
Appears in the Proceedings of the Fifteenth National Conference on Arti�cial Intelligence (AAAI-98), pp. 721{726Learning to Predict User Operations for Adaptive SchedulingMelinda T. Gervasio and Wayne Iba and Pat LangleyInstitute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, California 94306fgervasio,iba,langleyg@isle.orgAbstractMixed-initiative systems present the challenge of �nd-ing an e�ective level of interaction between humansand computers. Machine learning presents a promis-ing approach to this problem in the form of systemsthat automatically adapt their behavior to accommo-date di�erent users. In this paper, we present an em-pirical study of learning user models in an adaptiveassistant for crisis scheduling. We describe the prob-lem domain and the scheduling assistant, then presentan initial formulation of the adaptive assistant's learn-ing task and the results of a baseline study. After this,we report the results of three subsequent experimentsthat investigate the e�ects of problem reformulationand representation augmentation. The results suggestthat problem reformulation leads to signi�cantly bet-ter accuracy without sacri�cing the usefulness of thelearned behavior. The studies also raise several inter-esting issues in adaptive assistance for scheduling.IntroductionIn recent years, there has been a surging interest inthe mixed-initiative paradigm where multiple agents|speci�cally humans and software systems|share con-trol by partitioning the responsibilities in problem solv-ing. This trend holds not only for the ubiquitous appli-cations on the Web, but also in domains such as plan-ning and scheduling where the traditional AI approachhas involved autonomous systems. Ideally, a mixed-initiative system bene�ts from the individual strengthsof its constituents|the expertise of the human user andthe computational power of the computer. For this syn-ergy to occur, however, the division of responsibilitiesmust be mutually bene�cial and the two participantsmust be able to work together e�ectively. Meeting theserequirements with a single, static system will be di�cultbecause di�erent users will have di�erent abilities andpreferences. In addition, as software systems becomemore powerful, they may outgrow the user's ability tocommunicate tasks or requests that best take advantageCopyright c 1998, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

of those abilities. Machine learning can help addressthese problems by providing adaptive systems that au-tomatically tailor their behavior to di�erent users.In this paper, we present an empirical study of learn-ing user models in an adaptive scheduling assistant.We begin by describing our application, a synthetic do-main that involves responding to hazardous materialsincidents. We also describe Inca, the interactive as-sistant we are developing for this domain. Traces ofuser interactions with Inca provided the data for ourlearning experiments. We formulate the scheduling as-sistant's task of predicting user operations as a classi�-cation problem, and we discuss the results of a baselinestudy, which showed some bene�t from learning butalso left room for improvement. The three subsequentexperiments investigate the e�ects of problem represen-tation and formulation on performance. Their resultsshow that problem reformulation can lead to much bet-ter adaptation without sacri�cing the usefulness of thelearned concepts. The experiments raised a number ofissues, which we consider in our closing discussion ofrelated and future work.Scheduling for Crisis ResponseA dominant theme in crisis response is urgency|anagent is compelled to act to avert an undesirable sit-uation in a limited amount of time. Finding an e�cientlevel of interaction between the human user and thecomputer is thus particularly important. Our responseto urgency relies on machine learning to acquire usermodels to facilitate this interaction. To illustrate ourideas and to lay the groundwork for the experiments inthis paper, we will discuss them in the context of a syn-thetic hazardous materials domain (HazMat) and theINteractive Crisis Assistant (Inca) that we developedfor this domain. Inca provides assistance for both plan-ning and scheduling, but we will focus on the schedulingtask here.HAZMAT Response Using INCAIn developing the synthetic HazMat domain, we con-sulted the 1996 North American Emergency ResponseGuidebook (Transport Canada et al., 1996), a hand-book for �rst responders to hazardous materials inci-



