
A Cognitive Arhiteture for Physial AgentsPat Langley, Dongkyu Choi, and Daniel ShapiroComputational Learning LaboratoryCenter for the Study of Language and InformationStanford University, Stanford, CA 94305 USAAbstratIn this paper we desribe Iarus, a ognitive arhite-ture for intelligent physial agents. We ontrast theframework's assumptions with those of earlier arhi-tetures, illustrating our points with examples from anin-ity driving task. Key di�erenes inlude primay ofpereption and ation over problem solving, separatememories for ategories and skills, a hierarhial orga-nization on both memories, strong orrespondene be-tween long-term and short-term strutures, and use ofexpeted values to guide behavior. We support laimsfor Iarus' generality by reporting our experiene withthe driving domain and three other tasks. In losing,we disuss some limitations of the urrent arhitetureand propose extensions that would remedy them.Introdution and MotivationA ognitive arhiteture (Newell, 1990) spei�es the in-frastruture for an intelligent system that remains on-stant aross di�erent domains and knowledge bases.This infrastruture inludes a ommitment to for-malisms for representing knowledge, memories for stor-ing this domain ontent, and proesses that utilize andaquire the knowledge. Researh on ognitive arhite-tures has been losely tied to ognitive modeling, inthat they often attempt to explain a wide range of hu-man behavior and, at the very least, desire to supportthe same broad apabilities as human intelligene.In this paper we desribe Iarus, a ognitive ar-hiteture that builds on previous work in this areabut also has some novel features. Our aim is not tomath quantitative data, but rather to reprodue thequalitative harateristis of human behavior, and ourdisussion will fous on suh issues. The best methodfor evaluating a ognitive arhiteture remains an openquestion, but it is lear that this should happen at thesystems level rather than in terms of isolated phenom-ena. We will not laim that Iarus aounts for anyone result better than other andidates, but we willargue that it models faets of the human ognitive ar-hiteture, and the ways they �t together, that havebeen downplayed by other researhers in this area.Copyright  2004, Amerian Assoiation for Arti�ial In-telligene (www.aaai.org). All rights reserved.

We disuss the distinguishing features of Iarus inthe setion that follows, but we should �rst note thatthey have resulted from our fous on physial agents.We an larify this onern with an example domain {in-ity driving { that involves ognition but in whihpereption and ation also play entral roles. In parti-ular, onsider the task of a UPS driver who must de-liver pakages to indiated addresses in an unfamiliararea. The driver must attempt to ahieve his multipledelivery goals, whih themselves involve a ombinationof pereption, ation, and reasoning, while obeying therules of driving and avoiding ollisions with other ars.To support our researh on suh omplex tasks, wehave implemented a simulated environment for in-itydriving that simpli�es many aspets but remains rihand hallenging. Objets take the form of retangularparallelepipeds that sit on a Eulidean plane. Theseinlude vehiles, for whih the positions, orientations,and veloities hange over time, as well as stati objetslike road segments, intersetions, lane lines, and build-ings. Eah vehile an alter its veloity and hange itssteering wheel angle by setting ontrol variables, whihinterat with realisti laws to determine eah vehile'sstate. The physis for ollisions is simpli�ed, with vehi-les exhanging momentum along their lengthwise axes.Most vehiles are drones ontrolled by the simulator,but one vehile is driven by an Iarus agent, whih hasaess to the same e�etors and an only sense objetsloser than 60 feet. The system pereives other vehiles(with no olusion) and the orners of buildings, bothdesribed in agent-entered polar oordinates that givethe objet's distane, angle, relative veloity, and ori-entation. The Iarus agent also pereives its distaneand angle with respet to lane lines, and some of its ownproperties, like speed and steering wheel angle. To sup-port the pakage delivery task, the agent an pereivethe street, address, and ross street for eah pakageit arries, along with the urrent street name, the up-oming ross street, and the address assoiated withvisible building orners. We also provide the systemwith top-level intentions to deliver these pakages totheir destinations.Despite the idealized nature of this environment, itfores us to take seriously the goal of integrating ogni-



