To appear in Proceedings of the AAAI Spring Symposium on

Integrated Intelligent Architectures, Stanford, CA, 1991

A Design for the IcaArRUS Architecture

Pat Langley, Kathleen B. McKusick,* John A. Allen,”
Wayne F. Iba, and Kevin Thompson*
Al Research Branch, Mail Stop 244-17
NASA Ames Research Center
Moffett Field, CA 94035

Goals of the Research

In this paper we describe our designs for ICARUS, an
integrated architecture for controlling an intelligent
agent in a complex physical environment. A typical
physical agent achieves its goals through manipulation
of other objects and navigation between locations. For
instance, an agent may pick up a cup and place it in
a trash can (manipulation), or it may go out a door,
down the hall, and into another room (navigation).
Both are essential for survival in the physical world,
and thus constitute the main tasks around which we
have designed ICARUS.

The activities of manipulation and navigation in
turn require the ability to recognize physical objects,
places, and situations, to generate plans that achieve
goals, to execute action sequences that implement
plans, and to detect situations that call for a change
in plans. An architecture for physical agents must in-
clude such abilities and, as we discuss in the follow-
ing sections, the components of ICARUS directly sup-
port these behaviors. In addition, a robust intelligent
agent should acquire new knowledge from experience
and store that knowledge in memory for efficient use.
Issues of learning and memory organization are also
central concerns of the IcARUS effort.

Knowledge in ICARUS

The IcARUS framework uses a single underlying orga-
nization for long-term memory — a hierarchy of prob-
abilistic concepts — to store all knowledge types. As
in Fisher’s (1987) COBWEB, this structure organizes
concepts at different levels of abstraction, with specific
cases at terminal nodes and more general concepts at
internal ones. Each node in the hierarchy specifies the
probability of class membership of an experience, given
that the experience is a member of the parent class.
Each concept node also specifies a set of attributes or
roles, the values that fill each attribute or role, and
the probability of each value given membership in the
concept. Roles are filled by other (possibly abstract)
concepts, which in turn have their own attributes or

*Also affiliated with Sterling Federal Systems.

roles. However, all concepts in ICARUS are ultimately
grounded in observable attributes (e.g., length is 0.37
feet) used to describe primitive objects.

One type of knowledge that ICARUS represents in
this manner describes physical objects. The architec-
ture assumes that a composite object (e.g., a particular
person) contains a number of components (e.g., a spe-
cific head, torso, legs, and arms), which in turn can
have components (e.g., a specific hand, forearm, upper
arm). ICARUS represents a composite concept (e.g.,
the PERSON class) as a number of roles, each speci-
fying a set of alternative components, relations among
them, and their respective probabilities. Thus, one role
within the PERSON concept would point to the ARM
concept with high probability (say 0.999), but also (if
the agent had read J. Barrie) to the HOOK concept
with lower (say 0.001) probability. ICARUS represents
place concepts in the same manner, describing them in
terms of component objects and relative locations.

The architecture uses a similar approach to represent
knowledge about events, plans, and actions. Because
these involve change over time, the system uses qual-
itative states (Forbus, 1985) to describe them. Each
qualitative state specifies a set of objects (possibly with
components), an interval of time during which certain
numeric attributes of these objects (such as location,
velocity, or temperature) change in a fixed direction,
and the derivatives of these attributes. For instance,
the event of an agent picking up a cup might involve
three qualitative states: (1) the arm moves down to-
ward the cup, while the hand opens; (2) the hand closes
around the cup; and (3) the arm and cup move upward,
away from the cup’s previous location.

IcARUS represents a problem in terms of an initial
qualitative state, a desired qualitative state, and the
differences between these states. A plan to solve a
problem includes three additional components — an
operator (which typically reduces one or more differ-
ences), an initial subplan (to transform the initial state
into one meeting the operator’s preconditions), and
a final subplan (to transform the operator’s postcon-
ditions into the desired state). Thus, IcarUS plans
include more than a sequence of actions; they also



Page 2

contain a problem-solving trace that produced the se-
quence. Operators themselves may be plans, or they
may point to primitive actions (such as raising an arm)
over which the agent has direct control. Abstract plans
are probabilistic summaries of specific plans, contain-
ing pointers to their components — abstract states, op-
erators, and subplans — along with associated probabil-
ities. For example, a generic plan for picking up an ob-
ject (a manipulation plan) might have three subprob-
lems, analogous to the event described above. ICARUS
uses the same approach to store route knowledge (nav-
igation plans), with places acting as states and with
operators like MOVE and TURN.

