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tIn this paper we des
ribe I
arus, a 
ognitive ar
hite
-ture for intelligent physi
al agents. We 
ontrast theframework's assumptions with those of earlier ar
hi-te
tures, illustrating our points with examples from anin-
ity driving task. Key di�eren
es in
lude prima
y ofper
eption and a
tion over problem solving, separatememories for 
ategories and skills, a hierar
hi
al orga-nization on both memories, strong 
orresponden
e be-tween long-term and short-term stru
tures, and use ofexpe
ted values to guide behavior. We support 
laimsfor I
arus' generality by reporting our experien
e withthe driving domain and three other tasks. In 
losing,we dis
uss some limitations of the 
urrent ar
hite
tureand propose extensions that would remedy them.Introdu
tion and MotivationA 
ognitive ar
hite
ture (Newell, 1990) spe
i�es the in-frastru
ture for an intelligent system that remains 
on-stant a
ross di�erent domains and knowledge bases.This infrastru
ture in
ludes a 
ommitment to for-malisms for representing knowledge, memories for stor-ing this domain 
ontent, and pro
esses that utilize anda
quire the knowledge. Resear
h on 
ognitive ar
hite
-tures has been 
losely tied to 
ognitive modeling, inthat they often attempt to explain a wide range of hu-man behavior and, at the very least, desire to supportthe same broad 
apabilities as human intelligen
e.In this paper we des
ribe I
arus, a 
ognitive ar-
hite
ture that builds on previous work in this areabut also has some novel features. Our aim is not tomat
h quantitative data, but rather to reprodu
e thequalitative 
hara
teristi
s of human behavior, and ourdis
ussion will fo
us on su
h issues. The best methodfor evaluating a 
ognitive ar
hite
ture remains an openquestion, but it is 
lear that this should happen at thesystems level rather than in terms of isolated phenom-ena. We will not 
laim that I
arus a

ounts for anyone result better than other 
andidates, but we willargue that it models fa
ets of the human 
ognitive ar-
hite
ture, and the ways they �t together, that havebeen downplayed by other resear
hers in this area.Copyright 

 2004, Ameri
an Asso
iation for Arti�
ial In-telligen
e (www.aaai.org). All rights reserved.

We dis
uss the distinguishing features of I
arus inthe se
tion that follows, but we should �rst note thatthey have resulted from our fo
us on physi
al agents.We 
an 
larify this 
on
ern with an example domain {in-
ity driving { that involves 
ognition but in whi
hper
eption and a
tion also play 
entral roles. In parti
-ular, 
onsider the task of a UPS driver who must de-liver pa
kages to indi
ated addresses in an unfamiliararea. The driver must attempt to a
hieve his multipledelivery goals, whi
h themselves involve a 
ombinationof per
eption, a
tion, and reasoning, while obeying therules of driving and avoiding 
ollisions with other 
ars.To support our resear
h on su
h 
omplex tasks, wehave implemented a simulated environment for in-
itydriving that simpli�es many aspe
ts but remains ri
hand 
hallenging. Obje
ts take the form of re
tangularparallelepipeds that sit on a Eu
lidean plane. Thesein
lude vehi
les, for whi
h the positions, orientations,and velo
ities 
hange over time, as well as stati
 obje
tslike road segments, interse
tions, lane lines, and build-ings. Ea
h vehi
le 
an alter its velo
ity and 
hange itssteering wheel angle by setting 
ontrol variables, whi
hintera
t with realisti
 laws to determine ea
h vehi
le'sstate. The physi
s for 
ollisions is simpli�ed, with vehi-
les ex
hanging momentum along their lengthwise axes.Most vehi
les are drones 
ontrolled by the simulator,but one vehi
le is driven by an I
arus agent, whi
h hasa

ess to the same e�e
tors and 
an only sense obje
ts
loser than 60 feet. The system per
eives other vehi
les(with no o