dents. A HazMat problem consists of a spill and pos-sibly a �re involving one of 50 types of hazardous ma-terial. There are 4000 classes of HazMat incidents,varying in the type and amount of material involved,the location of the incident, and the characteristics ofthe spill and any �re. Incidents also have associated �reand health hazards that, respectively, characterize theprobability of a �re and the danger to people's health.There are 49 types of actions and 25 types of re-sources available for responding to a HazMat incident.In any given problem, only a subset of the actions willbe applicable, as indicated in the Guidebook. Each ac-tion addresses particular aspects of a HazMat problemand requires some minimum set of resources. The spe-ci�c resources available, and their associated capacityand quantity constraints, vary with every problem.Inca is an interactive system that provides planningand scheduling assistance for HazMat response. Inthe planning phase, the user interacts with Inca tochoose the schedulable actions, a subset of the appli-cable actions to the problem. The input to the schedul-ing phase is this set of schedulable actions, the set ofavailable resources, and an initial (possibly empty) can-didate schedule provided by Inca.In a departure from traditional scheduling, the task isto choose some subset of the schedulable actions and toassign them to resources. Moreover, actions may be al-located a variable number of resources and arbitrary du-ration. Consider the action of extinguishing a �re witha hose. Allocating more resources (�re�ghters, hoses,hydrants, etc.) to the action, as well as simultaneouslyscheduling other extinguishment actions (e.g., extin-guish with dry sand), will put out the �re more quickly.This interdependence among actions, resources, and ef-fects makes it di�cult to completely determine resourcerequirements and action durations prior to scheduling.With e�ective heuristics being di�cult to engineer forthe resulting underconstrained problem, machine learn-ing becomes even more attractive.Scheduling an action involves four decisions: thenumber of resources to allocate to the action, the spe-ci�c resources to allocate, the start time, and the dura-tion. Scheduling in Inca takes place in a repair space,where the operators include adding and removing ac-tions from the schedule as well as modifying parame-ters of scheduled actions. Speci�cally, the user interactswith Inca through a graphical interface that providesthe user with �ve scheduling operators: add a new ac-tion, remove an action, shift the start time of an action,change the duration of an action, and switch an actionfrom one resource to another.The �nal schedule must be feasible|that is, it mustnot violate any capacity or quantity constraints. A re-source is oversubscribed if there is any time at whichthe number of simultaneously scheduled actions on thatresource exceeds its capacity. Similarly, a resource isoverallocated if the actions scheduled on it consumemore than the available resource quantity. An infeasiblyscheduled action is one that participates in the oversub-

scription or overallocation of any resource. Using the�ve available operators, the user modi�es the scheduleuntil it is feasible and he considers it acceptable.Inca currently assists the user in scheduling by pro-viding an initial candidate schedule retrieved from acase library, by suggesting heuristically determined de-fault values for resources, durations and start times,and by checking the feasibility of schedules. By inte-grating learning into Inca, we hope to improve its as-sistant capabilities by letting it adapt its behavior toindividual users.Acquiring and Applying User ModelsA user will have personal beliefs about what actionsare appropriate for a problem, what actions are moreimportant than others, and what actions should be per-formed �rst. These preferences are reected by the op-erators that the user selects and their results|whatactions are included and how they are ordered in theschedule, how resources are allocated to di�erent ac-tions, and how di�erent conicts are resolved. The goalof learning in Inca is to extract such information fromtraces of its interactions with the user and to use thisinformation to adapt its behavior accordingly. For ex-ample, Inca might use this preference information tosuggest resources, durations, and start times that aresimilar to the user's previous choices when adding theaction. Or it might apply scheduling operators based onthis information to speci�cally tailor initial candidateschedules. By making suggestions that the user is morelikely to accept, Inca can make the HazMat responseprocess