Components of ICARUS

Our designs for the ICARUS architecture call for three
main components: a perceptual system (ARGUS), a
planning system (DEDALUS), and an execution sys-
tem (MEANDER). ARGUs and DEDALUS invoke the
memory system (LABYRINTH) to retrieve structured
experiences from long-term memory, which include ob-
jects, states, and plans.! LABYRINTH first sorts each
component of an experience through memory, starting
at the root node of the memory hierarchy. At each
level, the memory system uses an evaluation function
called category utility (Gluck & Corter, 1985) to select
the best child node in which to incorporate the experi-
ence, or to decide whether the experience is sufficiently
novel to store as a separate disjunct. In the former
case, the process recurs to the next level; in the latter,
sorting halts. After sorting each component of an ex-
perience, LABYRINTH classifies the composite, taking
into account both the classifications of the components
and relations among them. The LABYRINTH module
searches for the best bindings between components in
the concept and those in the experience as described
by Thompson and Langley (in press). If the experi-
ence has several levels in its componential structure,
this recursive process continues until the highest level
of the experience has been classified. For instance, to
classify an object like a table, LABYRINTH would first
classify its legs and top, and then use the concepts
formed by these components, as well as the spatial re-
lations among them, to classify the table instance it-
self. Similarly, to classify a new problem, LABYRINTH
would first classify the objects in the initial and final
states, then classify the two states themselves, and fi-
nally classify the overall problem description in terms
of its states and the differences between them.

In order to interact with the environment, an agent
must be able to perceive and recognize objects and
events; this is the function of the ARGUS component.
This module accepts sequences of qualitative states
generated by a ‘parser’ subroutine, which constantly

1We have initial implementations of these components,
but we have yet to enhance them in accordance with our
design and combine them into an integrated architecture.

The ICARUS Architecture

monitors objects within the agent’s sensory range, de-
tects qualitative breaks, and continually produces a
qualitative description of objects and the events in
which they participate. ARGUS takes these object and
state descriptions, uses an attention mechanism similar
to that used in Gennari’s (1990) CLASSIT to focus on
a subset of objects and attributes, and passes the re-
duced description to LABYRINTH for classification. In
some cases, a call to LABYRINTH may retrieve not just
an abstract state A, but also a high-priority problem
for which A is the initial state. For instance, an agent
might be eating supper when it notices a tiger walk
into the room. In such a situation, the current task
loses priority and ARGUS posts a new problem, to the
active portion of memory.

The DEDALUS component (Allen & Langley, 1990)
uses a variant of means-ends analysis to generate plans.
This involves breaking the initial problem (an initial
state and a desired state) into subproblems on which
the system recursively calls itself. The module in-
vokes LABYRINTH to retrieve an appropriate opera-
tor or stored plan, based on the problem’s precon-
ditions, postconditions, or the differences it reduces.
This generates two subproblems: one to change the
initial state into another that satisfies the precondi-
tions of the operator, and one to change the state that
results from applying the operator into one that satis-
fies the goal conditions. The terminating case of the
recursion is a problem that can be solved by a single
operator whose preconditions are met. If DEDALUS de-
tects a loop or a dead end, it backtracks and retrieves
a different operator, producing a heuristic depth-first
search through the means-ends space. In cases where
IcAaRUs has previous experience with a similar problem
class, LABYRINTH will retrieve the entire plan associ-
ated with that class. In this situation, DEDALUS car-
ries out a form of derivational analogy, checking each
subplan to determine its relevance to the problem or
subplan at hand, using it as a guide if appropriate,
and resorting to means-ends analysis to handle novel
aspects.

