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Abstract
Developing autonomous agents for computer
games is often a lengthy and expensive undertak-
ing that requires manual encoding of detailed and
complex knowledge. In this paper we show how
to acquire hierarchical skills for controlling a team
of simulated football players by observing video of
college football play. We then demonstrate the re-
sults in the Rush 2008 football simulator, showing
that the learned skills have high fidelity with respect
to the observed video and are robust to changes in
the environment. Finally, we conclude with discus-
sions of this work and of possible improvements.

1 Introduction
Constructing intelligent agents for computer games is an im-
portant aspect of game development. However, traditional
methods are expensive, and the resulting agents only func-
tion in narrowly defined circumstances. Agent architectures
[Newell, 1990], which are designed to model human-level in-
telligence, can help simplify this task by reducing the need for
developers to explicitly provide agents with intelligent behav-
iors. Developers need only specify static knowledge about the
domain, while the architecture constructs the necessary be-
havior specifications, and handles the reasoning and decision
making required for their execution.

Recent research [Pearson and Laird, 2004; Nejati et al.,
2006] aims to simplify the knowledge acquisition process.
We expand upon this work by learning from video data, by
representing and acquiring temporal knowledge, and by re-
ducing the amount of expert input required by the system.
In the following, we present a system that learns hierarchi-
cal skills for football players by observing videos of college
football plays, and then executes those skills in a simulated
football environment. The system takes in discrete percep-
tual traces generated from the video, analyzes these traces
with existing knowledge, and learns new skills that can be
applied when controlling agents in a football simulator. The

skills are acquired in a cumulative manner, with new skills
building on those previously learned, and are based on con-
ceptual knowledge that includes temporal constraints. The
learned skills also reproduce the observed behavior faithfully
with comparable efficacy in spite of differences between the
observation and demonstration environments.

We begin by introducing the Rush 2008 football simulator,
which we use to demonstrate our approach. We then briefly
review the ICARUS agent architecture, and present our work
on acquiring structured domain knowledge from observed hu-
man behavior within this framework. Next, we outline the
video preprocessing steps, the application of ICARUS to the
processed video, and the application of the acquired skills in
Rush. Finally, we conclude with a summary of related work
and directions for future development.

2 The Rush Football Simulator
Rush 2008, a research extension of Rush 20051, simulates
play in an eight player variant of American football. For the
remainder of the paper, we assume a basic familiarity with
the rules and objectives of American football. The simula-
tor encodes several types of offensive and defensive forma-
tions, along with several distinct plays (coordinated strate-
gies) for each formation. Each player is assigned a role,
such as quarterback (QB), running back (RB), or left wide
receiver (LWR). Players are controlled either by assigning
them a high-level goal such as pass route cross out at yard 15,
which instructs a receiver to run 15 yards downfield, make a
hard right turn, and then keep running to try to catch a pass,
or by assigning specific instructions such as stride forward on
each clock tick.

We instrumented Rush so that ICARUS can perceive all
players and objects on the field and control the actions of
each offensive player on a tick-by-tick basis. Each offensive
player shares perception and knowledge with the other offen-
sive players, and carries out actions instructed by ICARUS.
Examples of the types of actions available to ICARUS include

1http://rush2005.sourceforge.net/



(throwTo <receiver>), which instructs the QB to pass to a
specific teammate, and (stride <direction)>, which tells a
player to run in one of eight directions for one clock tick. De-
fensive players are controlled by the simulator, which selects
one of several available strategies for each play.

3 The ICARUS Architecture
Our framework for play observation, execution and learning
is the ICARUS architecture, which is an instance of a uni-
fied cognitive architecture [Newell, 1990]. ICARUS shares
many features with other architectures like Soar [Laird et al.,
1986] and ACT-R [Anderson, 1993], including a distinction
between short-term and long-term memories, and goal-driven
but reactive execution. It also has many novel features includ-
ing a commitment to separate storage for conceptual and skill
knowledge, the indexing of skills by the goals they achieve,
and architectural support for temporal knowledge [Stracuzzi
et al., 2009]. In this section, we summarize the basic as-
sumptions of the framework along with its operational pro-
cedures to provide background for the new learning methods.
We begin by describing the conceptual and belief representa-
tions along with the inference process, and then describe skill
structures and the execution mechanism.