lusion) and the 
orners of buildings, bothdes
ribed in agent-
entered polar 
oordinates that givethe obje
t's distan
e, angle, relative velo
ity, and ori-entation. The I
arus agent also per
eives its distan
eand angle with respe
t to lane lines, and some of its ownproperties, like speed and steering wheel angle. To sup-port the pa
kage delivery task, the agent 
an per
eivethe street, address, and 
ross street for ea
h pa
kageit 
arries, along with the 
urrent street name, the up-
oming 
ross street, and the address asso
iated withvisible building 
orners. We also provide the systemwith top-level intentions to deliver these pa
kages totheir destinations.Despite the idealized nature of this environment, itfor
es us to take seriously the goal of integrating 
ogni-



tion with per
eption and a
tion in ways that are 
onsis-tent with our knowledge of human behavior. Thus, wewill use this task domain as a running example through-out our dis
ussion of I
arus' features in the next se
-tion. However, generality is a key 
riterion for a su

ess-ful 
ognitive ar
hite
ture, so we follow this with initialresults on three additional domains. We 
on
lude with
omments on I
arus' relation to other work in AI andour plans for future resear
h.Distin
tive Chara
teristi
s of I
arusOur framework shares many features with traditional
ognitive ar
hite
tures, su
h as Soar (Laird et al., 1987)and ACT-R (Anderson, 1993). These in
lude a 
ommit-ment to symboli
 representation of knowledge, utiliza-tion of pattern mat
hing to sele
t relevant knowledgeelements, and organization of behavior into a re
ognize-a
t 
y
le. However, I
arus also has some distin
tive
hara
teristi
s, whi
h we 
ontrast here with the as-sumptions in these established frameworks.Prima
y of Per
eption and A
tionMost 
ognitive ar
hite
tures draw heavily on resultsfrom the study of human problem solving. This in
u-en
e is most apparent in Soar, whi
h makes an expli
it
ommitment to Newell's (1990) hypothesis that all 
og-nitive behavior 
an be 
ast as sear
h through a problemspa
e. Anderson's (1993) ACT-R framework does nottake as strong a position as Soar on this issue, but mostACT-R models emphasize 
ognitive over sensory-motora
tivities, following the paradigm set by early modelsof human problem solving.1In 
ontrast, I
arus is 
on
erned 
entrally with intel-ligent agents that exist in a physi
al environment. Ourwork to date has used only simulated worlds, but theyare separate and distin
t from the 
ognitive systems,whi
h must per
eive it through sensors and in
uen
e itthrough e�e
tors. At the same time, we do not reje
ttheories of human problem solving, as they re
e
t im-portant phenomena that deserve explanation. However,we hold that problem-solving a
tivities are not primi-tive but rather are built on top of, and integrated with,more primitive a
tivities for per
eption and a
tion.As noted earlier, our I
arus program for the in-
ity driving environment per
eives a variety of obje
ttypes, ea
h des
ribed as numeri
 attributes in agent-
entered polar 
oordinates. The system 
an a�e
t itsown situation through e�e
tors that alter speed, turnthe steering wheel, and deposit a pa
kage at the 
ur-rent lo
ation. Our typi
al runs involve a three-blo
kby three-blo
k 
ity, with �ve buildings on ea
h side ofea
h blo
k, whi
h provides a reasonably 
omplex envi-ronment. The resulting system exhibits mu
h the samemixture of per
eption, inferen
e, de
ision making, anda
tion that humans demonstrate when driving.1Kieras and Meyer's (1997) EPIC gives more emphasisto peripheral pro
esses, but the majority of 
ognitive ar
hi-te
tures are designed with mental pro
essing in mind.

