
Appears in the AIPS-98 Workshop on Interactive and Collaborative PlanningInteractive Adaptation for Crisis ResponseMelinda Gervasio Wayne Iba Pat Langley Stephanie SageInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, California 94306fgervasio, iba, langley, sageg@isle.orghttp://www.isle.orgAbstractCrisis domains present the challenge of developing goodresponses in a timely manner. In this paper, we presentan interactive, case-based approach to crisis responsethat provides users with the ability to rapidly developgood responses while leaving ultimate decision-makingcontrol to the users. We introduce Inca, the INterac-tive Crisis Assistant we have implemented for planningand scheduling in crisis domains. We also present Haz-Mat, the arti�cial domain involving hazardous mate-rial incidents that we developed for the purpose of eval-uating di�erent responses and various assistant mech-anisms. We then discuss two preliminary studies thatwe conducted to evaluate scheduling assistance in Inca.Results from the �rst set of experiments indicate thatInca's case-based scheduling assistance provides userswith initial candidate solutions that enable users todevelop high quality responses more quickly. The sec-ond set of experiments demonstrates the potential ofmachine learning methods to further facilitate interac-tive scheduling by accurately predicting preferred useradaptations. Based on these encouraging results, weclose with directions for future work and a brief dis-cussion of related research.IntroductionResponding to crises like natural disasters and militaryinvasions is a complex activity that stands to bene�tfrom computational aids. Crisis response has a numberof characteristics, which we review elsewhere (Gervasio& Iba, 1997), that distinguish it from other problemsinvolving the generation of plans and schedules. In thispaper we focus on two features: urgency, which indi-cates the need for rapid response, and the combinationof human planners' cognitive limitations in crisis andtheir �nal decision making responsibility, which indi-cates an interactive approach to support.Previous systems for crisis response have been pre-dominantly autonomous in nature. More recent sys-tems often provide interactive modes that let hu-man users directly control the plan development pro-cess (e.g., OPLAN-2 (Tate et al., 1994), SOCAP (Bi-enkowski, 1996)). Like these systems, the INteractiveCrisis Assistant (Inca) that we present in this paperprovides various forms of computational support while

allowing crisis managers to control the development ofa crisis response. In this paper, we focus on the evalua-tion of the assistant mechanisms in Inca to determinetheir utility in crisis response.Organizations that respond to crises typically adoptstandard operating procedures that are situation spe-ci�c, suggesting a case-based approach to computationalsupport. These procedures and the regular training ex-ercises such organizations perform can serve as a caselibrary from which users can select the plans and sched-ules most relevant to a new crisis. Typically, a retrievedcase will require some adaptation before it is appro-priate to a new situation. Inca retrieves plans andschedules from previous cases, and then lets the userinteractively adapt them using repair-space operators.Interactive systems present the opportunity to gathertraces of user behavior and the potential to learn usermodels. An adaptive user interface (Langley, 1997) cancapitalize on regularities in users' behavior by present-ing preferred options as default selections, or by morecarefully exploring the search space of problem statesthat the user is likely to traverse. Inca exploits learneduser models by recommending the most probable adap-tation operations during scheduling.We will explore these issues in the context of a do-main involving hazardous material incidents, which wedescribe in the following section. Then we presentInca, the crisis assistant that we developed for the in-teractive construction of responses. We maintain thatour approach helps users develop responses to crisesmore rapidly than they could from scratch. We alsopredict that it will let them produce higher quality so-lutions than a purely generative approach. As an adap-tive interface, Inca can acquire user models from userinteraction, and we expect that Inca can utilize thesemodels to anticipate users' repair operations, furtherreducing the time required to generate an appropriateresponse to a crisis. These hypotheses are subject toempirical test, which led us to design and execute theexperiments that we report in the fourth and �fth sec-tions. Our results support these hypotheses and thusencourage us to continue exploring our case-based ap-proach to crisis response. In the �nal section, we discussrelated work and outline some areas for future work.