tion with pereption and ation in ways that are onsis-tent with our knowledge of human behavior. Thus, wewill use this task domain as a running example through-out our disussion of Iarus' features in the next se-tion. However, generality is a key riterion for a suess-ful ognitive arhiteture, so we follow this with initialresults on three additional domains. We onlude withomments on Iarus' relation to other work in AI andour plans for future researh.Distintive Charateristis of IarusOur framework shares many features with traditionalognitive arhitetures, suh as Soar (Laird et al., 1987)and ACT-R (Anderson, 1993). These inlude a ommit-ment to symboli representation of knowledge, utiliza-tion of pattern mathing to selet relevant knowledgeelements, and organization of behavior into a reognize-at yle. However, Iarus also has some distintiveharateristis, whih we ontrast here with the as-sumptions in these established frameworks.Primay of Pereption and AtionMost ognitive arhitetures draw heavily on resultsfrom the study of human problem solving. This inu-ene is most apparent in Soar, whih makes an expliitommitment to Newell's (1990) hypothesis that all og-nitive behavior an be ast as searh through a problemspae. Anderson's (1993) ACT-R framework does nottake as strong a position as Soar on this issue, but mostACT-R models emphasize ognitive over sensory-motorativities, following the paradigm set by early modelsof human problem solving.1In ontrast, Iarus is onerned entrally with intel-ligent agents that exist in a physial environment. Ourwork to date has used only simulated worlds, but theyare separate and distint from the ognitive systems,whih must pereive it through sensors and inuene itthrough e�etors. At the same time, we do not rejettheories of human problem solving, as they reet im-portant phenomena that deserve explanation. However,we hold that problem-solving ativities are not primi-tive but rather are built on top of, and integrated with,more primitive ativities for pereption and ation.As noted earlier, our Iarus program for the in-ity driving environment pereives a variety of objettypes, eah desribed as numeri attributes in agent-entered polar oordinates. The system an a�et itsown situation through e�etors that alter speed, turnthe steering wheel, and deposit a pakage at the ur-rent loation. Our typial runs involve a three-blokby three-blok ity, with �ve buildings on eah side ofeah blok, whih provides a reasonably omplex envi-ronment. The resulting system exhibits muh the samemixture of pereption, inferene, deision making, andation that humans demonstrate when driving.1Kieras and Meyer's (1997) EPIC gives more emphasisto peripheral proesses, but the majority of ognitive arhi-tetures are designed with mental proessing in mind.

Table 1: Some Iarus onepts for in-ity driving, withvariables indiated by question marks.(in-rightmost-lane (?self):positives ((on-right-side-of-road ?self)(line-to-left ?self ?line)):negatives ((lane-to-right ?self ?anyline)))(lane-to-right (?self ?line):perepts ((lane-line ?line dist ?dist)):tests ((> ?dist 0)(< ?dist 10)))(line-to-left (?self ?line):perepts ((lane-line ?line dist ?dist)):tests ((< ?dist 0)))Separation of Categories from SkillsAnother ommon feature of ognitive arhitetures isa ommitment to a single representation for long-termknowledge. This typially takes the form of produtionrules, eah of whih spei�es the onditions under whihit will math and the ations to be arried out upon ex-eution. Although prodution systems have been quitesuessful in modeling many aspets of human ogni-tion, they borrow key ideas from behaviorist psyhologyand retain a strong ation-oriented avor, even thoughthe ations are primarily mental ones. Even in ACT-R,whih distinguishes between a proedural rule memoryand a delarative memory of fats, the latter serves pri-marily as a soure of elements for short-term memory.However, ognition involves more than exeution ofmental proedures; it also inludes the reognition ofategories and drawing of assoiated inferenes. Onean model ategorization using prodution systems, butwe believe that onepts serve a di�erent funtion thanproedures and are best handled separately. We shouldnote that many researhers seem to agree; exept forthose who start from suh a position, few ognitivemodels of ategorization are ast as prodution systems.In response, Iarus inorporates two separate long-term stores. A oneptual memory ontains Booleanonepts that enode its knowledge about generallasses of objets and relations. Eah onept de�nitionspei�es the onept's name and arguments, along witha :perepts �eld that desribes observed pereptualentities, a :positives �eld that states lower-level on-epts it must math, a :negatives �eld that states on-epts it must not math, and a :tests �eld that spe-i�es numeri relations it must satisfy. Table 1 showssome onepts from the driving domain.In ontrast, Iarus' long-term skill memory en-odes knowledge about ways to at and ahieve goals.Eah skill has a name, arguments, and a variety of�elds.2 These inlude an :objetive �eld, whih spe-i�es a onjuntion of onepts for the situation the2Atually, eah skill an have multiple de�nitions, muhas Prolog allows multiple Horn lauses with the same head.Di�erent versions of a skill must have the same name, argu-ments, and objetive, but they an di�er in other �elds.