Tcarus’ final component, MEANDER (Iba, 1991), is
responsible for executing plans and motor schemas.
In order to execute a plan generated by DAEDALUS,
MEANDER traverses the recursive plan structure, exe-
cuting each step in turn. When it encounters a prim-
itive action in the plan, MAEANDER runs the associ-
ated effectors for the specified amount of time. Bar-
ring complications, MEANDER eventually finishes exe-
cution, bringing ICARUS to the desired state for which
the plan was engineered. However, failed expectations
can occur at any time during execution, which may
necessitate replanning from the current (unexpected)
situation. The perceptual system (ARGUS) has control
over the degree of monitoring for failed expectations
during execution of a plan.



The ICARUS Architecture

Control of IcARUS’ Components

Our designs for ICARUS assume that its percep-
tual, planning, and execution components run asyn-
chronously, carrying out their activities independently
but storing and reading information from an active
subset of long-term memory. ARGUSs and DEDALUS
invoke the LABYRINTH module as a subroutine, but
they operate independently of one another and of
M&ANDER. The components do affect each others’ be-
havior, but this occurs indirectly through changes to
active memory, the portion of the concept hierarchy
through which experiences have recently passed.

For example, the planner (DEDALUS) constantly
checks the active portion of memory for newly added
tasks. Upon encountering a problem with a higher
priority than its current focus, it interrupts process-
ing and works on the new problem until it generates a
plan or a more important task comes along. In the pro-
cess, DEDALUS calls on LABYRINTH to retrieve similar
problems from memory and to store the resulting plan.

During D&DALUS’ operation, the execution mod-
ule (MEANDER) constantly inspects the developing
plan, which resides in active memory. If the proba-
bility of backtracking associated with this plan is low
enough, the component initiates execution as soon as
there is a completed subplan. In executing a sub-
plan, MAEANDER carries out actions that alter the
environment, potentially producing new qualitative
states. However, any changes in DADALUS’ current
plan, whether due to interruption or backtracking,
cause MEANDER to shift its focus as well.

The perceptual system (ARGUS) senses the result-
ing state and compares it to the expected state stored
with the plan in active memory. The frequency of these
comparisons is determined by the probability of expec-
tation failure stored with the plan. If the predicted and
observed states are similar enough, the module con-
cludes that the operator had the anticipated effect and
takes no action except to store the result in memory.
However, if ARGUS detects a significant discrepancy,
it adds a new problem to active memory to transform
the current state into the final state specified in the
original plan, giving it a priority that is high enough
to interrupt work on the current problem.

IcarRUS’> perceptual component also continues to
monitor the environment for situations that suggest
entirely new problems. In some cases, classification of
the current state by LABYRINTH leads to retrieval of
a stored problem. In this case, ARGUS posts the new
task in active memory, where the planner will notice it
and consider whether to interrupt its current activity.

Characterizations of ICARUS

Now that we have examined ICARUS’ memory struc-
tures, mechanisms, and overall control structure, let
us consider how the framework fares on some issues
that are central to integrated architectures.

Page 3

Informability and Learning

Knowledge is essential for dealing with a complex phys-
ical environment, and one way ICARUS can acquire
knowledge is directly from a programmer. Because ob-
ject concepts, places, plans, and motor skills are all
represented in a single formalism, a user can introduce
new knowledge by entering an initial ‘background hi-
erarchy’. To simplify this process, one need only pro-
vide the structure of the hierarchy (i.e., nodes and the
links among them) and descriptions for terminal nodes;
since ICARUS assumes each node is a probabilistic sum-
mary of its children, it can easily compute descriptions
for abstract nodes.

The architecture can also acquire knowledge from
experience, altering its concept hierarchy to reflect per-
ceived objects and places, generated plans, and exe-
cuted action sequences. ICARUS’ main learning scheme
is embedded in LABYRINTH, which is responsible not
only for retrieving knowledge from long-term memory
but also for storing it there. As in Fisher’s COBWEB,
this module relies on three basic learning operations
that are interleaved with the process of retrieval. First,
whenever an experience is sorted through an exist-
ing node in the concept hierarchy, LABYRINTH aver-
ages its description into the probabilistic description
of that node. Second, when an experience reaches a
terminal node in memory, the module creates a new
node N that is a probabilistic summary of the expe-
rience and the terminal node, making both children
of N. Finally, if an experience is sufficiently different
from all children of a node N, LABYRINTH creates a
new child of N based on the experience. Note that
IcARUS incorporates each experience into its hierar-
chy inerementally, modifying long-term memory in the
very act of retrieval. To mitigate effects of training or-
der, LABYRINTH can also restructure its hierarchy by
merging two concepts or splitting an existing concept.

