A Cognitive Architecture for Physical Agents

Pat Langley, Dongkyu Choi, and Daniel Shapiro
Computational Learning Laboratory

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305 USA

Abstract

In this paper we describe ICARUS, a cognitive architec-
ture for intelligent physical agents. We contrast the
framework’s assumptions with those of earlier archi-
tectures, illustrating our points with examples from an
in-city driving task. Key differences include primacy of
perception and action over problem solving, separate
memories for categories and skills, a hierarchical orga-
nization on both memories, strong correspondence be-
tween long-term and short-term structures, and use of
expected values to guide behavior. We support claims
for ICARUS’ generality by reporting our experience with
the driving domain and three other tasks. In closing,
we discuss some limitations of the current architecture
and propose extensions that would remedy them.

Introduction and Motivation

A cognitive architecture (Newell, 1990) specifies the in-
frastructure for an intelligent system that remains con-
stant across different domains and knowledge bases.
This infrastructure includes a commitment to for-
malisms for representing knowledge, memories for stor-
ing this domain content, and processes that utilize and
acquire the knowledge. Research on cognitive architec-
tures has been closely tied to cognitive modeling, in
that they often attempt to explain a wide range of hu-
man behavior and, at the very least, desire to support
the same broad capabilities as human intelligence.

In this paper we describe ICARUS, a cognitive ar-
chitecture that builds on previous work in this area
but also has some novel features. Our aim is not to
match quantitative data, but rather to reproduce the
qualitative characteristics of human behavior, and our
discussion will focus on such issues. The best method
for evaluating a cognitive architecture remains an open
question, but it is clear that this should happen at the
systems level rather than in terms of isolated phenom-
ena. We will not claim that ICARUS accounts for any
one result better than other candidates, but we will
argue that it models facets of the human cognitive ar-
chitecture, and the ways they fit together, that have
been downplayed by other researchers in this area.

Copyright © 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

We discuss the distinguishing features of ICARUS in
the section that follows, but we should first note that
they have resulted from our focus on physical agents.
We can clarify this concern with an example domain —
in-city driving that involves cognition but in which
perception and action also play central roles. In partic-
ular, consider the task of a UPS driver who must de-
liver packages to indicated addresses in an unfamiliar
area. The driver must attempt to achieve his multiple
delivery goals, which themselves involve a combination
of perception, action, and reasoning, while obeying the
rules of driving and avoiding collisions with other cars.

To support our research on such complex tasks, we
have implemented a simulated environment for in-city
driving that simplifies many aspects but remains rich
and challenging. Objects take the form of rectangular
parallelepipeds that sit on a Euclidean plane. These
include vehicles, for which the positions, orientations,
and velocities change over time, as well as static objects
like road segments, intersections, lane lines, and build-
ings. Each vehicle can alter its velocity and change its
steering wheel angle by setting control variables, which
interact with realistic laws to determine each vehicle’s
state. The physics for collisions is simplified, with vehi-
cles exchanging momentum along their lengthwise axes.

Most, vehicles are drones controlled by the simulator,
but one vehicle is driven by an ICARUS agent, which has
access to the same effectors and can only sense objects
closer than 60 feet. The system perceives other vehicles
(with no occlusion) and the corners of buildings, both
described in agent-centered polar coordinates that give
the object’s distance, angle, relative velocity, and ori-
entation. The ICARUS agent also perceives its distance
and angle with respect to lane lines, and some of its own
properties, like speed and steering wheel angle. To sup-
port the package delivery task, the agent can perceive
the street, address, and cross street for each package
it carries, along with the current street name, the up-
coming cross street, and the address associated with
visible building corners. We also provide the system
with top-level intentions to deliver these packages to
their destinations.

Despite the idealized nature of this environment, it
forces us to take seriously the goal of integrating cogni-



tion with perception and action in ways that are consis-
tent with our knowledge of human behavior. Thus, we
will use this task domain as a running example through-
out our discussion of ICARUS’ features in the next sec-
tion. However, generality is a key criterion for a success-
ful cognitive architecture, so we follow this with initial
results on three additional domains. We conclude with
comments on ICARUS’ relation to other work in AT and
our plans for future research.