Table 2: Some Iarus skills for in-ity driving.(drive-to-address (?self ?pakage):objetive ((at-address ?pakage)):ordered ((drive-to-street ?self ?pakage)(ontinue-to-address ?self ?pakage)(slow-down-for-stop ?self ?pakage)))(ontinue-to-address (?self ?pakage):objetive ((approahing-address ?pakage)):requires ((on-street ?pakage)):unordered ((speed-up-for-ruise ?self)(turn-around-for ?self ?pakage)))(speed-up-for-ruise (?self):perepts ((self ?self speed ?spd ruise ?spd)(orner ?orner)):requires ((slower-than-ruise-speed ?self)(steering-wheel-straight ?self)(entered-in-lane ?line)):ations ((*speed-up (- ?spd ?spd))):features (?spd):weights (-0.25):onstant 5.0)skill is intended to ahieve, a :start �eld that spe-i�es the situation in whih one an initiate the skill,and a :requires �eld that must hold throughout theskill's exeution. For example, Table 2 shows theskill ontinue-to-address, whih has the objetive of ap-proahing the delivery address and requires that it al-ready be on the target street. The driving domain lendsredibility to the arhitetural distintion between on-epts and skills, whih the Iarus interpreter treats inquite di�erent manners, as we will see shortly.Hierarhial Struture of MemoryAnother distinguishing feature of Iarus lies in its om-mitment to the hierarhial nature of long-term mem-ory. There remains little doubt that human memory hasthis harater. Many natural ategories have a ompo-nential struture, and timing studies suggest that hunkboundaries remain even in well-pratied proedures.Most ognitive arhitetures let one model suh hierar-hial relations, but few raise this notion to a designpriniple. ACT-R omes the losest by letting produ-tions link goals to subgoals, but the relation remainsmediated by working memory elements rather than re-ferring diretly to omponent strutures.Iarus provides diret support for hierarhy at thearhitetural level. Reall that the �elds in a oneptde�nition an refer to other onepts, and thus orga-nize ategories into a oneptual lattie, with primitiveonepts at the bottom and inreasingly omplex on-epts at higher levels. Eah Iarus skill inludes �eldsthat speify how to deompose it into subskills, withan :ordered �eld indiating an ordering on omponentskills and an :unordered �eld allowing hoie amongthem. This hierarhy bottoms out in primitive skills,whih speify exeutable ations in their :ations �eld.

Moreover, skills refer to onepts in other �elds, thuslinking the two memories in a hierarhial manner.Tables 1 and 2 provide examples of these relations.The onept in-rightmost-lane is de�ned using lane-to-right and line-to-left, whereas the skill ontinue-to-address refers to speed-up-for-ruise and turn-around-for in its :unordered �eld, as well as to various on-epts in its :requires, and :objetive �elds. Notealso that higher-level strutures refer diretly to theiromponents by name, giving more diret indexing thanin prodution system arhitetures.Long-Term/Short-Term CorrespondeneA ognitive arhiteture requires more than long-termmemory; it must also have a short-term memory thatontains dynami beliefs and intentions. A reurringidea in ognitive siene is that this short-term storeshould simply be the `ative' portion of long-term mem-ory. This relation holds for the delarative memoriesin ACT-R, but not for its proedural prodution rules,whih are purely long term, and Soar does not supportsuh a mapping in any form. Theories of ase-basedreasoning ome muh loser to this theme, but thesehave seldom been ast as general arhitetures.Iarus enfores a strong orrespondene by requir-ing that every short-term element be a spei� instaneof some long-term struture. In partiular, its onep-tual short-term memory ontains instanes of de�nedonepts whih enode spei� beliefs about the envi-ronment that the agent an infer from its pereptions.3For instane, this memory might ontain the instane(lane-to-right self g0037), whih it an infer from thelane-to-right onept shown in Table 1.The arhiteture also inorporates a skill short-termmemory, whih ontains instanes of skills the agent in-tends to exeute. Eah of these literals spei�es theskill's name and its onrete arguments, whih must beknown objets. For example, this memory might on-tain the skill instane (ontinue-to-address self g0019),whih denotes that the driver has an expliit intentionto exeute the ontinue-to-address skill with these ar-guments. Every short-term element must be either aonept instane (belief) or a skill instane (intention),whih plaes psyhologially plausible onstraints onthe strutures that an Iarus agent an proess.Value-Driven Nature of BehaviorEarly researh on ognitive arhitetures emphasizedsymboli deision making over numeri evaluation, andthis still holds for some urrent frameworks like Soarand EPIC. The ACT-R theory diverges from this trendby assoiating an expeted ost and bene�t with eahprodution rule, but these have the same value regard-less of the urrent situation. In domains like driving,it seems lear that humans assign di�erent values toertain skills, suh as hanging lanes and slowing, as3This orrespondene does not hold for Iarus' perep-tual bu�er, whih stores the agent's momentary pereptions.



