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Abstract

Mixed-initiative systems present the challenge of find-
ing an effective level of interaction between humans
and computers. Machine learning presents a promis-
ing approach to this problem in the form of systems
that automatically adapt their behavior to accommo-
date different users. In this paper, we present an em-
pirical study of learning user models in an adaptive
assistant for crisis scheduling. We describe the prob-
lem domain and the scheduling assistant, then present
an initial formulation of the adaptive assistant’s learn-
ing task and the results of a baseline study. After this,
we report the results of three subsequent experiments
that investigate the effects of problem reformulation
and representation augmentation. The results suggest
that problem reformulation leads to significantly bet-
ter accuracy without sacrificing the usefulness of the
learned behavior. The studies also raise several inter-
esting issues in adaptive assistance for scheduling.

Introduction

In recent years, there has been a surging interest in
the mixed-initiative paradigm where multiple agents—
specifically humans and software systems share con-
trol by partitioning the responsibilities in problem solv-
ing. This trend holds not only for the ubiquitous appli-
cations on the Web, but also in domains such as plan-
ning and scheduling where the traditional ATl approach
has involved autonomous systems. Ideally, a mixed-
initiative system benefits from the individual strengths
of its constituents the expertise of the human user and
the computational power of the computer. For this syn-
ergy to occur, however, the division of responsibilities
must be mutually beneficial and the two participants
must be able to work together effectively. Meeting these
requirements with a single; static system will be difficult
because different users will have different abilities and
preferences. In addition, as software systems become
more powerful, they may outgrow the user’s ability to
communicate tasks or requests that best take advantage
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of those abilities. Machine learning can help address
these problems by providing adaptive systems that au-
tomatically tailor their behavior to different users.

In this paper, we present an empirical study of learn-
ing user models in an adaptive scheduling assistant.
We begin by describing our application, a synthetic do-
main that involves responding to hazardous materials
incidents. We also describe INCA, the interactive as-
sistant we are developing for this domain. Traces of
user interactions with INCA provided the data for our
learning experiments. We formulate the scheduling as-
sistant’s task of predicting user operations as a classifi-
cation problem, and we discuss the results of a baseline
study, which showed some benefit from learning but
also left room for improvement. The three subsequent
experiments investigate the effects of problem represen-
tation and formulation on performance. Their results
show that problem reformulation can lead to much bet-
ter adaptation without sacrificing the usefulness of the
learned concepts. The experiments raised a number of
issues, which we consider in our closing discussion of
related and future work.

Scheduling for Crisis Response

A dominant theme in crisis response is urgency—an
agent is compelled to act to avert an undesirable sit-
uation in a limited amount of time. Finding an efficient
level of interaction between the human user and the
computer is thus particularly important. Our response
to urgency relies on machine learning to acquire user
models to facilitate this interaction. To illustrate our
ideas and to lay the groundwork for the experiments in
this paper, we will discuss them in the context of a syn-
thetic hazardous materials domain (HAzZMAT) and the
INteractive Crisis Assistant (INCA) that we developed
for this domain. INCA provides assistance for both plan-
ning and scheduling, but we will focus on the scheduling
task here.

HAZMAT Response Using INCA

In developing the synthetic HAZMAT domain, we con-
sulted the 1996 North American Emergency Response
Guidebook (Transport Canada et al., 1996), a hand-
book for first responders to hazardous materials inci-



dents. A HAZMAT problem consists of a spill and pos-
sibly a fire involving one of 50 types of hazardous ma-
terial. There are 4000 classes of HAZMAT incidents,
varying in the type and amount of material involved,
the location of the incident, and the characteristics of
the spill and any fire. Incidents also have associated fire
and health hazards that, respectively, characterize the
probability of a fire and the danger to people’s health.

There are 49 types of actions and 25 types of re-
sources available for responding to a HAZMAT incident.
In any given problem, only a subset of the actions will
be applicable, as indicated in the Guidebook. Each ac-
tion addresses particular aspects of a HAZMAT problem
and requires some minimum set, of resources. The spe-
cific resources available, and their associated capacity
and quantity constraints, vary with every problem.