Table 1: Some I
arus 
on
epts for in-
ity driving, withvariables indi
ated by question marks.(in-rightmost-lane (?self):positives ((on-right-side-of-road ?self)(line-to-left ?self ?line)):negatives ((lane-to-right ?self ?anyline)))(lane-to-right (?self ?line):per
epts ((lane-line ?line dist ?dist)):tests ((> ?dist 0)(< ?dist 10)))(line-to-left (?self ?line):per
epts ((lane-line ?line dist ?dist)):tests ((< ?dist 0)))Separation of Categories from SkillsAnother 
ommon feature of 
ognitive ar
hite
tures isa 
ommitment to a single representation for long-termknowledge. This typi
ally takes the form of produ
tionrules, ea
h of whi
h spe
i�es the 
onditions under whi
hit will mat
h and the a
tions to be 
arried out upon ex-e
ution. Although produ
tion systems have been quitesu

essful in modeling many aspe
ts of human 
ogni-tion, they borrow key ideas from behaviorist psy
hologyand retain a strong a
tion-oriented 
avor, even thoughthe a
tions are primarily mental ones. Even in ACT-R,whi
h distinguishes between a pro
edural rule memoryand a de
larative memory of fa
ts, the latter serves pri-marily as a sour
e of elements for short-term memory.However, 
ognition involves more than exe
ution ofmental pro
edures; it also in
ludes the re
ognition of
ategories and drawing of asso
iated inferen
es. One
an model 
ategorization using produ
tion systems, butwe believe that 
on
epts serve a di�erent fun
tion thanpro
edures and are best handled separately. We shouldnote that many resear
hers seem to agree; ex
ept forthose who start from su
h a position, few 
ognitivemodels of 
ategorization are 
ast as produ
tion systems.In response, I
arus in
orporates two separate long-term stores. A 
on
eptual memory 
ontains Boolean
on
epts that en
ode its knowledge about general
lasses of obje
ts and relations. Ea
h 
on
ept de�nitionspe
i�es the 
on
ept's name and arguments, along witha :per
epts �eld that des
ribes observed per
eptualentities, a :positives �eld that states lower-level 
on-
epts it must mat
h, a :negatives �eld that states 
on-
epts it must not mat
h, and a :tests �eld that spe
-i�es numeri
 relations it must satisfy. Table 1 showssome 
on
epts from the driving domain.In 
ontrast, I
arus' long-term skill memory en-
odes knowledge about ways to a
t and a
hieve goals.Ea
h skill has a name, arguments, and a variety of�elds.2 These in
lude an :obje
tive �eld, whi
h spe
-i�es a 
onjun
tion of 
on
epts for the situation the2A
tually, ea
h skill 
an have multiple de�nitions, mu
has Prolog allows multiple Horn 
lauses with the same head.Di�erent versions of a skill must have the same name, argu-ments, and obje
tive, but they 
an di�er in other �elds.



Table 2: Some I
arus skills for in-
ity driving.(drive-to-address (?self ?pa
kage):obje
tive ((at-address ?pa
kage)):ordered ((drive-to-street ?self ?pa
kage)(
ontinue-to-address ?self ?pa
kage)(slow-down-for-stop ?self ?pa
kage)))(
ontinue-to-address (?self ?pa
kage):obje
tive ((approa
hing-address ?pa
kage)):requires ((on-street ?pa
kage)):unordered ((speed-up-for-
ruise ?self)(turn-around-for ?self ?pa
kage)))(speed-up-for-
ruise (?self):per
epts ((self ?self speed ?spd 
ruise ?
spd)(
orner ?
orner)):requires ((slower-than-
ruise-speed ?self)(steering-wheel-straight ?self)(
entered-in-lane ?line)):a
tions ((*speed-up (- ?
spd ?spd))):features (?spd):weights (-0.25):
onstant 5.0)skill is intended to a
hieve, a :start �eld that spe
-i�es the situation in whi
h one 
an initiate the skill,and a :requires �eld that must hold throughout theskill's exe
ution. For example, Table 2 shows theskill 
ontinue-to-address, whi
h has the obje
tive of ap-proa
hing the delivery address and requires that it al-ready be on the target street. The driving domain lends
redibility to the ar
hite
tural distin
tion between 
on-
epts and skills, whi
h the I
arus interpreter treats inquite di�erent manners, as we will see shortly.Hierar
hi
al Stru
ture of MemoryAnother distinguishing feature of I
arus lies in its 
om-mitment to the hierar
hi
al nature of long-term mem-ory. There remains little doubt that human memory hasthis 
hara
ter. Many natural 
ategories have a 
ompo-nential stru
ture, and timing studies suggest that 
hunkboundaries remain even in well-pra
ti
ed pro
edures.Most 
ognitive ar
hite
tures let one model su
h hierar-
hi
al relations, but few raise this notion to a designprin
iple. ACT-R 
omes the 
losest by letting produ
-tions link goals to subgoals, but the relation remainsmediated by working memory elements rather than re-ferring dire
tly to 
omponent stru
tures.I
arus provides dire
t support for hierar
hy at thear
hite
tural level. Re
all that the �elds in a 
on
eptde�nition 
an refer to other 
on
epts, and thus orga-nize 
ategories into a 
on
eptual latti
e, with primitive
on
epts at the bottom and in
reasingly 
omplex 
on-
epts at higher levels. Ea
h I
arus skill in
ludes �eldsthat spe
ify how to de
ompose it into subskills, withan :ordered �eld indi
ating an ordering on 
omponentskills and an :unordered �eld allowing 
hoi
e amongthem. This hierar
hy bottoms out in primitive skills,whi
h spe
ify exe
utable a
tions in their :a
tions �eld.