a funtion of the pereived situation, suh as distaneand speed relative to another ar. Suh situation-spei� evaluation funtions have a long history ingame-playing systems, where they are ombined withlegal move generators to guide searh.Iarus inorporates a similar notion into its arhi-tetural design. Eah skill deomposition has an assoi-ated value funtion that enodes the utility expeted ifthe skill is exeuted with this deomposition. This fun-tion is de�ned by a :perepts �eld that mathes thevalues of observed objets' attributes, a :features �eldthat lists these values in order, a :weights �eld thatstates the weights on these quantities, and a :onstant�eld that spei�es a onstant value. The expeted util-ity for a skill deomposition is a linear funtion of thenumeri desriptors mathed by that skill. For exam-ple, the value for speed-up-for-ruise in Table 2 dependson the variable ?spd, whih an vary aross yles.On eah yle, Iarus applies all mathed oneptsin a bottom-up manner to draw high-level inferenesfrom its immediate pereptions, whereas skill exeu-tion ours in a more seletive, top-down way that isontrolled by these value funtions. The skill hierarhyde�nes an AND-OR tree down whih the interpreter tra-verses on eah yle, starting from top-level intentionsin short-term skill memory. Eah path through thishierarhy terminates in an ation, but Iarus must se-let one to exeute on the urrent yle. Many pathsare rejeted beause their :start or :requires �eldsare not satis�ed, or beause their :objetive has beenmet. Also, the arhiteture prefers subskills later in an:ordered �eld, as they are loser to the skill's objetive.However, many paths may remain available as alter-natives, just as a human driver has hoies about whento pass, slow down, and turn a orner. Iarus alu-lates the value of eah aeptable path through the skillhierarhy, omputing the value of eah skill instanealong a path and taking their sum as the total pathvalue. This sheme produes ontext e�ets, sine thevalue of taking a low-level ation like speeding up orturning the wheel is inuened by the higher-level skillsin whih it partiipates. Iarus also multiplies thevalue of the path from the previous yle by a persis-tene fator. When set to one, this produes purely re-ative behavior with no memory of previous intentions,but higher settings bias the system toward seleting theskill instanes it has been pursuing, giving it a form ofommitment that purely reative approahes lak.Initial Experienes with IarusWe believe that our design for Iarus is internally on-sistent and makes ontat with a variety of psyholog-ial phenomena, but whether it supports embodied in-telligent behavior is an empirial question. To obtainan initial answer to this question, we developed mod-els of behavior in four domains, whih we report here.Our aim was not to �t the details of human behavior,whih is varied enough to require many distint models,

but to demonstrate the arhiteture's general ability toprodue plausible behavior aross a range of tasks.In-City DrivingWe desribed pakage delivery task earlier, but weshould we report our experiene with the Iarus modelwe have developed for it. The system inludes 31 primi-tive onepts and 49 higher-level onepts, whih rangefrom two to six levels deep. These are grounded inpereptual desriptions for building orners, lane lines,street signs, pakages, other vehiles, and the agent'svehile. The model also inorporates 24 primitive skillsand 34 higher-level skills, organized in a hierarhy thatis eight levels deep. These terminate in exeutable a-tions for hanging speed, altering the wheel angle, anddepositing a pakage.We have run the system on three variants of the pak-age delivery task, most involving a ity with nine squarebloks, two other vehiles, and four pakages with di�er-ent target addresses aross runs. The program reliablydrives on the right-hand side, slows for intersetions,and makes suessful turns. On oasion, it makes anoverly wide turn, but it quikly returns to the properside. The model slows to avoid ollision when it omesbehind another vehile that is driving more slowly, butotherwise keeps going.When the agent �rst omes upon the target street orross street marked on one of the pakages it is arry-ing, it turns right on that street. The system ontinueson the ross street until