3.1 Beliefs, Concepts and Inference
Reasoning about the environment is a principal task per-
formed by intelligent agents, and determines which actions
the agent must carry out to achieve its goals. ICARUS per-
forms the inference task by matching the generalized con-
ceptual structures in long-term memory against percepts and
beliefs stored in short-term memory. On each cycle, an agent
receives low-level perceptual information about its environ-
ment. Each percept describes the attributes of a single object
in the world, and is short lived. For example, the percepts de-
rived from the football video last only for the duration of one
video frame (1/30th of a second) before being replaced with
new information.

Intelligent behavior requires more than low-level percep-
tual information. ICARUS therefore produces higher-level be-
liefs about the environment based on percepts. Beliefs repre-
sent relations among objects in the environment, and have two
associated timestamps that indicate the beginning and end of
the period in which the belief is known to be true. All of the
inferred beliefs for the current episode are retained in a sim-
ple episodic belief memory, so that the agent can reason about
events over time.

ICARUS beliefs are instances of generalized concepts
stated in a hierarchically organized, long-term conceptual
memory. Each concept describes a class of environmental sit-
uations using a relational language; it includes a head, which
consists of a predicate with arguments, and a body, which de-
fines the situations under which the concept is true. The body
has a relations field as well as a constraints field. The relations
field specifies the subconcepts on which the concept depends
along with their associated timestamps, which correspond to
the timestamps on beliefs. The constraints field uses these
timestamps to describe the temporal relationships among the
subconcepts. For example, in Table 1 the constraints field of

Table 1: Sample concepts for the football domain.

; ?passer dropped back ?n-steps after receiving the snap
((dropped-back ?passer ?n-steps)

:relations (((snap-completed ?passer ?ball) ?snap-start NOW)
((possession ?passer ?ball) ?poss-start ?poss-end)
((moved-distance ?passer ?n-steps S)

?mov-start ?mov-end))
:constraints ((≤ ?snap-start ?poss-start)

(≤ ?mov-end ?poss-end)
(= ?mov-end NOW)))

; learned start condition for skill dropped-back
((scdropped-back-c1 ?passer)

:relations (((possession ?passer ?ball) ?pos-start ?pos-end)
((snap-completed ?passer ?ball) ?snap-start NOW))

:constraints ((≤ ?snap-start ?pos-start)))

dropped-back states that ?passer must have possession of the
ball until he has finished dropping back.

ICARUS updates belief memory by matching the general-
ized concept definitions to percepts and existing beliefs in a
bottom-up manner. Concepts that depend only on percepts
are matched against the perceptual buffer first, and the results
are placed in belief memory. This triggers matching against
higher-level concept definitions. The process continues un-
til the deductive closure of perceptual, belief and conceptual
memory has been computed.

3.2 Goals, Skills and Execution
After inferring a set of beliefs about its environment, ICARUS
next evaluates its skill knowledge to determine which actions
to take in the environment. For this, the architecture uses
a goal memory, which stores goals that the agent wants to
achieve. It then retrieves skills that are able to achieve its
goals from long-term skill memory.

Skill memory contains a set of hierarchical skills indexed
by concepts defined in the conceptual memory. Each skill de-
scribes a method that the agent can execute to achieve the
condition described by the associated concept. Each skill
controls only a single agent (player). Coordination among
agents is achieved by relying on specific timing events that are
observed by multiple agents. Skills consist of a head, which
specifies the goal that the agent achieves by carrying out the
skill, a set of start conditions that must be satisfied to initiate
the skill, and a body that states the ordered subgoals that the
agent must achieve to reach the skill’s goal. A primitive skill
is one that refers only to actions that are directly executable
in the environment, while a non-primitive skill refers to other
skills as subgoals.

Given skill memory and one or more goals, the execution
module first selects an unsatisfied, top-level goal. Since skills
can refer to other skills, the system next finds an applicable
path through the skill hierarchy, which begins with a skill that
can achieve the selected goal and terminates with one that
refers to actions the agent can execute in the environment.
ICARUS continues executing along this path until the goal
is achieved or the selected skills no longer apply, in which
case it must determine a new skill path from the current state



Table 2: Sample skills from football.

; learned skill for running a short receiver pattern
((short-pattern-completed ?agent ?drop-steps ?dir)

:start ((scshort-pattern-completed-c1 ?dir))
:subgoals ((moved ?agent ?dir)

(pass-blocked-until-dropped-back ?agent ?drop-steps)
(moved-until-ball-caught ?agent ?dir)))

; learned skill for receiving a pass after running a short pattern
((short-reception-completed ?receiver ?drop-steps ?dir)

:start ((scshort-reception-completed-c1 ?ball))
:subgoals ((short-pattern-completed ?receiver ?drop-steps ?dir)

(ran-with-ball-until-tackled ?receiver ?ball)))

to the selected goal. This skill selection mechanism enables
ICARUS to be persistent to its previous choice, while being
reactive to the world if unexpected events occur.