The above mechanisms are sufficient for experi-
ences in which the attributes are directly observable,
but to incorporate a composite object into a node,
LABYRINTH must also determine the best character-
1zation of the experience. Recall that the values of
attributes in composite concepts can themselves point
to other concepts, which may have similar descriptions
and thus occur near each other in memory. In such
cases, LABYRINTH applies an attribute generalization
operator, which replaces these alternative ‘values’ with
their common parent. The result is a simpler descrip-
tion that may implicitly include values that were not
represented in the original list of alternatives.

LABYRINTH also stores and updates probabilities
on three additional characteristics of plans and motor
skills that can lead to changes in behavior over time.
First, for each abstract problem it retains the proba-
bility that each associated operator and subplan will
prove useful in solving analogous problems. For prob-
lem classes in which this probability is low, DEDALUS
will learn to stop using stored solutions, shifting from



Page 4

derivational analogy to reliance on search heuristics.
For problems in which the probability is high, it will
instead learn to stop checking for appropriateness and
use stored operators and subplans automatically, ef-
fectively planning with macro-operators. Second, for
each abstract problem LABYRINTH stores the proba-
bility that a subplan or operator will be abandoned
due to failure to generate a complete solution during
planning. For classes of situations in which this ‘back-
tracking probability’ is low, MA&ANDER will learn to
begin executing initial parts of the plan without wait-
ing for a complete solution. Finally, for each state in an
abstract plan, LABYRINTH retains the probability that
this state (or one matching it) will actually result if the
plan is executed. Although ICARUS operates in closed-
loop mode by default, for classes of plans that have a
low probability of violated expectations, the agent will
learn to shift toward open-loop processing.

Generality

As noted earlier, we have designed ICARUS to control
a physical agent handling tasks like object and place
recognition, navigation, and manipulation. However,
the architecture is general enough to suggest applica-
tions in other areas of artificial intelligence. These in-
clude diagnosis of devices and diseases, problem solv-
ing in abstract domains such as mathematics, and
even natural language processing. In each of these
domains, IcARUs should be able to represent and or-
ganize knowledge, retrieve and use it efficiently, and
acquire it from experience. Our long-term aim is an
architecture as general as that embodied by the hu-
man information-processing system, but our research
bias is to focus on sensori-motor tasks (involving some
planning components) and to explain abstract behav-
ior as an outgrowth of these basic operations.

Versatility

Taken together, ICARUS’ components interact to sup-
port a broad range of behaviors and methods. As men-
tioned above, the architecture retains statistics about
the probability of successful plan reuse, which lets it
mimic planning with derivational analogy, search con-
trol rules, and macro-operators. In a similar manner,
the storage of backtracking probabilities lets IcARUS
vary the degree to which it interleaves planning and
execution, whereas information about violated expec-
tations supports the continuum from closed-loop to
open-loop behavior. In addition, the notion of goal
priorities, combined with ICARUS’ interruption mecha-
nism, allows both single-minded and distractable plan-
ning. Also, DEDALUS takes preconditions into account
during operator retrieval, giving aspects of both for-
ward chaining and means-ends analysis. Moreover,
the planner takes advantage of abstractions when they
are available, falls back on specific cases when neces-
sary, and resorts to systematic search when neither is
present in memory.

The ICARUS Architecture

However, ICARUS is not as versatile as one might de-
sire. For instance, DEDALUS only supports the genera-
tion of totally ordered plans, and it cannot produce ab-
stract or conditional plans. Although qualitative states
with duration can be used to represent both achieve-
ment goals and maintenance goals, the planning com-
ponent can handle only the former, and our design for
Icarus lacks even a representation for avoidance goals.
Another basic limitation involves the structure of long-
term memory, which assumes that each concept has a
single parent in the ‘is-a’ hierarchy; thus, a given ex-
perience can be classified in only one way. These limi-
tations may be removed in future versions of ICARUS,
but they are not handled by the current design.