more e�cient, thereby directly addressing theurgency aspect of crisis response.As our �rst step in integrating learning into Inca,we focused on the prediction of scheduling operations.Speci�cally, Inca's user modeling task was: Given aparticular scheduling state|as characterized by theproblem, available resources, schedulable actions, andcurrent schedule|predict the user's next scheduling op-eration. This can be translated into a standard classi-�cation task, with the class being the scheduling oper-ation and the instance being the scheduling state forwhich the prediction is being made.Baseline Study: E�ects of LearningWe extracted the data for our learning experimentsfrom the individual traces of two users, each interactingwith Inca over 140 HazMat problems. Each schedul-ing operation performed while solving a problem corre-sponds to a training or test instance. From traces of the�rst and second users, we extracted 935 examples (dataset A) and 1049 examples (data set B) respectively.Nearly all �elded applications of machine learning(Langley & Simon, 1995) rely on attribute-value repre-sentations and standard supervised induction methods,so we decided to investigate the feasibility of such anapproach here. This has the advantage of either avoid-ing the cost of engineering a special-purpose approach



Table 1: Percentage accuracy in predicting user opera-tions during scheduling. A Btest on same user 22:15 � 2:22 26:87 � 2:03test on other user 18:70 � 0:58 18:67 � 0:58or justifying the need for more complex representationsand algorithms.For the baseline study, we used 86 attributes to de-scribe the scheduling state. We represented the problemusing 12 nominal attributes directly corresponding tothe material, spill, �re, and hazard features of the Haz-Mat problem. We represented the resources with 25Boolean features, one for each resource type, with thevalue denoting whether there is at least one resource ofthat type available. Finally, we represented the schedu-lable set of actions and the schedule with 49 attributescorresponding to the 49 possible actions. These at-tributes had four possible values: not schedulable, un-scheduled, feasibly scheduled, or infeasibly scheduled.There are several levels at which the prediction taskcan be formulated. At the highest level is the predic-tion of a general scheduling operator such as ADD anyaction. At the lowest level is the prediction of a spe-ci�c instantiation of a scheduling operator such as ADDthe absorb-with-dry-sand action on crew members#1 and #4 and dry sand #2 starting at time 21 fora duration of 10 time units. For the baseline study,we chose an intermediate level, requiring the speci�ca-tion of a particular action but not speci�c resources oramounts. We also combined the remove action, changeduration, shift action, and switch resource operatorsinto a single REPAIR operator. This resulted in ADDand REPAIR operations for each of the 49 actions, fora total of 98 di�erent classes.We can thus state the learning task as: Given a setof training examples, learn a classi�er that makes cor-rect predictions on new examples. Preliminary studieswith supervised learning algorithms from the repositorymaintained by the Machine Learning Group at the Uni-versity of Texas at Austin revealed ID3 (Quinlan, 1986)to be the most promising, so we chose to use this in ourformal experiments.1We had two hypotheses for the baseline experiment.The �rst was that learning would improve accuracy, andthe second was that greater gains would result if wetrained and tested on data from the same user than if wetrained on data from one user and tested on data fromanother. The aim of learning is to model a speci�c user,so we expected some bene�t from learning on anotheruser but not as much as learning from the same user.We tested these hypotheses by �rst running ten tri-als on each user's data set, with each trial using 800randomly chosen examples for training and the rest for1The repository resides at www.cs.utexas.edu/users/ml.We obtained similar results with the C4.5 system.