INCA is an interactive system that provides planning
and scheduling assistance for HAZMAT response. In
the planning phase, the user interacts with INCA to
choose the schedulable actions, a subset of the appli-
cable actions to the problem. The input to the schedul-
ing phase is this set of schedulable actions, the set of
available resources, and an initial (possibly empty) can-
didate schedule provided by INCA.

In a departure from traditional scheduling, the task is
to choose some subset of the schedulable actions and to
assign them to resources. Moreover, actions may be al-
located a variable number of resources and arbitrary du-
ration. Consider the action of extinguishing a fire with
a hose. Allocating more resources (firefighters, hoses,
hydrants, etc.) to the action, as well as simultaneously
scheduling other extinguishment actions (e.g., extin-
guish with dry sand), will put out the fire more quickly.
This interdependence among actions, resources, and ef-
fects makes it difficult to completely determine resource
requirements and action durations prior to scheduling.
With effective heuristics being difficult to engineer for
the resulting underconstrained problem, machine learn-
ing becomes even more attractive.

Scheduling an action involves four decisions: the
number of resources to allocate to the action, the spe-
cific resources to allocate, the start time, and the dura-
tion. Scheduling in INCA takes place in a repair space,
where the operators include adding and removing ac-
tions from the schedule as well as modifying parame-
ters of scheduled actions. Specifically, the user interacts
with INCA through a graphical interface that provides
the user with five scheduling operators: add a new ac-
tion, remove an action, shift the start time of an action,
change the duration of an action, and switch an action
from one resource to another.

The final schedule must be feasible—that is, it must
not violate any capacity or quantity constraints. A re-
source is oversubscribed if there is any time at which
the number of simultaneously scheduled actions on that
resource exceeds its capacity. Similarly, a resource is
overallocated if the actions scheduled on it consume
more than the available resource quantity. An infeasibly
scheduled action is one that participates in the oversub-

scription or overallocation of any resource. Using the
five available operators, the user modifies the schedule
until it is feasible and he considers it acceptable.

INCA currently assists the user in scheduling by pro-
viding an initial candidate schedule retrieved from a
case library, by suggesting heuristically determined de-
fault values for resources, durations and start times,
and by checking the feasibility of schedules. By inte-
grating learning into INCA, we hope to improve its as-
sistant capabilities by letting it adapt its behavior to
individual users.

Acquiring and Applying User Models

A user will have personal beliefs about what actions
are appropriate for a problem, what actions are more
important than others, and what actions should be per-
formed first. These preferences are reflected by the op-
erators that the user selects and their results—what
actions are included and how they are ordered in the
schedule, how resources are allocated to different ac-
tions, and how different conflicts are resolved. The goal
of learning in INCA is to extract such information from
traces of its interactions with the user and to use this
information to adapt its behavior accordingly. For ex-
ample, INCA might use this preference information to
suggest resources, durations, and start times that are
similar to the user’s previous choices when adding the
action. Or it might apply scheduling operators based on
this information to specifically tailor initial candidate
schedules. By making suggestions that the user is more
likely to accept, INCA can make the HAZMAT response
process more efficient, thereby directly addressing the
urgency aspect of crisis response.

As our first step in integrating learning into INCA,
we focused on the prediction of scheduling operations.
Specifically, INCA’s user modeling task was: Given a
particular scheduling state as characterized by the
problem, available resources, schedulable actions, and
current schedule—predict the user’s next scheduling op-
eration. This can be translated into a standard classi-
fication task, with the class being the scheduling oper-
ation and the instance being the scheduling state for
which the prediction is being made.