Distinctive Characteristics of ICARUS

Our framework shares many features with traditional
cognitive architectures, such as Soar (Laird et al., 1987)
and ACT-R (Anderson, 1993). These include a commit-
ment to symbolic representation of knowledge, utiliza-
tion of pattern matching to select relevant knowledge
elements, and organization of behavior into a recognize-
act cycle. However, ICARUS also has some distinctive
characteristics, which we contrast here with the as-
sumptions in these established frameworks.

Primacy of Perception and Action

Most cognitive architectures draw heavily on results
from the study of human problem solving. This influ-
ence is most apparent in Soar, which makes an explicit
commitment to Newell’s (1990) hypothesis that all cog-
nitive behavior can be cast as search through a problem
space. Anderson’s (1993) ACT-R framework does not
take as strong a position as Soar on this issue, but most
ACT-R models emphasize cognitive over sensory-motor
activities, following the paradigm set by early models
of human problem solving.!

In contrast, ICARUS is concerned centrally with intel-
ligent agents that exist in a physical environment. Our
work to date has used only simulated worlds, but they
are separate and distinct from the cognitive systems,
which must perceive it through sensors and influence it
through effectors. At the same time, we do not reject
theories of human problem solving, as they reflect im-
portant phenomena that deserve explanation. However,
we hold that problem-solving activities are not primi-
tive but rather are built on top of, and integrated with,
more primitive activities for perception and action.

As noted earlier, our ICARUS program for the in-
city driving environment perceives a variety of object
types, each described as numeric attributes in agent-
centered polar coordinates. The system can affect its
own situation through effectors that alter speed, turn
the steering wheel, and deposit a package at the cur-
rent location. Our typical runs involve a three-block
by three-block city, with five buildings on each side of
each block, which provides a reasonably complex envi-
ronment. The resulting system exhibits much the same
mixture of perception, inference, decision making, and
action that humans demonstrate when driving.

'Kieras and Meyer’s (1997) EPIC gives more emphasis
to peripheral processes, but the majority of cognitive archi-
tectures are designed with mental processing in mind.

Table 1: Some ICARUS concepts for in-city driving, with
variables indicated by question marks.

(in-rightmost-lane (7self)
:positives ((on-right-side-of-road ?self)
(line-to-left 7self 7line))
:negatives ((lane-to-right 7self 7anyline)))
(lane-to-right (7self ?7line)
:percepts ((lane-line 7line dist ?dist))
:tests ((> 7dist 0) (< 7dist 10)))
(1ine-to-left (7self ?7line)
:percepts ((lane-line 7line dist 7dist))
‘tests ((< 7dist 0)))

Separation of Categories from Skills

Another common feature of cognitive architectures is
a commitment to a single representation for long-term
knowledge. This typically takes the form of production
rules, each of which specifies the conditions under which
it will match and the actions to be carried out upon ex-
ecution. Although production systems have been quite
successful in modeling many aspects of human cogni-
tion, they borrow key ideas from behaviorist psychology
and retain a strong action-oriented flavor, even though
the actions are primarily mental ones. Even in ACT-R,
which distinguishes between a procedural rule memory
and a declarative memory of facts, the latter serves pri-
marily as a source of elements for short-term memory.

However, cognition involves more than execution of
mental procedures; it also includes the recognition of
categories and drawing of associated inferences. One
can model categorization using production systems, but
we believe that concepts serve a different function than
procedures and are best handled separately. We should
note that many researchers seem to agree; except for
those who start from such a position, few cognitive
models of categorization are cast as production systems.

In response, ICARUS incorporates two separate long-
term stores. A conceptual memory contains Boolean
concepts that encode its knowledge about general
classes of objects and relations. Each concept definition
specifies the concept’s name and arguments, along with
a :percepts field that describes observed perceptual
entities, a :positives field that states lower-level con-
cepts it must match, a :negatives field that states con-
cepts it must not match, and a :tests field that spec-
ifies numeric relations it must satisfy. Table 1 shows
some concepts from the driving domain.