Table 2: Percentage accuracy in predicting user opera-tions after various problem reformulations.A Btemporal attributes 18:81 � 1:73 26:18 � 1:68abstracted 42:30 � 3:15 36:63 � 2:06alternative classes 59:33 � 2:39 64:30 � 2:53no illegal predictions 78:24 � 1:66 76:61 � 1:73testing. We then ran another ten trials, this time us-ing the entire other user's data set for testing. Table 1shows the results for each data set, averaged over theten runs for each condition (95% con�dence intervals).The results suppport both our hypotheses: under eachcondition, the resulting accuracies were notably bet-ter than guessing randomly (1.02%) and guessing themost frequent class (8.57%), with the performance fromtraining and testing on data from the same user beingsigni�cantly better than that from training on one userand testing on another (paired t test, p < 0:01).Improving Accuracy ThroughProblem ReformulationThe baseline study showed that learning improved per-formance but, even in the best case (26.87% for dataset B, within-user test), there were more than twice asmany misclassi�cations as correct classi�cations. Thiscalls into question the utility of the predictions in thecontext of a scheduling assistant. Our analysis of theresults suggested our formulation of the problem as aprime suspect for this poor performance. We identi�edthree ways to reformulate the problem: adding contex-tual temporal information, abstracting the class labels,and modifying the prediction task. We now describethe three experimental studies we conducted to testwhether these problem reformulations would increasepredictive accuracy. We also propose a modi�cation tothe prediction element that promises substantial per-formance improvement.Adding Temporal InformationIn the �rst experiment, we wanted to determine thee�ects of augmenting the problem representation withinformation about the other operators used in solvingthe problem. Our statement of the performance taskrequires Inca to predict the user's immediate next op-eration. This is likely to depend on the other operatorsthe user selects within the same problem, particularlythe most recent operators selected, but the base prob-lem representation included no such explicit contextualinformation.Our hypothesis in this experiment was that addingcontextual temporal information would improve accu-racy. To test this hypothesis, we extended the instancerepresentation with �ve attributes to represent the �vemost recent operations the user performed prior to the



Table 3: Total percentage of prediction errors and per-centage due to illegal predictions.A Btotal illegal total illegalbase condition 77.85 19.78 73.13 14.94temporal attributes 81.18 41.11 73.82 36.95operation associated with that instance.2 We then ranten trials on each data set using the same training andtest splits as in the baseline study.Table 2 and Figure 1 present the results (95% con-�dence intervals) from the problem reformulation ex-periments. The results from the �rst experiment (Ta-ble 2, temporal attributes) did not support our hy-pothesis: temporal information did not a�ect accuracy.One explanation lies in the number of errors that in-volved predicting an illegal operation. Incorrect predic-tions may be divided into two types: legal predictionsthat correspond to operations that can be performedin the scheduling state and illegal operations that can-not. Speci�cally, an ADD-action operation is illegalif the action is already in the schedule or it is not inthe schedulable set; a REPAIR-action operation is ille-gal if the action is not in the schedule. Table 3 showsthat the percentage of examples that were misclassi�edinto illegal operations increased with the introductionof the temporal attributes to account for over half ofall the misclassi�cations. These results reveal that theproblem representation is not su�ciently balancing thenecessary contextual and legality information to let thesystem make good, legal predictions. They also sug-gest additional analysis and experimentation on prob-lem representation to shed light on this issue.Class AbstractionIn the second experiment, we wanted to investigate theutility of simplifying the problem via class abstraction.As stated earlier, the prediction task can be formulatedat di�erent levels, and for the baseline study we chosean intermediate level requiring the speci�cation of anADD or REPAIR on a particular action but not thespeci�cation of particular resources or amounts.Our hypothesis in the second experiment was thatperformance would improve on a more abstract predic-tion task. To test this hypothesis, we chose to abstractone level to require predicting an ADD/REPAIR op-eration on a class of actions rather than on individualactions. For example, the abstract ADD \extinguishwith hose" replaces the set of speci�c ADDs on ac-tions such as \extinguish with hose using water froma hydrant" and \extinguish with hose using foam anda pumper". We felt this was a reasonable abstractionin that it makes few additional demands on the user,2We tried adding one to �ve previous operations andfound no signi�cant di�erences.