Baseline Study: Effects of Learning

We extracted the data for our learning experiments
from the individual traces of two users, each interacting
with INCA over 140 HAzZMAT problems. Each schedul-
ing operation performed while solving a problem corre-
sponds to a training or test instance. From traces of the
first and second users, we extracted 935 examples (data
set A) and 1049 examples (data set B) respectively.
Nearly all fielded applications of machine learning
(Langley & Simon, 1995) rely on attribute-value repre-
sentations and standard supervised induction methods,
so we decided to investigate the feasibility of such an
approach here. This has the advantage of either avoid-
ing the cost of engineering a special-purpose approach



Table 1: Percentage accuracy in predicting user opera-
tions during scheduling.

A B

test on same user | 22.15 4+ 2.22 | 26.87 & 2.03
test on other user | 18.70 £0.58 | 18.67 £ 0.58

or justifying the need for more complex representations
and algorithms.

For the baseline study, we used 86 attributes to de-
scribe the scheduling state. We represented the problem
using 12 nominal attributes directly corresponding to
the material, spill, fire, and hazard features of the HAz-
MAT problem. We represented the resources with 25
Boolean features, one for each resource type, with the
value denoting whether there is at least one resource of
that type available. Finally, we represented the schedu-
lable set of actions and the schedule with 49 attributes
corresponding to the 49 possible actions. These at-
tributes had four possible values: not schedulable, un-
scheduled, feasibly scheduled, or infeasibly scheduled.

There are several levels at which the prediction task
can be formulated. At the highest level is the predic-
tion of a general scheduling operator such as ADD any
action. At the lowest level is the prediction of a spe-
cific instantiation of a scheduling operator such as ADD
the absorb-with-dry-sand action on crew members
#1 and #4 and dry sand #2 starting at time 21 for
a duration of 10 time units. For the baseline study,
we chose an intermediate level, requiring the specifica-
tion of a particular action but not specific resources or
amounts. We also combined the remove action, change
duration, shift action, and switch resource operators
into a single REPAIR operator. This resulted in ADD
and REPAIR operations for each of the 49 actions, for
a total of 98 different classes.

We can thus state the learning task as: Given a set
of training examples, learn a classifier that makes cor-
rect predictions on new examples. Preliminary studies
with supervised learning algorithms from the repository
maintained by the Machine Learning Group at the Uni-
versity of Texas at Austin revealed ID3 (Quinlan, 1986)
to be the most promising, so we chose to use this in our
formal experiments.!

We had two hypotheses for the baseline experiment.
The first was that learning would improve accuracy, and
the second was that greater gains would result if we
trained and tested on data from the same user than if we
trained on data from one user and tested on data from
another. The aim of learning is to model a specific user,
so we expected some benefit from learning on another
user but not as much as learning from the same user.

We tested these hypotheses by first running ten tri-
als on each user’s data set, with each trial using 800
randomly chosen examples for training and the rest for

'The repository resides at www.cs.utexas.edu/users/ml.
We obtained similar results with the C4.5 system.

Table 2: Percentage accuracy in predicting user opera-
tions after various problem reformulations.

A B
temporal attributes 18.81 £1.73 | 26.18 £1.68
abstracted 42.30 £3.15 | 36.63 £ 2.06

alternative classes 59.33 +2.39 | 64.30 +2.53
no illegal predictions | 78.24 £1.66 | 76.61 +1.73

testing. We then ran another ten trials, this time us-
ing the entire other user’s data set for testing. Table 1
shows the results for each data set, averaged over the
ten runs for each condition (95% confidence intervals).
The results suppport both our hypotheses: under each
condition, the resulting accuracies were notably bet-
ter than guessing randomly (1.02%) and guessing the
most frequent class (8.57%), with the performance from
training and testing on data from the same user being
significantly better than that from training on one user
and testing on another (paired ¢ test, p < 0.01).