In contrast, ICARUS’ long-term skill memory en-
codes knowledge about ways to act and achieve goals.
Each skill has a name, arguments, and a variety of
fields.2 These include an :objective field, which spec-
ifies a conjunction of concepts for the situation the

2 Actually, each skill can have multiple definitions, much
as Prolog allows multiple Horn clauses with the same head.
Different versions of a skill must have the same name, argu-
ments, and objective, but they can differ in other fields.



Table 2: Some ICARUS skills for in-city driving.

(drive-to-address (7self ?package)
:objective ((at-address ?package))
tordered  ((drive-to-street 7self 7package)
(continue-to-address 7self ?7package)
(slow-down-for-stop ?self ?package)))

(continue-to-address (7self 7package)
:objective ((approaching-address 7?package))
:requires ((on-street 7package))

:unordered ((speed-up-for-cruise 7self)
(turn-around-for ?7self 7package)))

(speed-up-for-cruise (7self)
:percepts ((self 7self speed ?spd cruise 7cspd)
(corner 7corner))
:requires ((slower-than-cruise-speed 7self)
(steering-wheel-straight 7self)
(centered-in-lane 7line))

ractions ((*speed-up (- ?cspd 7spd)))
:features (7spd)
:weights  (-0.25)

:constant 5.0)

skill is intended to achieve, a :start field that spec-
ifies the situation in which one can initiate the skill,
and a :requires field that must hold throughout the
skill’s execution. For example, Table 2 shows the
skill continue-to-address, which has the objective of ap-
proaching the delivery address and requires that it al-
ready be on the target street. The driving domain lends
credibility to the architectural distinction between con-
cepts and skills, which the ICARUS interpreter treats in
quite different manners, as we will see shortly.

Hierarchical Structure of Memory

Another distinguishing feature of ICARUS lies in its com-
mitment to the hierarchical nature of long-term mem-
ory. There remains little doubt that human memory has
this character. Many natural categories have a compo-
nential structure, and timing studies suggest that chunk
boundaries remain even in well-practiced procedures.
Most, cognitive architectures let one model such hierar-
chical relations, but few raise this notion to a design
principle. ACT-R comes the closest by letting produc-
tions link goals to subgoals, but the relation remains
mediated by working memory elements rather than re-
ferring directly to component structures.

IcARUS provides direct support for hierarchy at the
architectural level. Recall that the fields in a concept
definition can refer to other concepts, and thus orga-
nize categories into a conceptual lattice, with primitive
concepts at the bottom and increasingly complex con-
cepts at higher levels. Each ICARUS skill includes fields
that specify how to decompose it into subskills, with
an :ordered field indicating an ordering on component
skills and an :unordered field allowing choice among
them. This hierarchy bottoms out in primitive skills,
which specify executable actions in their :actions field.

Moreover, skills refer to concepts in other fields, thus
linking the two memories in a hierarchical manner.

Tables 1 and 2 provide examples of these relations.
The concept in-rightmost-lane is defined using lane-
to-right and line-to-left, whereas the skill continue-to-
address refers to speed-up-for-cruise and turn-around-
for in its :unordered field, as well as to various con-
cepts in its :requires, and :objective fields. Note
also that higher-level structures refer directly to their
components by name, giving more direct indexing than
in production system architectures.

Long-Term/Short-Term Correspondence

A cognitive architecture requires more than long-term
memory; it must also have a short-term memory that
contains dynamic beliefs and intentions. A recurring
idea in cognitive science is that this short-term store
should simply be the ‘active’ portion of long-term mem-
ory. This relation holds for the declarative memories
in ACT-R, but not for its procedural production rules,
which are purely long term, and Soar does not support
such a mapping in any form. Theories of case-based
reasoning come much closer to this theme, but these
have seldom been cast as general architectures.