Moreover, skills refer to 
on
epts in other �elds, thuslinking the two memories in a hierar
hi
al manner.Tables 1 and 2 provide examples of these relations.The 
on
ept in-rightmost-lane is de�ned using lane-to-right and line-to-left, whereas the skill 
ontinue-to-address refers to speed-up-for-
ruise and turn-around-for in its :unordered �eld, as well as to various 
on-
epts in its :requires, and :obje
tive �elds. Notealso that higher-level stru
tures refer dire
tly to their
omponents by name, giving more dire
t indexing thanin produ
tion system ar
hite
tures.Long-Term/Short-Term Corresponden
eA 
ognitive ar
hite
ture requires more than long-termmemory; it must also have a short-term memory that
ontains dynami
 beliefs and intentions. A re
urringidea in 
ognitive s
ien
e is that this short-term storeshould simply be the `a
tive' portion of long-term mem-ory. This relation holds for the de
larative memoriesin ACT-R, but not for its pro
edural produ
tion rules,whi
h are purely long term, and Soar does not supportsu
h a mapping in any form. Theories of 
ase-basedreasoning 
ome mu
h 
loser to this theme, but thesehave seldom been 
ast as general ar
hite
tures.I
arus enfor
es a strong 
orresponden
e by requir-ing that every short-term element be a spe
i�
 instan
eof some long-term stru
ture. In parti
ular, its 
on
ep-tual short-term memory 
ontains instan
es of de�ned
on
epts whi
h en
ode spe
i�
 beliefs about the envi-ronment that the agent 
an infer from its per
eptions.3For instan
e, this memory might 
ontain the instan
e(lane-to-right self g0037), whi
h it 
an infer from thelane-to-right 
on
ept shown in Table 1.The ar
hite
ture also in
orporates a skill short-termmemory, whi
h 
ontains instan
es of skills the agent in-tends to exe
ute. Ea
h of these literals spe
i�es theskill's name and its 
on
rete arguments, whi
h must beknown obje
ts. For example, this memory might 
on-tain the skill instan
e (
ontinue-to-address self g0019),whi
h denotes that the driver has an expli
it intentionto exe
ute the 
ontinue-to-address skill with these ar-guments. Every short-term element must be either a
on
ept instan
e (belief) or a skill instan
e (intention),whi
h pla
es psy
hologi
ally plausible 
onstraints onthe stru
tures that an I
arus agent 
an pro
ess.Value-Driven Nature of BehaviorEarly resear
h on 
ognitive ar
hite
tures emphasizedsymboli
 de
ision making over numeri
 evaluation, andthis still holds for some 
urrent frameworks like Soarand EPIC. The ACT-R theory diverges from this trendby asso
iating an expe
ted 
ost and bene�t with ea
hprodu
tion rule, but these have the same value regard-less of the 
urrent situation. In domains like driving,it seems 
lear that humans assign di�erent values to
ertain skills, su
h as 
hanging lanes and slowing, as3This 
orresponden
e does not hold for I
arus' per
ep-tual bu�er, whi
h stores the agent's momentary per
eptions.