Rationality

A fully ‘rational’ agent would bring all knowledge in
memory and in its environment to bear in perception,
planning, and execution, but time constraints force
IcArRUS to manage with heuristic approaches. For in-
stance, rather than attempting to process all sensory
input, the architecture uses its attention mechanism
to focus on features that appear relevant for predic-
tion. Gennari (1990) reports experiments that sug-
gest attention increases recognition efficiency with lit-
tle degradation of predictive accuracy. The transition
from closed-loop to open-loop behavior carries similar
advantages, even though automatized skills occasion-
ally lead to accidents and errors. ICARUS also satisfices
with respect to planning, employing a limited search
that is directed by stored heuristic knowledge. In some
cases this approach leads to nonoptimal plans or even
to planning failures when solutions exist, but generally
it produces useful plans with reasonable effort. Even
retrieval is heuristic in nature, using a greedy approach
that sometimes ‘forgets’ experiences stored in memory,
but that is generally both efficient and accurate.

Taskability

IcARUSs supports the ability to switch readily from one
task to another. Recall that the architecture describes
tasks or problems in terms of a current state and a
desired state; thus, initiating a new task requires the
creation of a new state pair with high enough priority
to override the ongoing problem. An external user can
propose such tasks via explicit commands, which typi-
cally would be described by reference to states and ac-
tions that already exist in the agent’s long-term mem-
ory such as CLEAN THE CARPET, FETCH THE PAPER,
and DANCE A JI1G. When the user specifies a command,
ICARUS retrieves a goal state and passes it along with
the current state to the planner. A more sophisticated
approach would allow the user a more open represen-
tation language that can describe novel desired states
(e.g., RIDE A UNICORN) or actions (e.g., DANCE THE
TWIST) in terms of sensori-motor primitives.

In addition to receiving outside commands, the
agent can also respond to internal drives. These are



The ICARUS Architecture

structures in memory — stored problems — that match
against key situations, such as noticeable hunger or
extreme fatigue. Classification of a new state by the
perceptual system can lead ICARUS to retrieve a de-
sired state that differs from the one currently being
pursued. If the retrieved goal has higher priority than
the current one, the planner will interrupt its activi-
ties and switch to the new task. Once the problem has
been solved, control will pass back to the original task,
unless another one has taken over in the meantime.

Reactivity

IcARUS may face environments that range from sta-
ble to changing and predictable to unpredictable, and
this continuum of situations calls for varying degrees
of reactivity. As we have mentioned, the architecture
can adjust the degree to which it monitors the envi-
ronment while carrying out actions, thus supporting
behaviors that are appropriate to these different sit-
uations. In stable and predictable environments, the
agent can monitor infrequently and thus execute ac-
tions more automatically, freeing attentional resources
for other purposes. In contrast, an unstable and un-
predictable environment would require frequent moni-
toring. For example, if the agent is strolling on a small
desert island on a calm day, it can devote little atten-
tion to its path and appreciate the waves and clouds.
However, on a windy day it must be on constant guard
for falling coconuts, and so must attend carefully to
its path and nearby palms. Reactivity is not always
necessary or desirable, and ICARUS can behave appro-
priately for its current environs.

Another aspect of reactivity involves interruption,
and earlier we discussed ARGUS’ facility for posting
new problems that can interrupt ongoing plan gen-
eration. However, such interruption is undesirable if
the agent is working on a high-priority task and the
newly proposed problem is trifling. Under these cir-
cumstances the agent should ignore distractions in the
environment and operate in a single-minded manner,
like a traditional planner. On the other hand, if the
current problem is less urgent, it should be easier for a
new task to interrupt planning and redirect the agent’s
attention. IcARUS handles these different situations
with priorities, which produce a range of behaviors
from reactive to single-minded.

Scalability and Efficiency

Our designs for ICARUS include the ability to bring di-
verse experience to bear on larger problems that the
agent has never before encountered. For example, in
navigation, the agent could use pieces of routes as
‘macro-operators’ to handle to more complex route-
planning tasks. To the extent that known compo-
nents can be used, and that acquired knowledge can
limit search, IcARUS should have no problem scaling
to larger planning tasks. ICARUS’ ability to perceive
the environment should also scale up well. Knowledge

Page 5

of relevant objects and attributes should let the atten-
tion mechanism deal with quite complex sensory in-
put, including that resulting from motor skills involv-
ing many joints. In addition, parsing the sensor stream
into qualitative states should greatly reduce the pro-
cessing needed to handle complex actions and events.