reahing the end, in whih aseit makes a U turn, or until it omes upon the targetstreet, in whih ase it turns right. One on the targetstreet, the agent ontinues if the numbers are hang-ing in the right diretion or makes a U turn otherwise.Upon reahing the pakage's target address, it depositsthe pakage and ontinues driving. If the system en-ounters the target or ross street for a seond pakagewhile delivering the �rst, it may shift to the new task in-stead. Whether this ours depends on the persisteneparameter, whih produes single-minded behavior atone extreme and indeisive dithering at the other.The Tower of HanoiOne of the most heavily studied tasks in ognitive mod-eling is the Tower of Hanoi. This puzzle, whih involvesN disks of di�erent sizes and three pegs, typially startswith all disks on one peg and requires moving them toa di�erent target peg. Only one disk an be moved at atime, only the smallest disk on a peg an be moved, anda disk annot be moved to a peg on whih a smaller onealready sits. The state spae for this puzzle is small, yetit presents onsiderable diÆulty to novies.Although models of problem solving on the Towerof Hanoi emphasize ognitive proessing, the puzzlelearly involves pereption and ation, and so onsti-tutes a reasonable domain for Iarus. We developed asimulated environment with objets for pegs and disks,eah of whih has numeri attributes for its x position,y position, height, and width, along with a hand that is



empty or full. Ations inlude grasping and ungraspinga disk, along with moving a grasped disk either verti-ally or horizontally. Our Iarus program for this taskinludes seven onepts for desribing states (e.g., re-ognizing when a disk in on a peg), three primitive skills,and one high-level skill for moving a disk to a target pegthat, in some expansions, refers to itself reursively.The resulting system models behavior at a �nergranularity than most studies of this task, in that ittreats more seriously the role of pereption and ation.The program solves the three-disk puzzle in seven diskmoves and the four-disk version in 15 moves, but eahsuh move requires three yles { for grasping and lift-ing the disk, for shifting it horizontally, and for low-ering and ungrasping it. Moreover, the ategorizationproess makes inferenes on eah yle that produe thehigher-level desription used in testing the skills. Thesystem utilizes goal reursion to selet the right peg foreah disk, but it does this in the ontext of exeutingits skills, rather than generating a mental plan.Pole BalaningMost problem-solving tasks studied in ognitive sieneinvolve goals of ahievement, yet many ontrol tasks in-stead involve maintenane goals. To demonstrate thatIarus handles problems of this variety, we developeda model of behavior for pole balaning, in whih theagent tries to balane an initially upright pole on itsend by pushing that end to the left or right. The onlyobjet in this environment is the pole, for whih theagent an pereive the angle and angular veloity. Theagent also has aess to ations for pushing the pole tothe left and to the right.We have developed three Iarus programs for thistask. These inlude a purely logial version in whihrequirements on six primitive skills are ast as 11 mu-tually exlusive qualitative states and an alternative inwhih the value funtions for three primitive skills arelinear funtions of the pole's angle and angular veloity.Runs revealed that the value-based version ould bal-ane the pole inde�nitely, whereas the logial versionould do so for less than two hundred yles. However,we also developed a hierarhial variant of the value-based system that inorporates two skills with knowl-edge about the order of primitive skills. This systembehaved as robustly as the at version and, we main-tain, enodes more faithfully human skill on this task,whih has high-level regularities in ation ordering.Multi-Column SubtrationA routine but omplex task that has reeived attentionby ognitive modelers is multi-olumn subtration. Toreprodue behavior in this domain, we developed an en-vironment in whih pereivable objets orrespond todigits, whih have an x position, y position, numerivalue, and status (lear or rossed out). Primitive a-tions inlude writing down a new digit, rossing out adigit, and replaing one value with another.