The Hazardous Materials DomainThe hazardous materials domain exhibits the three pri-mary themes of crisis: threat, urgency, and uncer-tainty (Gervasio & Iba, 1997). A hazardous materialsincident occurs when a spill of some material with haz-ardous properties poses a threat to humans, property,or the environment. This entails a sense of urgency inthat delays in responding to the situation typically re-sult in more negative environmental and economic con-sequences. It also has uncertainty in various forms: in-complete information about the material involved, im-perfect information about the location of the containers,unpredictable durations of the di�erent activities, etc.The Idealized HAZMAT WorldWe have developed an arti�cial hazardous materi-als world, HazMat, for the purpose of evaluatingproblem solvers' responses to hazardous materials in-cidents. In developing HazMat, we consulted the1996 North American Emergency Response Guidebook(NAERG) (Transport Canada et al., 1996), a handbookfor �rst responders that describes the appropriate re-sponses for di�erent hazardous materials situations. Itprovides information on the classi�cation of hazardousmaterials and the di�erent actions and resources in-volved in a response.There are 50 classes of hazardous materials, varyingin form (solid, liquid, gas) and in hazardous proper-ties (e.g., toxic, corrosive, ammable). A HazMat in-cident is a spill, and possibly a �re, involving one ofthese hazardous materials. Incidents are categorized asbeing large or small (involving no more than 50 gallonsof hazardous material), and they may occur indoorsor outdoors. There are four types of spills, varyingin the amount already spilled and the rate of spillage,and there are �ve types of �res, varying in the amountof spilled material on �re and the rate of �re growth.These parameters combine to form a space of 4000 dif-ferent incident classes. In addition, these incidents areassociated with �re and health hazards that measurethe probability of a �re starting (if there isn't one al-ready) and the level of danger to one's health. Thesesecondary problem features are functions of the mate-rial, spill, and �re comprising an incident.In HazMat, there are 25 types of resources, suchas hydrants, dry chemical extinguishers, soda ash, andcrew members. These resources are used by the 49 dif-ferent actions available for responding to an incident,with di�erent actions requiring di�erent resources. Theactions address a spill or �re (e.g., stop the leak, extin-guish with alcohol-resistant foam) as well as the hazardspresented by the spill or �re (e.g., absorb with dry sand,eliminate ignition sources, knock down vapors with wa-ter from a hydrant).Task DescriptionA HazMat problem consists of one or more incidentsand some number (possibly zero) of each type of re-source. Given a particular type of hazardous material,

NAERG de�nes a subset of actions (which we call thelegal actions) to be used in developing a response. Forexample, a �re involving a ammable, toxic solid maybe extinguished using a CO2 or dry chemical extin-guisher, but not a water or foam extinguisher.The HazMat response task is to choose a subset ofthe legal actions for a problem and to schedule them onthe available resources so that they can be executed todeal with the incident. Unlike traditional planning andscheduling, there is no clear delineation between plan-ning and scheduling responsibilities here. Determiningthe set of actions to schedule (i.e., planning) is inter-leaved with assigning resources to those actions (i.e.,scheduling). We will elaborate on this matter in thesection describing the crisis assistant.SimulationHazMat includes a simulator for evaluating various re-sponses (including no response) to an incident. Thesimulator maintains processes that track and updatethe dynamic characteristics of the domain for a givenincident. The state of the world is de�ned by eight nu-meric variables, corresponding to the nominal-valuedfeatures of a HazMat incident: the size and rate ofthe spill, the size and rate of any �re, and the sizes andrates of the �re and health hazards. The values of thesevariables are inuenced by the speci�cs of the given in-cident and the actions initiated by the problem solver.Each action has the potential to impact some subsetof these parameters. For example, extinguishment re-duces the size and rate of a �re, while knocking downvapors reduces the �re and health hazards.Using HazMat, we can vary the severity of crisisproblems, as well as monitor and evaluate the e�ectsof di�erent responses through the simulator. We canalso introduce various types of assistant mechanismstailored to speci�c aspects of the response task and eval-uate their utility with respect to the overall response. Inthis initial implementation of HazMat, we focused onindividual problem solvers, and we excluded the evacu-ation and �rst aid operations that are part of the com-plete response.INCA: A Crisis Response AssistantNow we can describe the system we have developed toassist users respond to HazMat incidents. Inca (theINteractive Crisis Assistant) takes an interactive, case-based approach to crisis response. Given an incident,Inca retrieves a solution for a similar problem from acase library of previous solutions and performs someinitial adaptation. Inca presents this candidate solu-tion to the user, who performs additional adaptation asneeded. We �rst discuss case retrieval and initial adap-tation followed by the interactive adaptation of plansand schedules. After this, we briey describe the graph-ical user interface, and, �nally, we present additionalaspects of Inca that set the stage for our empiricalevaluation.



