the different ex-
perimental conditions. While the mean improvement
under the auto seed condition is slightly worse than
the other conditions for both subjects, the large vari-
ances do not support any clear differences between the
conditions. One possible explanation for this result is
that the scale of differences between problems may have
been greater than the differences between conditions.
That is, easy problems led to large improvements while
difficult problems allowed only minimal improvements.
Closer examination of the data revealed that problems
often did cluster into ranges of performance improve-
ment across all conditions. Another possible explana-
tion is that the subjects’ experience with the HAzMAT
domain may have been insufficient for them to properly
evaluate schedule quality. Thus, they would have been
unable to focus on the most crucial adaptations giving
the greatest gains.

The measure of quality for Hypothesis 2 evaluates
schedules only in terms of their effects in the simulation.
In a crisis context, however, it is important not only to
come up with good solutions but also to come up with
them quickly. Thus, a better measure of quality would
also account for the time taken to produce the schedule.
Given the results on scheduling time, which favor case
seeding, and the results on performance improvement,
which show no differences between the conditions, we
can expect to see greater benefits from case seeding if we
discount the percentage improvement by the scheduling
time.

Predicting User Adaptations

The second set of experiments was motivated by our
long-term objective for INCA to become an adaptive
user interface (Langley, 1997). We claim that machine
learning can be used to acquire user models that can
be used to adapt system behavior to better assist users.
We begin by presenting our formulation of the learning
problem before discussing the experiments and results.

Experimental Design and Setup

We defined INCA’s performance task as: Given the cur-
rent scheduling state, as characterized by the problem,
available resources, legal actions, and current schedule,
predict the adaptation operation the user will perform
next. This can be translated into a standard classifica-
tion task, with the class being the scheduling operation
and the instance being the scheduling state for which
the prediction is being made.

The prediction task can be formulated at various lev-
els, from the highest level predicting a general schedul-
ing operator such as ADD any action, to the lowest level
predicting a specific operator instantiation such as ADD
the cover-with-tarp action on crew members #1 and
#4 and tarp #2 starting at time 34 for a duration of
8 time units. For our initial formulation, we chose an
intermediate level, requiring the specification of a par-
ticular action but not specific resources or amounts. We
also combined the remove action, change duration, shift
action, and switch resource operators into a single RE-
PAIR operator. This resulted in ADD and REPAIR
operations for each of the 49 actions, for a total of
98 different classes. We used 86 attributes to describe
the scheduling state: 12 nominal attributes to represent
the problem, 25 Boolean features to denote whether or
not resources of each type were available, and 49 at-
tributes to indicate the schedule status of each action
(i.e., whether it was legal and whether it was feasibly
scheduled).

We characterized INCA’s learning task as: Given a
set of training examples, learn a classifier that makes
correct predictions on new examples. The information
we gathered during the schedule seeding experiments
provided the data for our learning experiments. Specif-
ically, each schedule adaptation performed while solv-
ing a problem corresponds to a training or test instance.
We extracted 935 examples (data set 1) and 1049 ex-
amples (data set 2) from the problem-solving traces of
the first and second subjects respectively. The results
reported in the next section were obtained by running
ID3 (Quinlan, 1986) over ten trials on each data set,
with each trial using 800 randomly chosen examples for
training and the rest for testing. See (Gervasio et al.,
1998) for more details on these learning experiments.

A baseline study (Figure 4, base) showed that pre-
dictive accuracy after learning was significantly better
than guessing randomly (1.02%) and guessing the most
frequent class (8.57%). However, even in the best case
(26.87% for data set 2), there were more than twice as
many misclassifications as correct classifications. Our
analysis of the results suggested our formulation of the
problem as the prime suspect for this poor performance,
so we investigated various problem reformulations with
the goal of improving performance. Thus, in these ex-
periments, the primary independent measure was prob-
lem formulation, and the primary dependent measure
was predictive accuracy.
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Experimental Hypotheses and Results

In the first experiment, we wanted to investigate the
effects of effects of simplifying the problem via class
abstraction. As stated earlier, the prediction task can
be formulated at different levels, and for the baseline
study we had chosen an intermediate level requiring
the specification of an ADD or REPAIR of a particular
action.

Hypothesis 1: Predictive accuracy will increase on
a more abstract prediction task.

To test our hypothesis, we abstracted the task to require
the prediction of an ADD/REPAIR on a class of actions
rather than on specific actions (e.g., “extinguish with
hose” rather than “extinguish with hose using water
from a hydrant”).

The results support our hypothesis: accuracy in-
creased significantly for both data sets with class ab-
straction (Figure 4, abstracted). This result may not
be surprising since the abstraction results in a simpler
prediction task. However, it raises the issue of deter-
mining an appropriate task level in mixed-initiative set-
tings such as interactive scheduling. By predicting a
class rather than a particular action, the system re-
quires the user to make an additional decision. How-
ever, this transfer of decision-making responsibility to
the human user is not necessarily undesirable as it may
lead to more effective interaction overall.