Our Iarus program inludes onepts for groupingdigits into olumns, reognizing row adjaenies, andnoting when olumns have been proessed. There areprimitive skills for taking a di�erene, adding ten, andderementing by one, along with one hierarhial skill.This has one expansion for simple borrowing and an-other for borrowing aross zero, whih invokes itself re-ursively. The system has a similar avor to VanLehn's(1990) treatment, but we have modeled only orretbehavior and not the errors observed in this domain.DisussionWe argued earlier that Iarus inorporates a numberof features that distinguish it from typial ognitive ar-hitetures. However, this does not mean related ideashave not appeared elsewhere in the AI literature underdi�erent guises. For instane, our approah has muh inommon with the `reative planning' movement, whihoften utilizes hierarhial proedures that ombine og-nition, pereption, and ation in physial domains. Ex-amples inlude Georgeo� et al.'s (1985) PRS, Nilsson's(1994) teleoreative framework, and Bonasso et al.'s(1997) 3T roboti arhiteture. Howe (1995) reportsa system that ombines, exeutes, and revises par-tial plans in omplex environments, whereas Hammond(1993) desribes a predeessor that even delivers pak-ages in a simulated driving environment. However,within this paradigm, only Freed's (1998) APEX hasbeen proposed as a andidate arhiteture for humanognition, and it di�ers from Iarus on other fronts.Our framework also shares ideas with ontrol theoryand reinforement learning, whih often invoke linearfuntions of sensory variables to determine the behav-ior of reative agents. However, most work in theseparadigms assumes only low-level ontrollers, with nei-ther higher-level oneptual desriptions or skills. Re-searh on hierarhial reinforement learning omesloser, but does not make strong assumptions aboutthe arhiteture for ognition. Our own work on thistopi (Shapiro et al., 2001) made ommitments to hi-erarhial skills and value-driven behavior, but did notsupport oneptual memories, multiple intentions, orthe mehanisms to utilize them. One important ex-eption is Albus and Meystel's (2001) RCS arhite-ture, whih organizes knowledge hierarhially and alsomakes a lear distintion between logial strutures andvalue judgments. Iarus and RCS are perhaps moreakin to eah other than to other frameworks, but theyretain many di�erenes due to their origins in ognitivemodeling and ontrol theory, respetively.Despite its novel harateristis, as a ognitive ar-hiteture the urrent version of Iarus falls short ona number of fronts. One drawbak is the assumptionof unlimited pereptual resoures, whih lets an agentsense eah attribute of every objet within a ertaindistane. Clearly, humans have more limited abilities,in that their visual �eld is relatively narrow and theymust fous attention on an objet to extrat its features.We plan to treat pereptual attention as another ation



under the skills' ontrol, whih will transform it into aonstrained resoure. However, this hange will interatwith the urrent assumption that oneptual inferenesare removed from short-term memory when their sup-porting pereptions disappear. One response would beto retain inferred beliefs (e.g., that a lane is lear) arossyles, but to assoiate with them expeted durations,whih in turn would inuene attentional deisions.Another omission relates to Iarus' reliane on pre-stored skills. Although humans typially prefer to useroutine behaviors when possible, there is lear evidenethat they an, within limits, ombine knowledge ele-ments when needed to solve novel problems. Means-ends analysis has been impliated in suh situations, sowe plan to inorporate a version of this method intofuture versions of the arhiteture. However, it shouldremain subservient to the primary proess of skill exe-ution, rather than being the dominant ontrol sheme,as in Minton's (1990) Prodigy. This also suggests anaount for the aquisition of hierarhial skills, whihwe hypothesize are the ahed results of means-endsproblem solving. The mehanism for omposing exist-ing skills that appear in a novel solution would be sim-ilar to hunking in Soar and knowledge ompilation inACT, but would retain the original strutures as om-ponents of a new hierarhial skill, rather than reatingan unstrutured hunk or prodution rule.Finally, Iarus laks the key human ability to storeits previous experienes in an episodi memory and re-trieve them later. However, we have noted that ourframework requires elements in short-term memory tobe instanes of generi onepts or skills. This sug-gests we an model episodi memory by extending thesestrutures to inlude time markers that indiate whenthey entered and left the short-term stores, with ele-ments being indexed through the generi strutures ofwhih they are instanes. The mehanism responsiblefor episodi reall is less lear, but Forbus et al.'s (1994)analogial retrieval method is one plausible andidate.In losing, we should review the distintive hara-teristis of our framework and our initial results. Un-like most ognitive arhitetures, Iarus is onernedentrally with modeling intelligent behavior in physialdomains. As a result, proesses for pereption and a-tion are more basi than ones for inferene and deisionmaking, though they interat tightly. The arhiteturemakes a lear separation between onepts and skills,whih are stored in distint but onneted long-termmemories, and this dihotomy arries over to short-termmemories, whih ontain instanes of onepts (beliefs)and skills (intentions). Both oneptual and skill mem-ory are hierarhial, with the latter struturing ationseletion, whih involves omputing the expeted valueof aeptable paths from high-level to primitive skills.Our experimental studies of Iarus' behavior are intheir early stages, and our results to date are qualita-tive. Nevertheless, we have shown that the arhiteturesupports an interesting mixture of ognition, perep-tion, and ation in a omplex in-ity driving domain,
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