Case Retrieval and Initial AdaptationThe case retrieval component is responsible for �ndinga similar, previous case from the case library. A caseconsists of a problem, a set of resources, a set of legalactions, a plan, and a schedule. Each case is encoded asa feature vector, with similarity measured by a simplecount of matching features.After Inca retrieves the most similar case, it per-forms some initial adaptation. Modifying the case planinvolves two operations: removing actions that werelegal in the case problem but are illegal in the currentproblem, and adding actions that were illegal in the caseproblem but are legal in the current problem. Incathus ensures that no illegal actions are executed andthat no legal actions are excluded without the user'sknowledge. Modifying the case schedule also involvestwo steps: matching one-to-one the resources of the caseand the currently available resources, and removing pre-viously scheduled actions that have no correspondingresources in the current problem. Inca leaves unsched-uled the new legal actions and those actions with nocorresponding resources.This approach to adaptation takes advantage of twoaspects of the domain. First, there are no causal sup-ports between the actions of a problem|that is, an ac-tion does not establish preconditions for any other ac-tion. Thus, an action can be scheduled independentlyof other actions. Second, the resources are naturallygrouped into pools, the members of which are com-pletely substitutable. Thus, a resource of a particulartype in one problem is just as good as another resourceof the same type in another problem.Interactive Plan AdaptationA plan for HazMat response is a special form of a hi-erarchical task network. The root node of every planis the abstract action handle-incident. A node atone level expands to a set of nodes at the next lowerlevel. These nodes are neither conjunctive nor disjunc-tive in that any subset of an expansion may eventu-ally be executed. Thus, both a null plan and a planincluding all legal actions are valid solutions; the dif-ference is in their impact on the incident. The leavesof the plan constitute the actions to be scheduled onthe available resources. Only primitive actions (i.e., ac-tions with no further expansions) may be scheduled;thus, unexpanded nodes cannot be scheduled.Interactive adaptation allows the user to modify theinitially adapted case plan in two ways. First, the usermay expand any unexpanded nodes to explore addi-tional courses of action. This has the e�ect of addingto the set of jobs for scheduling. Second, the user maydelete any subtree of the network. This has the e�ectof removing both scheduled and unscheduled jobs.Although we discuss planning and scheduling sepa-rately, there is not a clear division of responsibilities.In contrast to the traditional planning and schedulingframework, the actions or jobs selected in the planning

phase do not all have to be allocated to resources inthe scheduling phase. Decisions about which actions toschedule (i.e., planning) are also made during schedul-ing. However, the planning component can delete largegroups of actions, thus limiting the size of the set ofjobs to be considered by the scheduler. For example,if there is already a �re, removing the high-level nodeprevent-fire limits the scheduler's attention to themore relevant handle-fire actions. We expect that fu-ture applications of this system, including an expandedHazMat domain, will require more of the traditionalplanning operations such as the determination of bind-ing and ordering constraints.Interactive Schedule AdaptationThe resources associated with a problem are organizedinto pools of identical resources. Each resource is as-sociated with a capacity and a quantity, the capacitybeing the maximum number of jobs that may be simul-taneously scheduled on that resource and the quantitybeing the amount of that resource available for con-sumption. For example, a pumper may have capacity 4and quantity 1000 (units of water).Every action is associated with a minimum resourcerequirement constraint. For example, the action of ex-tinguishing with water using a pumper requires a mini-mum of two crew members, one hose, and one pumper,and it will consume ten units of water per minute. Al-locating resources to this action involves choosing somenumber of multiples of this minimum set and choosingthe speci�c resources themselves, subject to the capac-ity and quantity constraints imposed by the