a fun
tion of the per
eived situation, su
h as distan
eand speed relative to another 
ar. Su
h situation-spe
i�
 evaluation fun
tions have a long history ingame-playing systems, where they are 
ombined withlegal move generators to guide sear
h.I
arus in
orporates a similar notion into its ar
hi-te
tural design. Ea
h skill de
omposition has an asso
i-ated value fun
tion that en
odes the utility expe
ted ifthe skill is exe
uted with this de
omposition. This fun
-tion is de�ned by a :per
epts �eld that mat
hes thevalues of observed obje
ts' attributes, a :features �eldthat lists these values in order, a :weights �eld thatstates the weights on these quantities, and a :
onstant�eld that spe
i�es a 
onstant value. The expe
ted util-ity for a skill de
omposition is a linear fun
tion of thenumeri
 des
riptors mat
hed by that skill. For exam-ple, the value for speed-up-for-
ruise in Table 2 dependson the variable ?spd, whi
h 
an vary a
ross 
y
les.On ea
h 
y
le, I
arus applies all mat
hed 
on
eptsin a bottom-up manner to draw high-level inferen
esfrom its immediate per
eptions, whereas skill exe
u-tion o

urs in a more sele
tive, top-down way that is
ontrolled by these value fun
tions. The skill hierar
hyde�nes an AND-OR tree down whi
h the interpreter tra-verses on ea
h 
y
le, starting from top-level intentionsin short-term skill memory. Ea
h path through thishierar
hy terminates in an a
tion, but I
arus must se-le
t one to exe
ute on the 
urrent 
y
le. Many pathsare reje
ted be
ause their :start or :requires �eldsare not satis�ed, or be
ause their :obje
tive has beenmet. Also, the ar
hite
ture prefers subskills later in an:ordered �eld, as they are 
loser to the skill's obje
tive.However, many paths may remain available as alter-natives, just as a human driver has 
hoi
es about whento pass, slow down, and turn a 
orner. I
arus 
al
u-lates the value of ea
h a

eptable path through the skillhierar
hy, 
omputing the value of ea
h skill instan
ealong a path and taking their sum as the total pathvalue. This s
heme produ
es 
ontext e�e
ts, sin
e thevalue of taking a low-level a
tion like speeding up orturning the wheel is in
uen
ed by the higher-level skillsin whi
h it parti
ipates. I
arus also multiplies thevalue of the path from the previous 
y
le by a persis-ten
e fa
tor. When set to one, this produ
es purely re-a
tive behavior with no memory of previous intentions,but higher settings bias the system toward sele
ting theskill instan
es it has been pursuing, giving it a form of
ommitment that purely rea
tive approa
hes la
k.Initial Experien
es with I
arusWe believe that our design for I
arus is internally 
on-sistent and makes 
onta
t with a variety of psy
holog-i
al phenomena, but whether it supports embodied in-telligent behavior is an empiri
al question. To obtainan initial answer to this question, we developed mod-els of behavior in four domains, whi
h we report here.Our aim was not to �t the details of human behavior,whi
h is varied enough to require many distin
t models,