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Figure 1: Learning curves for the various experimen-tal conditions, showing improvement due to successiveproblem reformulations.who must only choose from a small set of correspondingmore speci�c actions. Abstracting the problem in thismanner reduced the original 98 classes into 28 abstractclasses, and also increased the proportion of the mostfrequent class from 8.57% to 11.19%. We ran ten trialson each data set, using the same training and test splitsas in the baseline study.The results support our hypothesis: accuracy in-creased signi�cantly (paired t test, p < 0:001) for bothdata sets with class abstraction (Table 2 and Figure 1,abstracted). This result may not be surprising since theabstraction results in a simpler prediction task. How-ever, it raises the issue of determining an appropriatetask level in mixed-initiative settings such as interactivescheduling. Formulating the prediction task at higherlevels transfers more decision-making responsibility tothe human user, but this is not undesirable if it leadsto more e�ective interaction overall.Rede�ning CorrectnessIn the third experiment, we wanted to investigate thee�ects of modifying the prediction task by allowing al-ternative class labels. The formulation of the learningproblem as the problem of predicting the user's nextoperation was a natural �t to the data provided by theuser traces. However, it is an unnecessarily di�cultlearning task in that it requires the system to predicta user's immediate next action. A user may arrive atthe same schedule through di�erent sequences of oper-ations, many of which may be equally acceptable to theuser. Thus, a more appropriate learning task might beto predict any one of the user's subsequent operations,subject to legality given the current state.Our hypothesis in this experiment was that accuracywould improve under the rede�ned correctness crite-rion. To test this hypothesis, we �rst modi�ed theoriginal examples to include a set of alternative classes,consisting of all the subsequent operations the user in-



voked to solve the HazMat incident minus those thatwere illegal in the current state. We ran ten trials oneach data set, again using the same training and testsplits. Training proceeded as before but, during test-ing, we judged a prediction to be correct if it matchedthe instance's label or one of its alternative classes.The results support our hypothesis: signi�cantlygreater accuracy (paired t test, p < 0:001) was achievedon the reformulated task (Table 2 and Figure 1, alter-native classes). Again, the results might seem obvioussince allowing alternative classes simpli�es the predic-tion task. However, as stated earlier, this may in fact bea more appropriate task in that it may better capturewhat concerns users in the scheduling process.Correcting for Illegal OperationsThe observation that many errors involved illegal oper-ations (Table 3) suggests another change to the predic-tion element. The revised system would check to de-termine if a given prediction is illegal and, if so, wouldmove on to the next most likely prediction, continu-ing in this manner until it predicts a legal operation.Implementing this scheme is straightforward for someclassi�ers, like naive Bayes and nearest neighbor, whichrank their predictions, but it is more complicated fordecision trees.We are still in the process of considering various ap-proaches to implementing this �ltering scheme. How-ever, we can estimate the new accuracy by factoringout the existing illegal predictions. Let us assume thatthe learned predictor's accuracy will be the same on theillegal classi�cations as on the legal ones. Let a be theaccuracy with abstraction, s be the gain from alterna-tive classes, and i be the misclassi�cations that wereillegal. The accuracy under this new scheme would bea+s+ a+s100 i. This results in accuracies in the 75 to 80%range (Table 2 and Figure 1, no illegal predictions),which are much more promising than the baseline re-sults.3 Related and Future WorkPrevious work on learning for scheduling has focusedon autonomous systems, with the aim of improvingscheduling e�ciency or schedule quality. For example,Gratch and Chien (1993) increased e�ciency in a deepspace network scheduler by acquiring e�ective domain-speci�c heuristics. Similarly, Eskey and Zweben (1990)increased scheduling e�ciency in payload processing forthe NASA space shuttle by acquiring rules to avoidchronic resource contention. Zhang and Dietterich(1995) used reinforcement learning on the same task,but to acquire heuristics that resulted in shorter sched-ules. Our framework for learning di�ers in its emphasison acquiring user-speci�c performance criteria and, as aresult, in its reliance on detailed traces of user decisions.3For naive Bayes, we have obtained actual results thatwere as good or better than these estimates.