resources.The scheduling process is complicated by the factthat, in this domain, jobs have variable duration. To il-lustrate, consider the action of extinguishing a �re withwater from a hydrant. The appropriate duration of thisaction will depend not only on the size and growth rateof the �re but also on how many resources are allocatedto the action and on any simultaneous actions that alsoaddress the �re. Extinguishment will be faster withmore crew members and more hoses and if extinguish-ment with dry sand is also taking place. Schedulinga job thus involves four decisions: the number of re-sources to allocate to the job, the speci�c resources toallocate, the duration, and the start time.Interactively adapting the case schedule involves oneof �ve operations: adding jobs to the schedule, delet-ing jobs from the schedule, shifting the start time ofa scheduled job, changing the duration of a scheduledjob, or switching a job from one resource to another.1A schedule is infeasible if it violates any capacity orquantity constraint; the scheduling assistant preventsthe execution of infeasible schedules.1There is also an operator to change the number of re-sources assigned to a job, and we are currently exploringother similar higher level operators (i.e., scheduling macros).However, the scheduling component in the experiments hadonly the �ve simple operators.



HazMat incident response is a real-time problem|the situation continues to evolve even as the user (crisisresponder) is developing a response. Thus, at any pointduring problem solving, the user may post the sched-ule to begin execution of the scheduled actions. Theuser may also request situation updates and continueto modify both the plan and the schedule accordingly.The crisis response cycle ends either when the execu-tion of the scheduled actions successfully stops the spilland extinguishes the �re, or all the material is spilledand burned.Graphical User InterfaceInca includes a graphical front-end that provides theuser with a point-and-click interface for making planand schedule modi�cations. The interface is organizedinto two screens, one for plan adaptation and one forschedule adaptation, and the user may switch betweenthe two arbitrarily. The planning screen displays thecurrent problem description, the available resources,and the current plan in the form of a nested list ofactions reecting the hierarchical structure of the plan.The user adapts the plan by clicking on an action (node)and selecting a command (e.g., expand, delete) from thepop-up menu that appears next to it.The scheduling screen displays the current problemdescription, the scheduled and unscheduled jobs, andthe assignment of jobs to resources (i.e., the schedule).Each scheduled job is color coded, and appears as aset of colored job-resource blocks in the schedule, onefor each resource used by the job. The user adaptsthe schedule by clicking on a job-resource block and se-lecting a command (e.g., add a job, switch to anotherresource) from a pop-up menu. Figure 1 shows thescheduling screen with the user about to perform anadaptation operation. Inca's graphical interface alsoserves as an interface to the HazMat simulator, al-lowing the user to request problem updates and postschedules for execution by the simulator.Preparation for EvaluationWe designed Inca to be an interactive, case-based plan-ning and scheduling assistant for crisis response. Theexperiments discussed in the following sections focus onthe interactive schedule adaptation aspect of Inca. Tothis end, we developed assistant technology for the au-tonomous generation and adaptation of HazMat re-sponses. The autonomous planner uses heuristics toprune out all illegal and some undesirable actions. Weused this planning assistant to determine the set of jobsto be scheduled during case development, and to au-tomatically expand newly legal actions and prune outundesirable actions during initial plan adaptation.The autonomous scheduler uses a variety of heuris-tics to choose jobs, resource multiples, resources, du-rations, and start times. We used this scheduling as-sistant in one of the experimental conditions to pro-vide an initial starting schedule in lieu of retrieving andadapting a previous schedule from a case. We also used