but to demonstrate the ar
hite
ture's general ability toprodu
e plausible behavior a
ross a range of tasks.In-City DrivingWe des
ribed pa
kage delivery task earlier, but weshould we report our experien
e with the I
arus modelwe have developed for it. The system in
ludes 31 primi-tive 
on
epts and 49 higher-level 
on
epts, whi
h rangefrom two to six levels deep. These are grounded inper
eptual des
riptions for building 
orners, lane lines,street signs, pa
kages, other vehi
les, and the agent'svehi
le. The model also in
orporates 24 primitive skillsand 34 higher-level skills, organized in a hierar
hy thatis eight levels deep. These terminate in exe
utable a
-tions for 
hanging speed, altering the wheel angle, anddepositing a pa
kage.We have run the system on three variants of the pa
k-age delivery task, most involving a 
ity with nine squareblo
ks, two other vehi
les, and four pa
kages with di�er-ent target addresses a
ross runs. The program reliablydrives on the right-hand side, slows for interse
tions,and makes su

essful turns. On o

asion, it makes anoverly wide turn, but it qui
kly returns to the properside. The model slows to avoid 
ollision when it 
omesbehind another vehi
le that is driving more slowly, butotherwise keeps going.When the agent �rst 
omes upon the target street or
ross street marked on one of the pa
kages it is 
arry-ing, it turns right on that street. The system 
ontinueson the 
ross street until rea
hing the end, in whi
h 
aseit makes a U turn, or until it 
omes upon the targetstreet, in whi
h 
ase it turns right. On
e on the targetstreet, the agent 
ontinues if the numbers are 
hang-ing in the right dire
tion or makes a U turn otherwise.Upon rea
hing the pa
kage's target address, it depositsthe pa
kage and 
ontinues driving. If the system en-
ounters the target or 
ross street for a se
ond pa
kagewhile delivering the �rst, it may shift to the new task in-stead. Whether this o

urs depends on the persisten
eparameter, whi
h produ
es single-minded behavior atone extreme and inde
isive dithering at the other.The Tower of HanoiOne of the most heavily studied tasks in 
ognitive mod-eling is the Tower of Hanoi. This puzzle, whi
h involvesN disks of di�erent sizes and three pegs, typi
ally startswith all disks on one peg and requires moving them toa di�erent target peg. Only one disk 
an be moved at atime, only the smallest disk on a peg 
an be moved, anda disk 
annot be moved to a peg on whi
h a smaller onealready sits. The state spa
e for this puzzle is small, yetit presents 
onsiderable diÆ
ulty to novi
es.Although models of problem solving on the Towerof Hanoi emphasize 
ognitive pro
essing, the puzzle
learly involves per
eption and a
tion, and so 
onsti-tutes a reasonable domain for I
arus. We developed asimulated environment with obje
ts for pegs and disks,ea
h of whi
h has numeri
 attributes for its x position,y position, height, and width, along with a hand that is



empty or full. A
tions in
lude grasping and ungraspinga disk, along with moving a grasped disk either verti-
ally or horizontally. Our I
arus program for this taskin
ludes seven 
on
epts for des
ribing states (e.g., re
-ognizing when a disk in on a peg), three primitive skills,and one high-level skill for moving a disk to a target pegthat, in some expansions, refers to itself re
ursively.The resulting system models behavior at a �nergranularity than most studies of this task, in that ittreats more seriously the role of per
eption and a
tion.The program solves the three-disk puzzle in seven diskmoves and the four-disk version in 15 moves, but ea
hsu
h move requires three 
y
les { for grasping and lift-ing the disk, for shifting it horizontally, and for low-ering and ungrasping it. Moreover, the 
ategorizationpro
ess makes inferen
es on ea
h 
y
le that produ
e thehigher-level des
ription used in testing the skills. Thesystem utilizes goal re
ursion to sele
t the right peg forea
h disk, but it does this in the 
ontext of exe
utingits skills, rather than generating a mental plan.Pole Balan
ingMost problem-solving tasks studied in 
ognitive s
ien
einvolve goals of a
hievement, yet many 
ontrol tasks in-stead involve maintenan
e goals. To demonstrate thatI
arus handles problems of this variety, we developeda model of behavior for pole balan
ing, in whi
h theagent tries to balan
e an initially upright pole on itsend by pushing that end to the left or right. The onlyobje
t in this environment is the pole, for whi
h theagent 
an per
eive the angle and angular velo
ity. Theagent also has a