IcARUS enforces a strong correspondence by requir-
ing that every short-term element be a specific instance
of some long-term structure. In particular, its concep-
tual short-term memory contains instances of defined
concepts which encode specific beliefs about the envi-
ronment that the agent can infer from its perceptions.?
For instance, this memory might contain the instance
(lane-to-right self g0037), which it can infer from the
lane-to-right concept shown in Table 1.

The architecture also incorporates a skill short-term
memory, which contains instances of skills the agent in-
tends to execute. Each of these literals specifies the
skill’s name and its concrete arguments, which must be
known objects. For example, this memory might con-
tain the skill instance (continue-to-address self g0019),
which denotes that the driver has an explicit intention
to execute the continue-to-address skill with these ar-
guments. Every short-term element must be either a
concept instance (belief) or a skill instance (intention),
which places psychologically plausible constraints on
the structures that an ICARUS agent can process.

Value-Driven Nature of Behavior

Early research on cognitive architectures emphasized
symbolic decision making over numeric evaluation, and
this still holds for some current frameworks like Soar
and EPIC. The ACT-R theory diverges from this trend
by associating an expected cost and benefit with each
production rule, but these have the same value regard-
less of the current situation. In domains like driving,
it seems clear that humans assign different values to
certain skills, such as changing lanes and slowing, as

3This correspondence does not hold for ICARUS’ percep-
tual buffer, which stores the agent’s momentary perceptions.



a function of the perceived situation, such as distance
and speed relative to another car. Such situation-
specific evaluation functions have a long history in
game-playing systems, where they are combined with
legal move generators to guide search.

ICARUS incorporates a similar notion into its archi-
tectural design. Each skill decomposition has an associ-
ated value function that encodes the utility expected if
the skill is executed with this decomposition. This func-
tion is defined by a :percepts field that matches the
values of observed objects’ attributes, a : features field
that lists these values in order, a :weights field that
states the weights on these quantities, and a : constant
field that specifies a constant value. The expected util-
ity for a skill decomposition is a linear function of the
numeric descriptors matched by that skill. For exam-
ple, the value for speed-up-for-cruise in Table 2 depends
on the variable 7spd, which can vary across cycles.

On each cycle, ICARUS applies all matched concepts
in a bottom-up manner to draw high-level inferences
from its immediate perceptions, whereas skill execu-
tion occurs in a more selective, top-down way that is
controlled by these value functions. The skill hierarchy
defines an AND-OR tree down which the interpreter tra-
verses on each cycle, starting from top-level intentions
in short-term skill memory. Each path through this
hierarchy terminates in an action, but ICARUS must se-
lect one to execute on the current cycle. Many paths
are rejected because their :start or :requires fields
are not satisfied, or because their :objective has been
met. Also, the architecture prefers subskills later in an
:ordered field, as they are closer to the skill’s objective.

However, many paths may remain available as alter-
natives, just as a human driver has choices about when
to pass, slow down, and turn a corner. ICARUS calcu-
lates the value of each acceptable path through the skill
hierarchy, computing the value of each skill instance
along a path and taking their sum as the total path
value. This scheme produces context effects, since the
value of taking a low-level action like speeding up or
turning the wheel is influenced by the higher-level skills
in which it participates. ICARUS also multiplies the
value of the path from the previous cycle by a persis-
tence factor. When set to one, this produces purely re-
active behavior with no memory of previous intentions,
but higher settings bias the system toward selecting the
skill instances it has been pursuing, giving it a form of
commitment that purely reactive approaches lack.

Initial Experiences with ICARUS

We believe that our design for ICARUS is internally con-
sistent and makes contact with a variety of psycholog-
ical phenomena, but whether it supports embodied in-
telligent behavior is an empirical question. To obtain
an initial answer to this question, we developed mod-
els of behavior in four domains, which we report here.
Our aim was not to fit the details of human behavior,
which is varied enough to require many distinct models,

but to demonstrate the architecture’s general ability to
produce plausible behavior across a range of tasks.