Consider the skills shown in Table 2. The first, short-
pattern-completed, produces a situation in which a player ini-
tially blocks while the passer completes his drop-back, and
then runs in direction ?dir until the ball is caught. The re-
ceiver pattern ends if and when the ball is caught. Thus, a
goal (short-reception-completed FB 7 E) indicates that the
fullback (FB) is the intended receiver and runs a short pat-
tern to the right (east) after allowing the quarterback to make
a seven-step drop.

4 Learning Skills from Video
The goal of this work is to learn hierarchically structured
skills from preprocessed videos in a cumulative manner and
in the context of temporal constraints. In this section, we out-
line our method for acquiring such skills by observing other
actors as they achieve similar goals. The input to our learning
algorithm consists of a goal, a set of concepts sufficient for
interpreting the observed agent’s behavior, the set of prim-
itive skills available to the ICARUS agent plus any known
non-primitive skills, and the sequence of observed perceptual
states.

The algorithm runs in three steps. First, the system ob-
serves the entire video-based perceptual sequence on actors
achieving the intended goal and infers beliefs about each state
(frame). Next, the agent explains how the goal was achieved
using existing knowledge. Finally, the algorithm constructs
the needed skills along with any supporting knowledge, such
as specialized start conditions, based on the explanation gen-
erated in the previous step. In the following, we describe the
explanation and learning tasks in detail.

4.1 Explaining Observed Behavior
Given a goal and the associated belief memory, the agent must
explain how the goal was achieved by the observed actor. Re-
call that belief memory is episodic and based on hierarchical
concepts, so it contains sufficient information to describe the
entire sequence at several levels of abstraction. Explanations
are generated by either matching inferred beliefs against ex-
isting skill knowledge, or by matching inferred beliefs against
known concept definitions.

The agent first tries to explain its observations with exist-
ing skills by retrieving all skills that can achieve the top-level
goal. It then checks that the start conditions and subgoals are
consistent with the agent’s observations and inferred beliefs.
Skills not consistent with these are ignored. The agent then
selects a candidate skill and parses the observation sequence
into subsequences based on the times when the start condi-
tions and subgoals were achieved. The explanation process
then recurses on each subsequence (corresponding to a start
condition or subgoal) until the entire observation sequence is
explained by a sequence of primitive skills.

If ICARUS fails to explain the observation sequence using
skills, it attempts to explain it using concepts. First, it re-
trieves the belief corresponding to the goal from the belief
memory, along with lower-level beliefs that support it. The
agent then divides the observed sequence into subsequences
based on these supporting lower-level beliefs. As with skill-
based explanations, the agent recursively attempts to explain
each subgoal. The observation sequence is considered suc-
cessfully explained if either (1) there exists a skill for the goal
that is applicable at the beginning of the trace, in which case
there is no need to learn, or (2) all the subgoals of the current
trace have already been successfully explained.

4.2 Constructing New Skills
After successfully explaining an observation sequence, the
agent learns skills for the achieved goal based on the expla-
nation generated in the previous step. The constructed skills
then allow the agent to achieve these goals in the future un-
der similar conditions without additional help from human
experts. New skills are generated in two ways, depending on
how the explanation was constructed.

If the explanation is based on skill knowledge, then the
subgoals of the new skill are the chronologically ordered start
conditions and subgoals from the skills that provided the ex-
planation that were achieved during the observed sequence.
The start condition for a new skill includes the start condi-
tions and subgoals that were true before or during the first
cycle of the observed subsequence.

If the explanation is based on conceptual knowledge, then
the learner retrieves the concept definition corresponding to
the goal. The subgoals of the new skill correspond to the
subconcepts that were achieved during the observed sequence
in chronological order. The start condition of the new skill
includes the generalized lower-level beliefs (subgoals from
the explanation as in Section 4.1) that were true before or
during first cycle of the observed subsequence.

Since the concept definition includes information about the
temporal relationships among its subconcepts (and therefore
the skill’s subgoals), the learned skill should retain this infor-
mation in its start condition. The agent therefore constructs a
start condition concept by extracting the start condition sub-
concepts as well as their associated temporal constraints from
the original concept definition. Note that the learned start
condition concepts describe both what must be true in the
current state and conditions that must have held in the past
to ensure that the skill applies.