Although the hierarchical organization of memory,
combined with attention, serves to minimize the costs
of retrieval, IcARUS does have the potential for ‘expen-
sive chunks’. In particular, when LABYRINTH sorts an
experience through memory, it must compute a plausi-
ble partial match against each concept along the path.
The current implementation uses a greedy algorithm
that examines the conditional probabilities of each fea-
ture. However, in some domains the abstract concepts
that reside near the top of memory acquire many fea-
tures and relations, each with low information content.
In such cases, even a greedy algorithm becomes quite
expensive, and we are exploring methods for simplify-
ing these abstractions.

Psychological Plausibility

IcArRUS has many ties to the psychological literature.
In particular, the architecture uses a probabilistic rep-
resentation of concepts, which is consistent with many
of the psychological results reported by Smith and
Medin (1981). In addition, Fisher and Langley (1990)
have argued that probabilistic concept hierarchies of
the kind used in ICARUS can be adapted to account for
three broad empirical regularities noted in the litera-
ture: basic-level effects (Gluck & Corter, 1985), typi-
cality effects (Rosch & Mervis, 1975), and fan effects
(Anderson, 1974). The framework also has potential
for modeling many phenomena in rote learning.

The architecture’s approach to problem solving also
has links to psychological results. Newell and Simon
(1972) report evidence that humans appear to use
means-ends analysis in novel domains, and DEDALUS
employs a variant of this process. The planning com-
ponent also relies on a form of reasoning by anal-
ogy that is generally consistent with results on ana-
logical problem solving in humans (Gick & Holyoak,
1980). Furthermore, DEDALUS’ learning mechanisms
produces the FEinstellung effect (Luchins, 1942), a
well-established type of performance degradation, and
in predictable domains, its ability to form macro-
operators should lead to the automization of problem-
solving skills (Neves & Anderson, 1981).

Finally, the MEZANDER component, which is re-
sponsible for executing actions, is also consistent with
many results on human motor behavior. Schmidt
(1982) reports evidence for the distinction between
open-loop and closed-loop behavior, which is central to
this component of IcaArRUs. The deterioration of per-
formance with increased speed, predicted by IcaRUS
when MAEANDER’s actions are less frequently moni-
tored, is another well-documented phenomenon (e.g.,
Fitts & Peterson, 1964).



Page 6

Historical Influences

As we have mentioned, our model assumes a uniform
long-term memory that stores knowledge about ob-
jects, places, plans, actions, and events. Our approach
to organizing, using, and acquiring knowledge draws
heavily on Fisher’s (1987) CoBWEB, which serves as
the underlying component of LABYRINTH. However,
the historical roots of our approach go back ultimately
to Feigenbaum’s (1963) EpaM, which incrementally
constructed a discrimination network from unsuper-
vised instances. This work also influenced Schank’s
(1982) theory of dynamic memory, which claims that
the long-term store is an interleaved hierarchy, that
retrieval involves sorting experience through memory,
and that this process leads to memory reorganization.
However, our concern with psychological phenomena
has led us to incorporate Gluck and Corter’s (1985) no-
tions of probabilistic representation and category util-
ity, which they have used to explain basic-level effects.

Another central feature of ICARUS is the use of
means-ends analysis to control the planning process.
Newell, Shaw, and Simon (1960) were the first to use
this technique, in their GPS model of human prob-
lem solving, but very similar methods have been used
in Minton et al.’s (1989) ProDIGY and Jones’ (1989)
FUREKA, two systems that learn in planning domains.
Our approach also borrows ideas from Veloso and Car-
bonell’s (1989) work on derivational analogy and from
related research on case-based reasoning (e.g., Ham-
mond, 1990). However, ICARUS’ representation of
states, operators, and problems has been influenced
by work in qualitative physics (Forbus, 1985), which
follows a quite different tradition.