In-City Driving

We described package delivery task earlier, but we
should we report our experience with the ICARUS model
we have developed for it. The system includes 31 primi-
tive concepts and 49 higher-level concepts, which range
from two to six levels deep. These are grounded in
perceptual descriptions for building corners, lane lines,
street signs, packages, other vehicles, and the agent’s
vehicle. The model also incorporates 24 primitive skills
and 34 higher-level skills, organized in a hierarchy that
is eight levels deep. These terminate in executable ac-
tions for changing speed, altering the wheel angle, and
depositing a package.

We have run the system on three variants of the pack-
age delivery task, most involving a city with nine square
blocks, two other vehicles, and four packages with differ-
ent target addresses across runs. The program reliably
drives on the right-hand side, slows for intersections,
and makes successful turns. On occasion, it makes an
overly wide turn, but it quickly returns to the proper
side. The model slows to avoid collision when it comes
behind another vehicle that is driving more slowly, but
otherwise keeps going.

When the agent first comes upon the target street or
cross street marked on one of the packages it is carry-
ing, it turns right on that street. The system continues
on the cross street until reaching the end, in which case
it makes a U turn, or until it comes upon the target
street, in which case it turns right. Once on the target
street, the agent continues if the numbers are chang-
ing in the right direction or makes a U turn otherwise.
Upon reaching the package’s target address, it deposits
the package and continues driving. If the system en-
counters the target or cross street for a second package
while delivering the first, it may shift to the new task in-
stead. Whether this occurs depends on the persistence
parameter, which produces single-minded behavior at
one extreme and indecisive dithering at the other.

The Tower of Hanoi

One of the most heavily studied tasks in cognitive mod-
eling is the Tower of Hanoi. This puzzle, which involves
N disks of different sizes and three pegs, typically starts
with all disks on one peg and requires moving them to
a different target peg. Only one disk can be moved at a
time, only the smallest disk on a peg can be moved, and
a disk cannot be moved to a peg on which a smaller one
already sits. The state space for this puzzle is small, yet
it presents considerable difficulty to novices.

Although models of problem solving on the Tower
of Hanoi emphasize cognitive processing, the puzzle
clearly involves perception and action, and so consti-
tutes a reasonable domain for IcARUS. We developed a
simulated environment with objects for pegs and disks,
each of which has numeric attributes for its x position,
y position, height, and width, along with a hand that is



empty or full. Actions include grasping and ungrasping
a disk, along with moving a grasped disk either verti-
cally or horizontally. Our ICARUS program for this task
includes seven concepts for describing states (e.g., rec-
ognizing when a disk in on a peg), three primitive skills,
and one high-level skill for moving a disk to a target peg
that, in some expansions, refers to itself recursively.

The resulting system models behavior at a finer
granularity than most studies of this task, in that it
treats more seriously the role of perception and action.
The program solves the three-disk puzzle in seven disk
moves and the four-disk version in 15 moves, but each
such move requires three cycles — for grasping and lift-
ing the disk, for shifting it horizontally, and for low-
ering and ungrasping it. Moreover, the categorization
process makes inferences on each cycle that produce the
higher-level description used in testing the skills. The
system utilizes goal recursion to select the right peg for
each disk, but it does this in the context of executing
its skills, rather than generating a mental plan.

Pole Balancing

Most problem-solving tasks studied in cognitive science
involve goals of achievement, yet many control tasks in-
stead involve maintenance goals. To demonstrate that
IcAruS handles problems of this variety, we developed
a model of behavior for pole balancing, in which the
agent tries to balance an initially upright pole on its
end by pushing that end to the left or right. The only
object in this environment is the pole, for which the
agent can perceive the angle and angular velocity. The
agent also has access to actions for pushing the pole to
the left and to the right.

We have developed three ICARUS programs for this
task. These include a purely logical version in which
requirements on six primitive skills are cast as 11 mu-
tually exclusive qualitative states and an alternative in
which the value functions for three primitive skills are
linear functions of the pole’s angle and angular velocity.
Runs revealed that the value-based version could bal-
ance the pole indefinitely, whereas the logical version
could do so for less than two hundred cycles. However,
we also developed a hierarchical variant of the value-
based system that incorporates two skills with knowl-
edge about the order of primitive skills. This system
behaved as robustly as the flat version and, we main-
tain, encodes more faithfully human skill on this task,
which has high-level regularities in action ordering.