Improving Accuracy Through
Problem Reformulation

The baseline study showed that learning improved per-
formance but, even in the best case (26.87% for data
set B, within-user test), there were more than twice as
many misclassifications as correct classifications. This
calls into question the utility of the predictions in the
context of a scheduling assistant. Our analysis of the
results suggested our formulation of the problem as a
prime suspect for this poor performance. We identified
three ways to reformulate the problem: adding contex-
tual temporal information, abstracting the class labels,
and modifying the prediction task. We now describe
the three experimental studies we conducted to test
whether these problem reformulations would increase
predictive accuracy. We also propose a modification to
the prediction element that promises substantial per-
formance improvement.

Adding Temporal Information

In the first experiment, we wanted to determine the
effects of augmenting the problem representation with
information about the other operators used in solving
the problem. Our statement of the performance task
requires INCA to predict the user’s immediate next op-
eration. This is likely to depend on the other operators
the user selects within the same problem, particularly
the most recent operators selected, but the base prob-
lem representation included no such explicit contextual
information.

Our hypothesis in this experiment was that adding
contextual temporal information would improve accu-
racy. To test this hypothesis, we extended the instance
representation with five attributes to represent the five
most recent, operations the user performed prior to the



Table 3: Total percentage of prediction errors and per-
centage due to illegal predictions.

A B
total | illegal | total | illegal
base condition 77.85 | 19.78 | 73.13 | 14.94
temporal attributes | 81.18 | 41.11 | 73.82 | 36.95

operation associated with that instance.? We then ran
ten trials on each data set using the same training and
test splits as in the baseline study.

Table 2 and Figure 1 present the results (95% con-
fidence intervals) from the problem reformulation ex-
periments. The results from the first experiment (Ta-
ble 2, temporal attributes) did not support our hy-
pothesis: temporal information did not affect accuracy.
One explanation lies in the number of errors that in-
volved predicting an illegal operation. Incorrect predic-
tions may be divided into two types: legal predictions
that correspond to operations that can be performed
in the scheduling state and éllegal operations that can-
not. Specifically, an ADD-action operation is illegal
if the action is already in the schedule or it is not in
the schedulable set; a REPAIR-action operation is ille-
gal if the action is not in the schedule. Table 3 shows
that the percentage of examples that were misclassified
into illegal operations increased with the introduction
of the temporal attributes to account for over half of
all the misclassifications. These results reveal that the
problem representation is not sufficiently balancing the
necessary contextual and legality information to let the
system make good, legal predictions. They also sug-
gest additional analysis and experimentation on prob-
lem representation to shed light on this issue.

Class Abstraction

In the second experiment, we wanted to investigate the
utility of simplifying the problem via class abstraction.
As stated earlier, the prediction task can be formulated
at different levels, and for the baseline study we chose
an intermediate level requiring the specification of an
ADD or REPAIR on a particular action but not the
specification of particular resources or amounts.

Our hypothesis in the second experiment was that
performance would improve on a more abstract predic-
tion task. To test this hypothesis, we chose to abstract
one level to require predicting an ADD/REPAIR op-
eration on a class of actions rather than on individual
actions. For example, the abstract ADD “extinguish
with hose” replaces the set of specific ADDs on ac-
tions such as “extinguish with hose using water from
a hydrant” and “extinguish with hose using foam and
a pumper”. We felt this was a reasonable abstraction
in that it makes few additional demands on the user,

We tried adding one to five previous operations and
found no significant differences.
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Figure 1: Learning curves for the various experimen-
tal conditions, showing improvement due to successive
problem reformulations.

who must only choose from a small set of corresponding
more specific actions. Abstracting the problem in this
manner reduced the original 98 classes into 28 abstract
classes, and also increased the proportion of the most
frequent class from 8.57% to 11.19%. We ran ten trials
on each data set, using the same training and test splits
as in the baseline study.

The results support our hypothesis: accuracy in-
creased significantly (paired ¢ test, p < 0.001) for both
data sets with class abstraction (Table 2 and Figure 1,
abstracted). This result may not be surprising since the
abstraction results in a simpler prediction task. How-
ever, it raises the issue of determining an appropriate
task level in mixed-initiative settings such as interactive
scheduling. Formulating the prediction task at higher
levels transfers more decision-making responsibility to
the human user, but this is not undesirable if it leads
to more effective interaction overall.