Relation to Other Architectures

Our goal of constructing an integrated cognitive archi-
tecture has also been influenced by earlier work toward
this end, particularly that concerned with learning.
Some well-known examples of such architectures are
Anderson’s (1983) ACT*, Laird et al.’s (1986) SOAR,
Minton et al.’s (1989) ProDIGY, and Mitchell et al.’s
(in press) THEO. Like IcaRruUsS, these architectures at-
tempt to cover a broad range of behaviors within a uni-
fied theoretical framework, though they differ in their
generality and theoretical content.

Each architecture clearly defines a set of memories
and their characteristics, with domain knowledge re-
siding in a long-term memory that is modified through
learning. SoaRr, ProDIGY, and ACT* all represent
this knowledge in the form of production rules, though
the latter also includes a separate declarative memory.
THEO represents knowledge in frames, each contain-
ing slots that refer to other frames. The production-
system architectures take no explicit stance on the or-
ganization of memory, presumably because of the as-
sumption that production rules are matched in paral-
lel. THEO’s links between frames provide a more ex-

The ICARUS Architecture

plicit indexing scheme, providing paths to access one
piece of knowledge from many others. ICARUS also
takes an explicit stance on memory organization, using
abstractions to index their specializations, and using
components to index the composite concepts in which
they take part.

All five frameworks identify a set of primitive pro-
cesses supported at the architectural level. In those
based on production systems, the primitive actions in-
volve matching condition sides and applying one or
more of the matched rules. In SoAr and ProDIGY,
this occurs during an elaboration cycle, in which se-
lection, rejection, and preference rules ‘vote’ in favor
of particular states, operators, and goals; the archi-
tecture then makes a decision based on these votes.
ACT* makes less commitment about the nature of
its productions, with some acting as operators, oth-
ers as goal generators, and others as inference rules.
In THEO the primitive operation involves slot access,
which it uses to retrieve data, facts, procedures, and
preferences. ICARUS diverges from these systems, us-
ing heuristic classification as its primitive operation for
both perception and planning. Moreover, our architec-
ture makes inferences (including operator preferences)
through ‘pattern completion’ on retrieved concepts, a
scheme that is quite different from the constrained di-
rectional inference rules encoded in productions and
frames.

In addition, all the architectures incorporate a basic
learning mechanism that constitutes a form of incre-
mental hill climbing. Chunking in SoAR, knowledge
compilation in ACT*, and explanation-based learning
in PRODIGY have much in common, effectively caching
the results of rule or operator applications to sim-
plify future processing. THEO also employs a form of
caching, although its stored knowledge takes the form
of partial results for slot values rather than production
rules. In contrast, the central learning mechanism in
IcARUS is concept formation, the process of updating
probabilistic descriptions and altering the structure of
the concept hierarchy. This scheme is primarily in-
ductive in nature whereas chunking and its relatives
involve analytical learning.

Summary

In this paper we described our designs for ICARUS, an
integrated architecture for controlling physical agents.
In our framework, diverse types of knowledge are rep-
resented and organized in a unified concept hierar-
chy. IcARrRUS includes three asynchronous components
for perception, planning, and execution, which call on
an underlying module that updates and accesses long-
term memory, and which affect each others’ behavior
through changes to the active portion of this memory.
The framework fares well on some issues that are cen-
tral to integrated architectures, and has many features
that are consistent with the psychological literature.



The ICARUS Architecture

Although we have detailed ideas about ICARUS’ com-
ponents, the overall architecture must still be inte-
grated and tested. Many issues remain open, but we
believe ICARUS constitutes a promising theory of in-
telligent behavior that deserves further exploration. It
may be some time before our implementation reaches
the point of controlling a physical robot, but we feel
that we are rapidly making progress in that direction.

Acknowledgments

We would like to thank John Gennari and Deepak
Kulkarni, who have contributed much to the design of
the IcaRrUs architecture, and John Bresina and Steve
Minton, who provided helpful comments on an earlier
draft of this paper.

References

Allen, J. A.; & Langley, P. (1990). Integrating mem-
ory and search in planning. Proceedings of the
1990 DArPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control (pp. 301-312).
San Diego, CA: Morgan Kaufmann.

Anderson, J. R. (1974). Retrieval of propositional in-
formation from long term memory. Cognitive Psy-
chology, 6, 451-474.