Multi-Column Subtraction

A routine but complex task that has received attention
by cognitive modelers is multi-column subtraction. To
reproduce behavior in this domain, we developed an en-
vironment in which perceivable objects correspond to
digits, which have an x position, y position, numeric
value, and status (clear or crossed out). Primitive ac-
tions include writing down a new digit, crossing out a
digit, and replacing one value with another.

Our IcARUS program includes concepts for grouping
digits into columns, recognizing row adjacencies, and
noting when columns have been processed. There are
primitive skills for taking a difference, adding ten, and
decrementing by one, along with one hierarchical skill.
This has one expansion for simple borrowing and an-
other for borrowing across zero, which invokes itself re-
cursively. The system has a similar flavor to VanLehn’s
(1990) treatment, but we have modeled only correct
behavior and not the errors observed in this domain.

Discussion

We argued earlier that ICARUS incorporates a number
of features that distinguish it from typical cognitive ar-
chitectures. However, this does not mean related ideas
have not appeared elsewhere in the AT literature under
different guises. For instance, our approach has much in
common with the ‘reactive planning’ movement, which
often utilizes hierarchical procedures that combine cog-
nition, perception, and action in physical domains. Ex-
amples include Georgeoff et al.’s (1985) PRS, Nilsson’s
(1994) teleoreactive framework, and Bonasso et al.’s
(1997) 3T robotic architecture. Howe (1995) reports
a system that combines, executes, and revises par-
tial plans in complex environments, whereas Hammond
(1993) describes a predecessor that even delivers pack-
ages in a simulated driving environment. However,
within this paradigm, only Freed’s (1998) APEX has
been proposed as a candidate architecture for human
cognition, and it differs from ICARUS on other fronts.

Our framework also shares ideas with control theory
and reinforcement learning, which often invoke linear
functions of sensory variables to determine the behav-
ior of reactive agents. However, most work in these
paradigms assumes only low-level controllers, with nei-
ther higher-level conceptual descriptions or skills. Re-
search on hierarchical reinforcement learning comes
closer, but does not make strong assumptions about
the architecture for cognition. Our own work on this
topic (Shapiro et al., 2001) made commitments to hi-
erarchical skills and value-driven behavior, but did not
support conceptual memories, multiple intentions, or
the mechanisms to utilize them. One important ex-
ception is Albus and Meystel’s (2001) RCS architec-
ture, which organizes knowledge hierarchically and also
makes a clear distinction between logical structures and
value judgments. IcarUS and RCS are perhaps more
akin to each other than to other frameworks, but they
retain many differences due to their origins in cognitive
modeling and control theory, respectively.

Despite its novel characteristics, as a cognitive ar-
chitecture the current version of ICARUS falls short on
a number of fronts. One drawback is the assumption
of unlimited perceptual resources, which lets an agent
sense each attribute of every object within a certain
distance. Clearly, humans have more limited abilities,
in that their visual field is relatively narrow and they
must focus attention on an object to extract its features.
We plan to treat perceptual attention as another action



under the skills’ control, which will transform it into a
constrained resource. However, this change will interact
with the current assumption that conceptual inferences
are removed from short-term memory when their sup-
porting perceptions disappear. One response would be
to retain inferred beliefs (e.g., that a lane is clear) across
cycles, but to associate with them expected durations,
which in turn would influence attentional decisions.