ess to a
tions for pushing the pole tothe left and to the right.We have developed three I
arus programs for thistask. These in
lude a purely logi
al version in whi
hrequirements on six primitive skills are 
ast as 11 mu-tually ex
lusive qualitative states and an alternative inwhi
h the value fun
tions for three primitive skills arelinear fun
tions of the pole's angle and angular velo
ity.Runs revealed that the value-based version 
ould bal-an
e the pole inde�nitely, whereas the logi
al version
ould do so for less than two hundred 
y
les. However,we also developed a hierar
hi
al variant of the value-based system that in
orporates two skills with knowl-edge about the order of primitive skills. This systembehaved as robustly as the 
at version and, we main-tain, en
odes more faithfully human skill on this task,whi
h has high-level regularities in a
tion ordering.Multi-Column Subtra
tionA routine but 
omplex task that has re
eived attentionby 
ognitive modelers is multi-
olumn subtra
tion. Toreprodu
e behavior in this domain, we developed an en-vironment in whi
h per
eivable obje
ts 
orrespond todigits, whi
h have an x position, y position, numeri
value, and status (
lear or 
rossed out). Primitive a
-tions in
lude writing down a new digit, 
rossing out adigit, and repla
ing one value with another.

Our I
arus program in
ludes 
on
epts for groupingdigits into 
olumns, re
ognizing row adja
en
ies, andnoting when 
olumns have been pro
essed. There areprimitive skills for taking a di�eren
e, adding ten, andde
rementing by one, along with one hierar
hi
al skill.This has one expansion for simple borrowing and an-other for borrowing a
ross zero, whi
h invokes itself re-
ursively. The system has a similar 
avor to VanLehn's(1990) treatment, but we have modeled only 
orre
tbehavior and not the errors observed in this domain.Dis
ussionWe argued earlier that I
arus in
orporates a numberof features that distinguish it from typi
al 
ognitive ar-
hite
tures. However, this does not mean related ideashave not appeared elsewhere in the AI literature underdi�erent guises. For instan
e, our approa
h has mu
h in
ommon with the `rea
tive planning' movement, whi
hoften utilizes hierar
hi
al pro
edures that 
ombine 
og-nition, per
eption, and a
tion in physi
al domains. Ex-amples in
lude Georgeo� et al.'s (1985) PRS, Nilsson's(1994) teleorea
tive framework, and Bonasso et al.'s(1997) 3T roboti
 ar
hite
ture. Howe (1995) reportsa system that 
ombines, exe
utes, and revises par-tial plans in 
omplex environments, whereas Hammond(1993) des
ribes a prede
essor that even delivers pa
k-ages in a simulated driving environment. However,within this paradigm, only Freed's (1998) APEX hasbeen proposed as a 
andidate ar
hite
ture for human
ognition, and it di�ers from I
arus on other fronts.Our framework also shares ideas with 
ontrol theoryand reinfor
ement learning, whi
h often invoke linearfun
tions of sensory variables to determine the behav-ior of rea
tive agents. However, most work in theseparadigms assumes only low-level 
ontrollers, with nei-ther higher-level 
on
eptual des
riptions or skills. Re-sear
h on hierar
hi
al reinfor
ement learning 
omes
loser, but does not make strong assumptions aboutthe ar
hite
ture for 
ognition. Our own work on thistopi
 (Shapiro et al., 2001) made 
ommitments to hi-erar
hi
al skills and value-driven behavior, but did notsupport 
on
eptual memories, multiple intentions, orthe me
hanisms to utilize them. One important ex-
eption is Albus and Meystel's (2001) RCS ar
hite
-ture, whi
h organizes knowledge hierar
hi
ally and alsomakes a 
lear distin
tion between logi
al stru
tures andvalue judgments. I
arus and RCS are perhaps moreakin to ea
h other than to other frameworks, but theyretain many di�eren
es due to their origins in 
ognitivemodeling and 
ontrol theory, respe
tively.Despite its novel 
hara
teristi
s, as a 
ognitive ar-
hite
ture the 
urrent version of I
arus falls short ona number of fronts. One drawba
k is the assumptionof unlimited per
eptual resour
es, whi
h lets an agentsense ea
h attribute of every obje
t within a 
ertaindistan
e. Clearly, humans have more limited abilities,in that their visual �eld is relatively narrow and theymust fo
us attention on an obje
t to extra
t its features.We plan to treat per
eptual attention as another a
tion