In the second experiment, we wanted to investigate
the effects of allowing the prediction of alternative op-
erations. The formulation of the performance task as
the problem of predicting the user’s next operation was
a natural fit to the data provided by the user traces.
However, it is unnecessarily difficult in that it requires
the system to predict a user’s immediate next adapta-
tion operation. A user may arrive at the same sched-
ule through different sequences of operations, many of
which may be equally acceptable to the user.

Hypothesis 2: Predictive accuracy will increase
on the modified task of predicting any subsequent
adaptation operation.

To test this hypothesis, we first modified the original
examples to include a set of alternative classes, consist-
ing of all the subsequent operations the user invoked
to solve the HAZMAT incident, minus those that were
illegal in the current state. Training proceeded as be-
fore, but, during testing, we judged a prediction to be
correct if it matched the instance’s label or one of its
alternative classes.

The results support our hypothesis: significantly
greater accuracy was achieved on the reformulated task
(Figure 4, alternative classes). The results might seem
obvious since allowing alternative classes simplifies the
prediction task. However, as stated earlier, predicting
the user’s immediate next operation may be an unnec-
essarily difficult task. We claim that the modified task
of predicting any of the user’s subsequent operations is
in fact more appropriate in that it better captures what
concerns users during the scheduling process.

Discussion and Conclusions

The results from our pilot study on schedule seeding
support, our primary hypothesis and claim that INCA’s
case-based retrieval and adaptation mechanisms pro-
vide an initial schedule that allows a crisis responder
to develop a solution more quickly than constructing a
response from scratch or from an initial schedule pro-
vided by another mechanism. In addition, the results
show that solution quality was maintained with this in-
crease in efficiency. These results support our claim
that INCA provides an appropriate, effective, and effi-
cient approach to crisis response.

Preliminary results with learned user models also
support our intuition that regularities in user response
behavior can be extracted and exploited through an
adaptive user interface. Users can recognize a recom-
mended operation more quickly than they can generate
it themselves if it is one they would have selected any-
way. Although we have not yet collected timing data
in the condition where the model’s recommendations
are presented to subjects for acceptance or rejection,
we anticipate additional speed gains to be revealed.

Related Work

As discussed earlier, many crisis planning and schedul-
ing systems today, including OPLAN-2 and SOCAP,
have interactive modes that let users to maintain con-
trol of the problem-solving process. With the im-
portance of the human-computer interface in mixed-
initiative systems, there has also been interest in devel-
oping more natural interfaces, such as the speech inter-
face in TRAINS-95 (Ferguson et al., 1996), a planning
assistant for train routing. Most of these interactive
systems aid users in developing solutions from scratch.
In contrast, INCA aids users in adapting solutions from



previous cases. This paper also focused on the evalua-
tion of the scheduling assistance in INCA.

CLAVIER (Hinkle & Toomey, 1994) is an advisory
system for autoclave loading that, like INCA, retrieves
previous cases for users who can then interact with the
system to perform additional modifications. INCA dif-
fers in its domain and consequent focus on planning and
scheduling. DIAL (Leake, 1996) is a case-based plan-
ner for disaster response, whose adaptation process is
predominantly automated, in contrast to the interac-
tive case adaptation process in INCA. DIAL also learns
adaptation cases, in contrast to the solution cases in
INncA. CABINS (Miyashita & Sycara, 1995) is an inter-
active assistant that uses case-based methods to learn
user preferences for job-shop scheduling. Like CAB-
INS, INCcA incorporates learning mechanisms that let
it adapt its assistant behavior to different individuals.
However, while CABINS employs case-based methods
to learn individual preferences in the form of repair
cases, INCA uses case-based reasoning primarily as a
seeding mechanism, and it employs inductive learning
techniques to acquire user preferences.

Future Work

Our preliminary experimental results have been encour-
aging, but considerable work remains. Some of the
unanticipated findings in our experiments on schedule
seeding have led us to revise our experimental design
to control for confounding factors such as problem dif-
ficulty and unlimited scheduling time. In the near fu-
ture, we intend to run similar experiments with more
subjects to replicate our findings. We are also planning
experiments to test the utility of recommendations from
learned user models in the context of HAZMAT crises of
varied severity. We hope to conduct studies exploring
differences in expert and novice performance as well.
An interesting issue involves the degree to which differ-
ent experts prefer distinct solutions, which will reveal
the importance of personalization in this domain.

We also plan on extending INCA in various directions.
Based on the experimental results and feedback from
the subjects, we plan on modifying INCA’s graphical
interface in various ways to better facilitate interaction
with the human user. We are currently extending the
interactive nature of INCA to case retrieval, which to
this point has been entirely automated. This would
allow the user to direct case retrieval to the most ap-
propriate, preferred case.

In the longer term, we hope to expand our software to
support coordination among multiple crisis managers.
This will involve detecting resource conflicts among dif-
ferent users’ schedules and recommending steps to re-
solve those conflicts while still meeting each user’s goals.
Traces of such conflicts and their resolutions will again
provide data for learning, which should let the system
improve its ability to recommend resolutions that are
likely to work for particular sets of users. Such adaptive
models of user interaction are a natural extension to the
approach we have taken with individual crisis response.
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