Another omission relates to ICARUS’ reliance on pre-
stored skills. Although humans typically prefer to use
routine behaviors when possible, there is clear evidence
that they can, within limits, combine knowledge ele-
ments when needed to solve novel problems. Means-
ends analysis has been implicated in such situations, so
we plan to incorporate a version of this method into
future versions of the architecture. However, it should
remain subservient to the primary process of skill exe-
cution, rather than being the dominant control scheme,
as in Minton’s (1990) PropIGY. This also suggests an
account for the acquisition of hierarchical skills, which
we hypothesize are the cached results of means-ends
problem solving. The mechanism for composing exist-
ing skills that appear in a novel solution would be sim-
ilar to chunking in Soar and knowledge compilation in
ACT, but would retain the original structures as com-
ponents of a new hierarchical skill, rather than creating
an unstructured chunk or production rule.

Finally, IcARUS lacks the key human ability to store
its previous experiences in an episodic memory and re-
trieve them later. However, we have noted that our
framework requires elements in short-term memory to
be instances of generic concepts or skills. This sug-
gests we can model episodic memory by extending these
structures to include time markers that indicate when
they entered and left the short-term stores, with ele-
ments being indexed through the generic structures of
which they are instances. The mechanism responsible
for episodic recall is less clear, but Forbus et al.’s (1994)
analogical retrieval method is one plausible candidate.

In closing, we should review the distinctive charac-
teristics of our framework and our initial results. Un-
like most cognitive architectures, ICARUS is concerned
centrally with modeling intelligent behavior in physical
domains. As a result, processes for perception and ac-
tion are more basic than ones for inference and decision
making, though they interact tightly. The architecture
makes a clear separation between concepts and skills,
which are stored in distinct but connected long-term
memories, and this dichotomy carries over to short-term
memories, which contain instances of concepts (beliefs)
and skills (intentions). Both conceptual and skill mem-
ory are hierarchical, with the latter structuring action
selection, which involves computing the expected value
of acceptable paths from high-level to primitive skills.

Our experimental studies of ICARUS’ behavior are in
their early stages, and our results to date are qualita-
tive. Nevertheless, we have shown that the architecture
supports an interesting mixture of cognition, percep-
tion, and action in a complex in-city driving domain,

and our experiences with three other domains provide
encouraging evidence of generality. We identified some
limitations of the current architecture, but these sug-
gested in turn some natural extensions that will give
broader coverage of human behavior and that, we be-
lieve, are difficult to achieve in traditional approaches.

References

Albus, J. S., & Meystel, A. M. (2001). Engineering of
mind: An introduction to the science of intelligent
systems. New York: John Wiley.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Lawrence Erlbaum.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D.,
Miller, D., & Slack, M. (1997). Experiences with
an architecture for intelligent, reactive agents. Jour-
nal of Experimental and Theoretical Artificial Intel-
ligence, 9, 237-256.

Freed, M. (1998). Managing multiple tasks in complex,
dynamic environments. Proceedings of the National
Conference on Artificial Intelligence (pp. 921-927).

Forbus, K., Gentner, D., & Law, K. (1994). MAC/FAC:
A model of similarity-based retrieval. Cognitive Sci-
ence, 19, 141-205.

Georgeff, M., Lansky, A., & Bessiere, P. (1985). A pro-
cedural logic. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence. Los An-
geles: Morgan Kaufmann.

Hammond, K. (1993). Toward a theory of agency. In
S. Minton (Ed.) Machine learning methods for plan-
ning. San Francisco: Morgan Kaufmann.

Howe, A. E. (1995). Improving the reliability of Al
planning systems by analyzing their failure recovery.
IEEE Transactions on Knowledge and Data Engi-
neering, 7, 14-25.

Kieras, D., & Meyer, D. E. (1997). An overview
of the EPIC architecture for cognition and perfor-
mance with application to human-computer interac-
tion. Human-Computer Interaction, 12, 391 438.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Arti-
ficial Intelligence, 33, 1 64.

Minton, S. N. (1990). Quantitative results concerning
the utility of explanation-based learning. Artificial
Intelligence, 42, 363 391.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research,
1, 139-158.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learn-
ing in physical agents. Proceedings of the Fifth In-
ternational Conference on Autonomous Agents (pp.
254-261). Montreal: ACM Press.

VanLehn, K. (1990). Mind bugs: The origins of proce-
dural misconceptions. Cambridge, MA: MIT Press.