Figure 1: Inca scheduling screen showing the userchanging the duration of an action to correct a resourceoverallocation.the heuristics to suggest default values to the user dur-ing interactive scheduling, although no evaluation wasperformed on the usefulness of these heuristics. Thescheduling heuristics used in the experiments tendedtoward scheduling as many jobs as early as possible,using the fewest resources for each job.Case-Based SeedingWe predicted that the tools provided by Inca wouldlet users more e�ciently construct crisis responses ofhigher quality. This claim formed the basis for our ex-perimental hypotheses and motivated the design of thepilot study discussed in this section. It also pointed tothe dominating dependent measures we considered|e�ciency and quality. We �rst describe the experimen-tal design and setup and introduce the independent andthe dependent measures before presenting our hypothe-ses and results.Experimental Design and SetupIn this study, subjects were given a description of aHazMat problem and instructed to develop a responsethrough Inca's interactive graphical interface. Eachproblem consisted of a single incident, and the e�ective-ness of the solutions was determined using theHazMatsimulator. To prevent a confound between responsegeneration time and response e�ectiveness, we removedthe real-time nature of the response problem. Thus, noconstraints were placed on the speed of response gener-ation, and the subjects did not receive runtime feedbackregarding the e�ectiveness of their response.Our goal in this study was to evaluate the utilityof the case-based retrieval and adaptation mechanismsthat provide the initial schedule, or seed, for the user'sresponse. The experimental design was thus geared to-wards evaluating the e�ciency and quality of solutions



resulting from alternative initialization strategies. Wetested subjects over a number of trials in four experi-mental conditions, with each trial corresponding to thedevelopment of a schedule for one problem.In the �rst condition (no seed, the control condition),subjects had to develop a schedule entirely from scratch.The solutions generated under this condition were alsoused to construct personal case libraries. In the secondcondition (auto seed), Inca initialized the schedulingprocess for each incident using the autonomous sched-uler. The third and fourth conditions relied on Inca'scase retrieval and adaptation mechanisms to providethe initial schedule. Inca used the subject's personalcase library in the third condition (own seed), and an-other subject's case library in the fourth condition (for-eign seed). A subject ended the scheduling process andmoved on to the next trial when he was satis�ed thatthe current schedule adequately addressed the incidentor could not be improved further.In determining the dependent measures for compar-ing subjects' performance over the di�erent experimen-tal conditions, we focused on two speci�c characteris-tics of performance: e�ciency and quality. We mea-sured e�ciency by the total time required by the userto develop a solution, and we measured quality as theimprovement realized through the application of the ac-tions speci�ed in the constructed schedule.To compute this improvement, we simulated eachproblem twice: �rst, without any intervention, allow-ing the spill and any �re to proceed unabated, andthen, with the user's scheduled response. During eachsimulation, we recorded the parameters characterizingthe state of the world (e.g. amount spilled, burn rate,health hazard level). Then we calculated the percent-age improvement using the di�erences between corre-sponding parameter values in the two simulations. Wereport this as a reduction percentage, with higher num-bers representing increasing quality (i.e., 0% means noimprovement and 100% means in�nite improvement).The quality measure thus reects how much less mate-rial was spilled and burned and how much the hazardswere reduced through the intervention of the user.To summarize the setup, there were two primary in-dependent measures: 1) whether an initial seed wasprovided or not, and 2) what particular type of seedingwas used|heuristic scheduling, personal case library,or foreign case library. There were also two primarydependent measures: 1) the time taken to construct aresponse (e�ciency), and 2) the performance improve-ment due to the response (quality). Each subject solved�fty problems in the no seed condition and thirty prob-lems in each of the remaining conditions. For furtherdetails on these experiments, see (Iba et al., 1998).Experimental Hypotheses and ResultsWe expected seeding to facilitate the development ofa response, since it starts the scheduling process witha partial solution. In particular, we expected to seeadvantages for the case-seeded conditions because the