Redefining Correctness

In the third experiment, we wanted to investigate the
effects of modifying the prediction task by allowing al-
ternative class labels. The formulation of the learning
problem as the problem of predicting the user’s next
operation was a natural fit to the data provided by the
user traces. However, it is an unnecessarily difficult
learning task in that it requires the system to predict
a user’s immediate next action. A user may arrive at
the same schedule through different sequences of oper-
ations, many of which may be equally acceptable to the
user. Thus, a more appropriate learning task might be
to predict any one of the user’s subsequent operations,
subject to legality given the current state.

Our hypothesis in this experiment was that accuracy
would improve under the redefined correctness crite-
rion. To test this hypothesis, we first modified the
original examples to include a set of alternative classes,
consisting of all the subsequent operations the user in-



voked to solve the HAZMAT incident minus those that
were illegal in the current state. We ran ten trials on
each data set, again using the same training and test
splits. Training proceeded as before but, during test-
ing, we judged a prediction to be correct if it matched
the instance’s label or one of its alternative classes.

The results support our hypothesis: significantly
greater accuracy (paired ¢ test, p < 0.001) was achieved
on the reformulated task (Table 2 and Figure 1, alter-
native classes). Again, the results might seem obvious
since allowing alternative classes simplifies the predic-
tion task. However, as stated earlier, this may in fact be
a more appropriate task in that it may better capture
what concerns users in the scheduling process.

Correcting for Illegal Operations

The observation that many errors involved illegal oper-
ations (Table 3) suggests another change to the predic-
tion element. The revised system would check to de-
termine if a given prediction is illegal and, if so, would
move on to the next most likely prediction, continu-
ing in this manner until it predicts a legal operation.
Implementing this scheme is straightforward for some
classifiers, like naive Bayes and nearest neighbor, which
rank their predictions, but it is more complicated for
decision trees.

We are still in the process of considering various ap-
proaches to implementing this filtering scheme. How-
ever, we can estimate the new accuracy by factoring
out the existing illegal predictions. Let us assume that
the learned predictor’s accuracy will be the same on the
illegal classifications as on the legal ones. Let a be the
accuracy with abstraction, s be the gain from alterna-
tive classes, and i be the misclassifications that were
illegal. The accuracy under this new scheme would be
a+s+ ‘iggi. This results in accuracies in the 75 to 80%
range (Table 2 and Figure 1, no illegal predictions),
which are much more promising than the baseline re-
sults.?

Related and Future Work

Previous work on learning for scheduling has focused
on autonomous systems, with the aim of improving
scheduling efficiency or schedule quality. For example,
Gratch and Chien (1993) increased efficiency in a deep
space network scheduler by acquiring effective domain-
specific heuristics. Similarly, Eskey and Zweben (1990)
increased scheduling efficiency in payload processing for
the NASA space shuttle by acquiring rules to avoid
chronic resource contention. Zhang and Dietterich
(1995) used reinforcement learning on the same task,
but to acquire heuristics that resulted in shorter sched-
ules. Our framework for learning differs in its emphasis
on acquiring user-specific performance criteria and, as a
result, in its reliance on detailed traces of user decisions.

3For naive Bayes, we have obtained actual results that
were as good or better than these estimates.

Some recent Al scheduling systems (e.g., Smith et
al., 1996; Fukunaga et al., 1997) have mixed-initiative
modes, but few incorporate learning or adaptation
to different users. The same holds for AI crisis re-
sponse systems such as O-Plan2 (Tate et al., 1994)
and SOCAP (Bienkowski, 1996). An exception is CAB-
INS (Miyashita & Sycara, 1995), an assistant for job-
shop scheduling that learns user preferences on repair
heuristics. Like INcA, CABINS acquires preferences
from user traces and uses these to direct a repair-space
search for a solution. CABINS differs in that it invokes
a heuristic scheduler to generate an initial schedule and
a case-based method to learn user preferences, whereas
INCA uses a case-based method to retrieve an initial
schedule and other learning techniques to acquire user
preferences. We believe this approach provides a better
fit to crisis domains, where case libraries can be built
from standard operating procedures or the results of
planning exercises.