Examples of learned concepts and skills in the football do-
main are shown in Tables 1 and 2. Our learning mechanism is



Figure 1: A typical frame from the football video.

incremental in the sense that constructed concepts and skills
can serve as domain knowledge for future trace explanation.
This enables our mechanism to acquire increasingly complex
domain knowledge over time.

5 Demonstration and Evaluation in Rush
Our evaluation objectives are to assess whether the learned
skills have both high fidelity with respect to the original
video, and utility similar to the observed play with respect
to the game of football. To evaluate the former, we visu-
ally compared the player tracks produced by executing our
learned agents in Rush to the player tracks from the source
video. For the latter, we compared the yardage gained by the
learned agents to yardage gained by hand-constructed agents
for the same play.

Three steps were required to acquire the skills from video
and then execute them in Rush. First, the raw video was pre-
processed to produce a sequence of ICARUS perceptual states.
Second, we applied the learning system to construct skills
from the sequence. Finally, we mapped the learned eleven-
player skills onto an eight-player team, and executed the re-
sulting skills in Rush. Below we provide details for this pro-
cess, along with the results.

5.1 Preprocessing the College Football Video
Our raw video data was obtained from the Oregon State Uni-
versity football team and corresponds to that used by coaches
during game analysis and planning. It was shot via a panning
and zooming camera that is fixed at a mid-field location on
top of the stadium. The video is qualitatively different than
typical television footage in that the camera operator attempts
to keep as much of the action in view as possible. A typical
shot from our video is shown in Figure 1.

For ICARUS to learn from video, it must be processed into a
sequence of ICARUS perceptions. Specifically, the represen-
tation should include: (1) player tracks, which give the 2D
field coordinate of each player at each time point during the
play, and (2) player labels, which describe the functional role
of each player (e.g. quarterback, running back, etc), and (3)
activity labels, which describe the high-level activity of each
player throughout the play.
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Figure 2: Diagram of the pass play observed by ICARUS with
annotations indicating actions taken by individual players.

The tracking data used here is the same as used by Hess
and Fern [2009] for their work on supervised learning. The
authors manually provided activity labels for each player, and
used an automated technique [Hess et al., 2007] to provide
the player labels. From these labeled tracks, we generated
the perception sequence for the play.

5.2 Mapping College Plays into Rush
As noted, a team in Rush consists of eight players while the
teams from the video have eleven players. We therefore map
the eleven-player skills learned from the video into skills for
the eight Rush players. In practice, we can accomplish this
simply by dropping the goals associated with three of the
players. Ideally, we would ignore the players that have the
least impact on the play.

Figure 2 shows a play diagram for the specific play ob-
served by ICARUS during testing (this information is not in-
cluded in the perceptual sequence). Rush plays typically
include three offensive linemen (RG, C, and LG) along
with some combination of four running backs and receivers.
The play shown in Figure 2 has five linemen and five
backs/receivers. To map this play into Rush, we therefore
dropped two linemen (RT and LT) and one running back (RB,
left side), all of which had top-level goals of pass-blocking for
the duration of the play. ICARUS used the goals for the eight
remaining players to guide execution in Rush.

5.3 Evaluating Plays in Rush
The learning task in this work is to acquire hierarchical skills
for all eleven offensive football players on the field for a given
play. To evaluate the learned skills, we let ICARUS control
the offensive players in a football simulator using the learned
skills. Ideally, the play produced by the learned skills should
look similar to play observed in the video, while advancing
the ball on the field.

Figures 3 and 4 show the tracks generated by each offen-
sive player for the observed and simulated plays respectively.
Both figures are plotted on the same scale horizontally, simi-
lar scales vertically, and use the same initial ball location. The
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Figure 3: Tracks of players observed by ICARUS in the video.

tracks generated by ICARUS represent an idealized version
of the tracks from the video. Some of the differences, such
as round versus square turns, derive from the simple physics
used in Rush. Others, such as differences in the tracks of
the quarterback (QB) and blockers (C, LG, RG), stem from
the behaviors of the defensive players. For example, after
completing a 7-yard drop (same in both figures), the quarter-
back simply “scrambles” in any direction necessary to avoid
the oncoming defense while waiting for the intended receiver
(FB) to become available. This is equally true in collegiate
games and in the simulator.

One difference between the observed and simulated plays
relates to the fullback (FB), who does not run as far to the
right either before or after catching the ball in the simula-
tor. Prior to the catch, this is partly due to differences in
the relative speed of the players, and partly due to timing
differences between the video (one tick equals 1/30th of a
second) and Rush (one tick equals 1/10th of a second). Fur-
ther investigation into these timing differences may yield a
higher fidelity response. After the catch, the difference is due
to insufficient parameterization of the run-with-ball primitive
skill. Currently, the skill causes the receiver to run directly
downfield regardless of oncoming defenders. To reproduce
the play more faithfully, this skill should cause the player to
run to the most open part of the field.