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Subject 2Figure 2: Mean scheduling time (with 95% con�denceintervals) for each subject under the various experimen-tal conditions.cases were generated by the users in the �rst place andwe propose that schedules based on these cases con-strain the space of solutions to those that are \cogni-tively compatible" with a user.Hypothesis 1: Response time (scheduling time) willbe lower with schedule seeding than with no seeding.Speci�cally, we expected a progression of faster re-sponse times, with auto seed being faster than no seed,foreign seed faster still than auto seed, and own seedbeing the fastest of all.Figure 2 shows the average time taken by each user todevelop a response in each of the four experimental con-ditions. The results partially support our hypothesis.For both subjects, scheduling was most e�cient withcase seeding. However, scheduling in the auto seed con-dition seemed to be even slower than scheduling withno seed, particularly for the second subject. Also, whilethe own seed condition resulted in slightly better e�-ciency than the foreign seed condition for the secondsubject, the reverse was true for the �rst subject.A possible explanation for the negative results re-garding the auto seed condition is that the heuristicsused by the autonomous scheduler may have resulted inschedules that were highly incompatible with the users'preferences. Indeed, interviews with the users revealedthat they often spent a considerable amount of timeclearing schedules under the auto seed condition. Themixed results regarding the case-seeded conditions maybe explained by the second subject having stronger in-dividual preferences than the �rst subject. That is, thesecond subject exhibited a stronger bias for his ownschedules, while the �rst subject exhibited a bias onlyagainst the schedules of the heuristic scheduler.We also expected seeding to yield higher quality solu-tions. The intuition is that users will have more oppor-tunity to improve the quality of a response if they donot have to spend time generating it in the �rst place.Hypothesis 2: Solutions derived from seeded sched-ules will be more e�ective than responses generatedfrom scratch.
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Subject 2Figure 3: Mean performance improvement (with 95%con�dence intervals) for each subject under the variousexperimental conditions.Figure 3 shows the percentage improvement realizedby the solutions of each user under the di�erent ex-perimental conditions. While the mean improvementunder the auto seed condition is slightly worse thanthe other conditions for both subjects, the large vari-ances do not support any clear di�erences between theconditions. One possible explanation for this result isthat the scale of di�erences between problems may havebeen greater than the di�erences between conditions.That is, easy problems led to large improvements whiledi�cult problems allowed only minimal improvements.Closer examination of the data revealed that problemsoften did cluster into ranges of performance improve-ment across all conditions. Another possible explana-tion is that the subjects' experience with the HazMatdomain may have been insu�cient for them to properlyevaluate schedule quality. Thus, they would have beenunable to focus on the most crucial adaptations givingthe greatest gains.The measure of quality for Hypothesis 2 evaluatesschedules only in terms of their e�ects in the simulation.In a crisis context, however, it is important not only tocome up with good solutions but also to come up withthem quickly. Thus, a better measure of quality wouldalso account for the time taken to produce the schedule.Given the results on scheduling time, which favor caseseeding, and the results on performance improvement,which show no di�erences between the conditions, wecan expect to see greater bene�ts from case seeding if wediscount the percentage improvement by the schedulingtime. Predicting User AdaptationsThe second set of experiments was motivated by ourlong-term objective for Inca to become an adaptiveuser interface (Langley, 1997). We claim that machinelearning can be used to acquire user models that canbe used to adapt system behavior to better assist users.We begin by presenting our formulation of the learningproblem before discussing the experiments and results.