Much work on personalization, particularly for com-
puter-aided instruction, has focused on methods for
constructing models of user behaviors that can then be
used to classify users and modify system interaction ac-
cordingly (e.g., Sleeman & Smith, 1981; Clancey, 1979;
Anderson & Reiser, 1985). Langley (1997) uses the
term adaptive user interfaces to refer to systems like
INCA that instead use machine learning to construct
user models from interaction traces. Previous work in
this area include Schlimmer and Hermens’ (1993) inter-
face for repetitive form filling; Dent et al.’s (1992) CAP,
a calendar apprentice for scheduling appointments; and
Pazzani et al.’s (1996) SyskiLL & WEBERT, a Web
page recommendation service. Like INCA, these sys-
tems use their learned user models to tailor their be-
havior to individual users. The work described in this
paper differs in its focus on an explicit evaluation of the
factors affecting success.

A priority for future work involves fully integrating
the learned predictors into INCA, which would let us di-
rectly evaluate our hypothesis that learning user prefer-
ences will produce more rapid HAZMAT response. This
will also let us test our hypotheses about appropriate
task formulations. Initially, we plan to use an offline
setting, in which we train INCA on user traces, incorpo-
rate the learned model into the system, and then let the
same user interact with INCA while measuring perfor-
mance. Eventually, we plan to integrate learning in an
online setting, where the system updates its user model
during the course of its interactions. In such settings, it
becomes particularly important that the system avoid
making suggestions that are so unacceptable and dis-
tracting that the user would have been better off with-
out assistance. One response, which we plan to explore
in future work, is to incorporate confidence measures
into system predictions to prevent it from making sug-
gestions until they exceed some minimum threshold.

Another important area for future work is task re-
formulation. The results on abstraction suggest that
we look for simple learning problems that would ben-



efit from standard induction algorithms. One ap-
proach would be to divide the prediction task into a
set of smaller tasks for example, predicting specific re-
sources, durations, and start times once an action has
already been selected for scheduling; or proceeding with
prediction hierarchically through more and more spe-
cific operations. The results on alternative classes sug-
gest that we reevaluate our task definition in light of the
kinds of suggestions (i.e., system predictions) the user
will find helpful. We are currently exploring alternative
formulations of the learning task along these lines. We
also expect to see greater benefits from combinations of
successful reformulations.

We also need to revisit our representational options.
The results on adding temporal attributes indicate that
there may be important information that is currently
not being captured. The attribute-value scheme is sim-
ple but it does not let us easily represent specific sched-
ules (i.e., what actions use what resources over what
time intervals) or the relationship between what ac-
tions address what problem features. This information,
which may play a role in user preferences, can be more
easily captured in a relational representation, which we
plan to investigate in future versions of INCA.

Concluding Remarks

In this paper, we reviewed INCA, an adaptive assistant
for crisis scheduling, and presented empirical studies
of learning user models aimed at improving the sys-
tem’s behavior. We formulated the task of the schedul-
ing assistant as predicting the user’s action in response
to a particular problem, set of resources, and current
schedule. We set out to explore the limits of simple
problem representations and established learning algo-
rithms, and our initial study revealed some benefits
from learning, but also left room for improvement.

Subsequent experiments demonstrated that abstrac-
tions of the learning task, as well as reformulations of
the prediction task, result in substantially better per-
formance without sacrificing, and possibly even improv-
ing, the usefulness of the learned behavior. These find-
ings suggest that adaptive interfaces like INCA, which
learn models of user preferences, constitute a promising
approach to mixed-initiative scheduling that deserves
fuller exploration in future research.
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