Anderson, J. R. (1983). The architecture of cognition.
Cambridge: Harvard University Press.

Feigenbaum, E. A. (1963). The simulation of verbal
learning behavior. In E. A. Feigenbaum & J. Feld-
man (Eds.), Computers and thought. New York:
McGraw—Hill.

Fisher, D. H. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139-172.

Fisher, D. H., & Langley, P. (1990). The structure
and formation of natural categories. In G. H. Bower
(Ed.), The psychology of learning and motivation:
Advances in Research and Theory (Vol. 26). Cam-
bridge, MA: Academic Press.

Fitts, P. M. & Peterson, J. R. (1964). Information
capacity of discrete motor responses. Journal of E1-
perimental Psychology,67, 103-112.

Forbus, K. D. (1985). Qualitative process theory. In
D. G. Bobrow (Ed.), Qualitative reasoning about
physical systems. Cambridge, MA: MIT Press.

Gennari, J. H. (1990). An ezperimental study of con-
cept formation. Doctoral dissertation, Department
of Information & Computer Science, University of
California, Irvine.

Gick, M. L., & Holyoak, K. J. (1980). Analogical prob-
lem solving. Cognitive Psychology, 12, 306-355.
Gluck, M., & Corter, J. (1985). Information, uncer-
tainty and the utility of categories. Proceedings of
the Seventh Annual Conference of the Cognitive Sci-
ence Society (pp. 283-287). Irvine, CA: Lawrence

Erlbaum.

Page 7

Hammond, K. J. (1990). Case-based planning: A
framework for planning from experience. Cognitive
Science, 14, 385-443.

Tba, W. (1991). A computational theory of human mo-
tor learning. Doctoral dissertation, Department of
Information & Computer Science, University of Cal-
ifornia, Irvine.

Jones, R. (1989). A model of retrieval in problem solv-
ing. Doctoral dissertation, Department of Informa-
tion & Computer Science, University of California,
Irvine.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).
Chunking in SoAR: The anatomy of a general learn-
ing mechanism. Machine Learning, 1, 11-46.

Luchins, A. S. (1942). Mechanization in problem solv-
ing: The effect of Einstellung. Psychological Mono-
graphs, 54 (248).

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,
D. R., Etzioni, O., & Gil, Y. (1989). Explanation-
based learning: A problem solving perspective. Ar-
tificial Intelligence, 40, 63—118.

Mitchell, T. M., Allen, J., Chalasani, P., Cheng, J.,
Etzioni, O., Ringuette, M., & Schlimmer, J. C. (in
press). THEO: A framework for self-improving sys-
tems. In K. VanLehn (Ed)., Architectures for intel-
ligence. Hillsdale, NJ: Lawrence Erlbaum.

Neves, D. M., & Anderson, J. R. (1981). Knowledge
compilation: Mechanisms for the automatization of
cognitive skills. In J. R. Anderson (Ed.), Cognitive
skills and theiwr acquisition. Hillsdale, NJ: Lawrence
Erlbaum.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report
on a general problem-solving program for a com-
puter. Proceedings of the International Conference
on Information Processing (pp. 256-264).

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Rosch, E., & Mervis, C. (1975). Family resemblances:
Studies in the internal structure of categories. Cog-
nitive Psychology, 7, 573—-605.

Schank, R. C. (1982). Dynamic memory. Cambridge,
UK: Cambridge University Press.

Schmidt, R. A. (1982). More on motor programs. In J.
A. S. Kelso (Ed.), Human motor behavior: An intro-
duction. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Smith, E., & Medin, D. (1981). Categories and con-
cepts. Cambridge, MA: Harvard University Press.
Thompson, K. & Langley, P. (in press). Concept for-
mation in structured domains. In D. H. Fisher & M.
Pazzani (Eds.) Computational approaches to con-
cept formation. San Mateo, CA: Morgan Kaufmann.

Veloso, M. M., & Carbonell, J. G. (1989). Learn-
ing analogies by analogy — the closed loop of mem-
ory organization and problem solving. Proceedings
of the DARPA Workshop on Case-based Reasoning
(pp- 153-158). Pensacola Beach, FL: Morgan Kauf-

mann.