under the skills' 
ontrol, whi
h will transform it into a
onstrained resour
e. However, this 
hange will intera
twith the 
urrent assumption that 
on
eptual inferen
esare removed from short-term memory when their sup-porting per
eptions disappear. One response would beto retain inferred beliefs (e.g., that a lane is 
lear) a
ross
y
les, but to asso
iate with them expe
ted durations,whi
h in turn would in
uen
e attentional de
isions.Another omission relates to I
arus' relian
e on pre-stored skills. Although humans typi
ally prefer to useroutine behaviors when possible, there is 
lear eviden
ethat they 
an, within limits, 
ombine knowledge ele-ments when needed to solve novel problems. Means-ends analysis has been impli
ated in su
h situations, sowe plan to in
orporate a version of this method intofuture versions of the ar
hite
ture. However, it shouldremain subservient to the primary pro
ess of skill exe-
ution, rather than being the dominant 
ontrol s
heme,as in Minton's (1990) Prodigy. This also suggests ana

ount for the a
quisition of hierar
hi
al skills, whi
hwe hypothesize are the 
a
hed results of means-endsproblem solving. The me
hanism for 
omposing exist-ing skills that appear in a novel solution would be sim-ilar to 
hunking in Soar and knowledge 
ompilation inACT, but would retain the original stru
tures as 
om-ponents of a new hierar
hi
al skill, rather than 
reatingan unstru
tured 
hunk or produ
tion rule.Finally, I
arus la
ks the key human ability to storeits previous experien
es in an episodi
 memory and re-trieve them later. However, we have noted that ourframework requires elements in short-term memory tobe instan
es of generi
 
on
epts or skills. This sug-gests we 
an model episodi
 memory by extending thesestru
tures to in
lude time markers that indi
ate whenthey entered and left the short-term stores, with ele-ments being indexed through the generi
 stru
tures ofwhi
h they are instan
es. The me
hanism responsiblefor episodi
 re
all is less 
lear, but Forbus et al.'s (1994)analogi
al retrieval method is one plausible 
andidate.In 
losing, we should review the distin
tive 
hara
-teristi
s of our framework and our initial results. Un-like most 
ognitive ar
hite
tures, I
arus is 
on
erned
entrally with modeling intelligent behavior in physi
aldomains. As a result, pro
esses for per
eption and a
-tion are more basi
 than ones for inferen
e and de
isionmaking, though they intera
t tightly. The ar
hite
turemakes a 
lear separation between 
on
epts and skills,whi
h are stored in distin
t but 
onne
ted long-termmemories, and this di
hotomy 
arries over to short-termmemories, whi
h 
ontain instan
es of 
on
epts (beliefs)and skills (intentions). Both 
on
eptual and skill mem-ory are hierar
hi
al, with the latter stru
turing a
tionsele
tion, whi
h involves 
omputing the expe
ted valueof a

eptable paths from high-level to primitive skills.Our experimental studies of I
arus' behavior are intheir early stages, and our results to date are qualita-tive. Nevertheless, we have shown that the ar
hite
turesupports an interesting mixture of 
ognition, per
ep-tion, and a
tion in a 
omplex in-
ity driving domain,

and our experien
es with three other domains provideen
ouraging eviden
e of generality. We identi�ed somelimitations of the 
urrent ar
hite
ture, but these sug-gested in turn some natural extensions that will givebroader 
overage of human behavior and that, we be-lieve, are diÆ
ult to a
hieve in traditional approa
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