Experimental Design and SetupWe de�ned Inca's performance task as: Given the cur-rent scheduling state, as characterized by the problem,available resources, legal actions, and current schedule,predict the adaptation operation the user will performnext. This can be translated into a standard classi�ca-tion task, with the class being the scheduling operationand the instance being the scheduling state for whichthe prediction is being made.The prediction task can be formulated at various lev-els, from the highest level predicting a general schedul-ing operator such as ADD any action, to the lowest levelpredicting a speci�c operator instantiation such as ADDthe cover-with-tarp action on crew members #1 and#4 and tarp #2 starting at time 34 for a duration of8 time units. For our initial formulation, we chose anintermediate level, requiring the speci�cation of a par-ticular action but not speci�c resources or amounts. Wealso combined the remove action, change duration, shiftaction, and switch resource operators into a single RE-PAIR operator. This resulted in ADD and REPAIRoperations for each of the 49 actions, for a total of98 di�erent classes. We used 86 attributes to describethe scheduling state: 12 nominal attributes to representthe problem, 25 Boolean features to denote whether ornot resources of each type were available, and 49 at-tributes to indicate the schedule status of each action(i.e., whether it was legal and whether it was feasiblyscheduled).We characterized Inca's learning task as: Given aset of training examples, learn a classi�er that makescorrect predictions on new examples. The informationwe gathered during the schedule seeding experimentsprovided the data for our learning experiments. Specif-ically, each schedule adaptation performed while solv-ing a problem corresponds to a training or test instance.We extracted 935 examples (data set 1) and 1049 ex-amples (data set 2) from the problem-solving traces ofthe �rst and second subjects respectively. The resultsreported in the next section were obtained by runningID3 (Quinlan, 1986) over ten trials on each data set,with each trial using 800 randomly chosen examples fortraining and the rest for testing. See (Gervasio et al.,1998) for more details on these learning experiments.A baseline study (Figure 4, base) showed that pre-dictive accuracy after learning was signi�cantly betterthan guessing randomly (1.02%) and guessing the mostfrequent class (8.57%). However, even in the best case(26.87% for data set 2), there were more than twice asmany misclassi�cations as correct classi�cations. Ouranalysis of the results suggested our formulation of theproblem as the prime suspect for this poor performance,so we investigated various problem reformulations withthe goal of improving performance. Thus, in these ex-periments, the primary independent measure was prob-lem formulation, and the primary dependent measurewas predictive accuracy.
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Figure 4: Learning curves for the various experimentalconditions, showing predictive accuracy (with 95% con-�dence intervals) under di�erent problem formulations.Experimental Hypotheses and ResultsIn the �rst experiment, we wanted to investigate thee�ects of e�ects of simplifying the problem via classabstraction. As stated earlier, the prediction task canbe formulated at di�erent levels, and for the baselinestudy we had chosen an intermediate level requiringthe speci�cation of an ADD or REPAIR of a particularaction.Hypothesis 1: Predictive accuracy will increase ona more abstract prediction task.To test our hypothesis, we abstracted the task to requirethe prediction of an ADD/REPAIR on a class of actionsrather than on speci�c actions (e.g., \extinguish withhose" rather than \extinguish with hose using waterfrom a hydrant").The results support our hypothesis: accuracy in-creased signi�cantly for both data sets with class ab-straction (Figure 4, abstracted). This result may notbe surprising since the abstraction results in a simplerprediction task. However, it raises the issue of deter-mining an appropriate task level in mixed-initiative set-tings such as interactive scheduling. By predicting aclass rather than a particular action, the system re-quires the user to make an additional decision. How-ever, this transfer of decision-making responsibility tothe human user is not necessarily undesirable as it maylead to more e�ective interaction overall.In the second experiment, we wanted to investigatethe e�ects of allowing the prediction of alternative op-erations. The formulation of the performance task asthe problem of predicting the user's next operation wasa natural �t to the data provided by the user traces.However, it is unnecessarily di�cult in that it requiresthe system to predict a user's immediate next adapta-tion operation. A user may arrive at the same sched-ule through di�erent sequences of operations, many ofwhich may be equally acceptable to the user.