A second important divergence involves the tight end
(RTE), who does not turn northeast in his simulated route.
A closer look at the trace data shows that the ball is caught
before he makes the turn, which ends the skill governing his
route (run north for 17 yards, then northeast until the ball is
caught). This is again an artifact of timing differences be-
tween the simulator and the video, which highlights the need
to fine-tune plays after they are learned. We return to this
issue in the next section.

Finally, both plays produced similar yardage results, but
this will not always be the case. Evaluating differences in per-
formance is problematic. Although not done here, we can run
the play repeatedly in Rush while varying the characteristics
of both the offensive and defensive players (such as speed and
agility), along with the defensive strategy (such as formation
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Figure 4: Tracks of players generated by ICARUS using
learned skills in the Rush simulator.

and patterns) to establish an average. However, we do not
have such data for the observed video. Doing so would re-
quire us to collect and analyze video based on the same play
from several different offensive teams against several differ-
ent defensive teams. In practice, this type of play is usually
aimed at gaining relatively small distances (up to 10 yards),
suggesting that our result is reasonable.

6 Related and Future Work
Acquiring domain knowledge is an important task in building
intelligent agents. Pearson and Laird [2004] acquire domain
knowledge guided by subject matter experts, while Nejati et
al. [2006] learn hierarchical task networks by observing pre-
processed expert traces. Likewise, Hogg et al. [2008] de-
scribe an algorithm that acquires hierarchical task networks
from a set of traces and semantically-annotated tasks. Tak-
ing a different tack, Forbus and Hinrichs [2004] demonstrate
skill learning by analogy. None of these approaches currently
support learning from observed behavior or learning coordi-
nated multi-agent strategies. Moreover, the start conditions
of the constructed methods only check the current state of the
world, while our approach enables the start conditions to de-
scribe the past states of the world.

Other game-related efforts have aimed at reducing the ef-
fort required to construct game-agents. For example, Kelly
et al. [2008] use offline planning with hierarchical task net-
works to generate scripts automatically. Changes in the en-
vironment do not affect the behavior of these constructed
agents, whereas the agents built by our system will perform
reactively. A second approach uses reinforcement learning al-
gorithms [Bradley and Hayes, 2005; Nason and Laird, 2005]
to allow an agent to learn through experience. Our approach
differs because learning is analytical and based on observed
video rather than agent experience, which makes our ap-
proach much more computationally efficient. Our approach
also differs from these in that ICARUS is an integrated ar-
chitecture that combines observation, inference, learning and



execution in a single system.
There are many possible avenues for future development.

For example, we need to conduct detailed experiments across
many different plays to examine the strengths and weaknesses
of our approach. We are also extending our approach to ac-
quire skills for coordinating among multiple agents. Ideally
the system would learn knowledge about timing and cooper-
ation among multiple agents. The main differences between
the multi-agent system and the current system, would be that
(1) beliefs, explanations and skills would be generated for all
players in a single episode, rather than multiple single-player
episodes, and (2) additional, high-level multi-player coordi-
nation skills would also be acquired. This would require only
minor extensions to the knowledge representation, inference
and execution modules.

A second extension involves modifying the learned skills
and the top-level goal parameters (such as number of yards
that a receiver runs before changing direction) by learning
within Rush. For example, systematic errors such as receivers
running into heavy coverage can be detected and revised.
This constitutes a structural revision to the learned skills.
Similarly, ICARUS can modify the form of learned plays by
adjusting the parameters (arguments) in the goals. For exam-
ple, timing plays that require receivers to run n yards down-
field before turning to catch the ball can be adjusted by tuning
the value of n.

7 Conclusion
Constructing autonomous agents is an essential task in game
development. In this paper, we outlined a system that an-
alyzes preprocessed video footage of human behavior in a
college football game, constructs hierarchical skills, and then
executes them in a football simulator. The learned skills in-
corporate temporal constraints and provide for a variety of co-
ordinated behavior among the players. Although the level of
precision in ICARUS’ control needs improvement, the results
suggest that our method is a viable and efficient approach to
acquiring the complex and structured behaviors required for
realistic agents in modern games. Moreover, we pointed out
several avenues for extending this work and improving the
quality of the learned agents. Additional studies are required,
but we view agent architectures as a promising approach for
future development.
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