Some recent AI scheduling systems (e.g., Smith etal., 1996; Fukunaga et al., 1997) have mixed-initiativemodes, but few incorporate learning or adaptationto di�erent users. The same holds for AI crisis re-sponse systems such as O-Plan2 (Tate et al., 1994)and SOCAP (Bienkowski, 1996). An exception is CAB-INS (Miyashita & Sycara, 1995), an assistant for job-shop scheduling that learns user preferences on repairheuristics. Like Inca, CABINS acquires preferencesfrom user traces and uses these to direct a repair-spacesearch for a solution. CABINS di�ers in that it invokesa heuristic scheduler to generate an initial schedule anda case-based method to learn user preferences, whereasInca uses a case-based method to retrieve an initialschedule and other learning techniques to acquire userpreferences. We believe this approach provides a better�t to crisis domains, where case libraries can be builtfrom standard operating procedures or the results ofplanning exercises.Much work on personalization, particularly for com-puter-aided instruction, has focused on methods forconstructing models of user behaviors that can then beused to classify users and modify system interaction ac-cordingly (e.g., Sleeman & Smith, 1981; Clancey, 1979;Anderson & Reiser, 1985). Langley (1997) uses theterm adaptive user interfaces to refer to systems likeInca that instead use machine learning to constructuser models from interaction traces. Previous work inthis area include Schlimmer and Hermens' (1993) inter-face for repetitive form �lling; Dent et al.'s (1992) CAP,a calendar apprentice for scheduling appointments; andPazzani et al.'s (1996) Syskill & Webert, a Webpage recommendation service. Like Inca, these sys-tems use their learned user models to tailor their be-havior to individual users. The work described in thispaper di�ers in its focus on an explicit evaluation of thefactors a�ecting success.A priority for future work involves fully integratingthe learned predictors into Inca, which would let us di-rectly evaluate our hypothesis that learning user prefer-ences will produce more rapid HazMat response. Thiswill also let us test our hypotheses about appropriatetask formulations. Initially, we plan to use an o�inesetting, in which we train Inca on user traces, incorpo-rate the learned model into the system, and then let thesame user interact with Inca while measuring perfor-mance. Eventually, we plan to integrate learning in anonline setting, where the system updates its user modelduring the course of its interactions. In such settings, itbecomes particularly important that the system avoidmaking suggestions that are so unacceptable and dis-tracting that the user would have been better o� with-out assistance. One response, which we plan to explorein future work, is to incorporate con�dence measuresinto system predictions to prevent it from making sug-gestions until they exceed some minimum threshold.Another important area for future work is task re-formulation. The results on abstraction suggest thatwe look for simple learning problems that would ben-



e�t from standard induction algorithms. One ap-proach would be to divide the prediction task into aset of smaller tasks|for example, predicting speci�c re-sources, durations, and start times once an action hasalready been selected for scheduling; or proceeding withprediction hierarchically through more and more spe-ci�c operations. The results on alternative classes sug-gest that we reevaluate our task de�nition in light of thekinds of suggestions (i.e., system predictions) the userwill �nd helpful. We are currently exploring alternativeformulations of the learning task along these lines. Wealso expect to see greater bene�ts from combinations ofsuccessful reformulations.We also need to revisit our representational options.The results on adding temporal attributes indicate thatthere may be important information that is currentlynot being captured. The attribute-value scheme is sim-ple but it does not let us easily represent speci�c sched-ules (i.e., what actions use what resources over whattime intervals) or the relationship between what ac-tions address what problem features. This information,which may play a role in user preferences, can be moreeasily captured in a relational representation, which weplan to investigate in future versions of Inca.Concluding RemarksIn this paper, we reviewed Inca, an adaptive assistantfor crisis scheduling, and presented empirical studiesof learning user models aimed at improving the sys-tem's behavior. We formulated the task of the schedul-ing assistant as predicting the user's action in responseto a particular problem, set of resources, and currentschedule. We set out to explore the limits of simpleproblem representations and established learning algo-rithms, and our initial study revealed some bene�tsfrom learning, but also left room for improvement.Subsequent experiments demonstrated that abstrac-tions of the learning task, as well as reformulations ofthe prediction task, result in substantially better per-formance without sacri�cing, and possibly even improv-ing, the usefulness of the learned behavior. These �nd-ings suggest that adaptive interfaces like Inca, whichlearn models of user preferences, constitute a promisingapproach to mixed-initiative scheduling that deservesfuller exploration in future research.Acknowledgments. This research was supported bythe O�ce of Naval Research under Grant N000014-96-1-1221. We would also like to thank Mark Maloof forhis helpful comments on the paper, and the Organiza-tional Dynamics Center group at Stanford Universityfor many interesting discussions on crisis response.ReferencesAnderson, J. R. and Reiser, B. J. 1985. The LISP Tu-tor. Byte 10:159{175.Bienkowski, M. 1996. SOCAP: System for OperationsCrisis Action Planning. In Advanced Planning Tech-nology, Tate, A., ed., 70{76. Menlo Park: AAAI Press.
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