Hypothesis 2: Predictive accuracy will increaseon the modi�ed task of predicting any subsequentadaptation operation.To test this hypothesis, we �rst modi�ed the originalexamples to include a set of alternative classes, consist-ing of all the subsequent operations the user invokedto solve the HazMat incident, minus those that wereillegal in the current state. Training proceeded as be-fore, but, during testing, we judged a prediction to becorrect if it matched the instance's label or one of itsalternative classes.The results support our hypothesis: signi�cantlygreater accuracy was achieved on the reformulated task(Figure 4, alternative classes). The results might seemobvious since allowing alternative classes simpli�es theprediction task. However, as stated earlier, predictingthe user's immediate next operation may be an unnec-essarily di�cult task. We claim that the modi�ed taskof predicting any of the user's subsequent operations isin fact more appropriate in that it better captures whatconcerns users during the scheduling process.Discussion and ConclusionsThe results from our pilot study on schedule seedingsupport our primary hypothesis and claim that Inca'scase-based retrieval and adaptation mechanisms pro-vide an initial schedule that allows a crisis responderto develop a solution more quickly than constructing aresponse from scratch or from an initial schedule pro-vided by another mechanism. In addition, the resultsshow that solution quality was maintained with this in-crease in e�ciency. These results support our claimthat Inca provides an appropriate, e�ective, and e�-cient approach to crisis response.Preliminary results with learned user models alsosupport our intuition that regularities in user responsebehavior can be extracted and exploited through anadaptive user interface. Users can recognize a recom-mended operation more quickly than they can generateit themselves if it is one they would have selected any-way. Although we have not yet collected timing datain the condition where the model's recommendationsare presented to subjects for acceptance or rejection,we anticipate additional speed gains to be revealed.Related WorkAs discussed earlier, many crisis planning and schedul-ing systems today, including OPLAN-2 and SOCAP,have interactive modes that let users to maintain con-trol of the problem-solving process. With the im-portance of the human-computer interface in mixed-initiative systems, there has also been interest in devel-oping more natural interfaces, such as the speech inter-face in TRAINS-95 (Ferguson et al., 1996), a planningassistant for train routing. Most of these interactivesystems aid users in developing solutions from scratch.In contrast, Inca aids users in adapting solutions from



previous cases. This paper also focused on the evalua-tion of the scheduling assistance in Inca.CLAVIER (Hinkle & Toomey, 1994) is an advisorysystem for autoclave loading that, like Inca, retrievesprevious cases for users who can then interact with thesystem to perform additional modi�cations. Inca dif-fers in its domain and consequent focus on planning andscheduling. DIAL (Leake, 1996) is a case-based plan-ner for disaster response, whose adaptation process ispredominantly automated, in contrast to the interac-tive case adaptation process in Inca. DIAL also learnsadaptation cases, in contrast to the solution cases inInca. CABINS (Miyashita & Sycara, 1995) is an inter-active assistant that uses case-based methods to learnuser preferences for job-shop scheduling. Like CAB-INS, Inca incorporates learning mechanisms that letit adapt its assistant behavior to di�erent individuals.However, while CABINS employs case-based methodsto learn individual preferences in the form of repaircases, Inca uses case-based reasoning primarily as aseeding mechanism, and it employs inductive learningtechniques to acquire user preferences.Future WorkOur preliminary experimental results have been encour-aging, but considerable work remains. Some of theunanticipated �ndings in our experiments on scheduleseeding have led us to revise our experimental designto control for confounding factors such as problem dif-�culty and unlimited scheduling time. In the near fu-ture, we intend to run similar experiments with moresubjects to replicate our �ndings. We are also planningexperiments to test the utility of recommendations fromlearned user models in the context of HazMat crises ofvaried severity. We hope to conduct studies exploringdi�erences in expert and novice performance as well.An interesting issue involves the degree to which di�er-ent experts prefer distinct solutions, which will revealthe importance of personalization in this domain.We also plan on extending Inca in various directions.Based on the experimental results and feedback fromthe subjects, we plan on modifying Inca's graphicalinterface in various ways to better facilitate interactionwith the human user. We are currently extending theinteractive nature of Inca to case retrieval, which tothis point has been entirely automated. This wouldallow the user to direct case retrieval to the most ap-propriate, preferred case.In the longer term, we hope to expand our software tosupport coordination among multiple crisis managers.This will involve detecting resource conicts among dif-ferent users' schedules and recommending steps to re-solve those conicts while still meeting each user's goals.Traces of such conicts and their resolutions will againprovide data for learning, which should let the systemimprove its ability to recommend resolutions that arelikely to work for particular sets of users. Such adaptivemodels of user interaction are a natural extension to theapproach we have taken with individual crisis response.
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