
To appear in Proceedings of the AAAI Spring Symposium onIntegrated Intelligent Architectures, Stanford, CA, 1991A Design for the Icarus ArchitecturePat Langley, Kathleen B. McKusick,� John A. Allen,�Wayne F. Iba, and Kevin Thompson�AI Research Branch, Mail Stop 244-17NASA Ames Research CenterMo�ett Field, CA 94035Goals of the ResearchIn this paper we describe our designs for Icarus, anintegrated architecture for controlling an intelligentagent in a complex physical environment. A typicalphysical agent achieves its goals through manipulationof other objects and navigation between locations. Forinstance, an agent may pick up a cup and place it ina trash can (manipulation), or it may go out a door,down the hall, and into another room (navigation).Both are essential for survival in the physical world,and thus constitute the main tasks around which wehave designed Icarus.The activities of manipulation and navigation inturn require the ability to recognize physical objects,places, and situations, to generate plans that achievegoals, to execute action sequences that implementplans, and to detect situations that call for a changein plans. An architecture for physical agents must in-clude such abilities and, as we discuss in the follow-ing sections, the components of Icarus directly sup-port these behaviors. In addition, a robust intelligentagent should acquire new knowledge from experienceand store that knowledge in memory for e�cient use.Issues of learning and memory organization are alsocentral concerns of the Icarus e�ort.Knowledge in IcarusThe Icarus framework uses a single underlying orga-nization for long-term memory { a hierarchy of prob-abilistic concepts { to store all knowledge types. Asin Fisher's (1987) Cobweb, this structure organizesconcepts at di�erent levels of abstraction, with speci�ccases at terminal nodes and more general concepts atinternal ones. Each node in the hierarchy speci�es theprobability of class membership of an experience, giventhat the experience is a member of the parent class.Each concept node also speci�es a set of attributes orroles, the values that �ll each attribute or role, andthe probability of each value given membership in theconcept. Roles are �lled by other (possibly abstract)concepts, which in turn have their own attributes or�Also a�liated with Sterling Federal Systems.

roles. However, all concepts in Icarus are ultimatelygrounded in observable attributes (e.g., length is 0.37feet) used to describe primitive objects.One type of knowledge that Icarus represents inthis manner describes physical objects. The architec-ture assumes that a composite object (e.g., a particularperson) contains a number of components (e.g., a spe-ci�c head, torso, legs, and arms), which in turn canhave components (e.g., a speci�c hand, forearm, upperarm). Icarus represents a composite concept (e.g.,the person class) as a number of roles, each speci-fying a set of alternative components, relations amongthem, and their respective probabilities. Thus, one rolewithin the person concept would point to the armconcept with high probability (say 0.999), but also (ifthe agent had read J. Barrie) to the hook conceptwith lower (say 0.001) probability. Icarus representsplace concepts in the same manner, describing them interms of component objects and relative locations.The architecture uses a similar approach to representknowledge about events, plans, and actions. Becausethese involve change over time, the system uses qual-itative states (Forbus, 1985) to describe them. Eachqualitative state speci�es a set of objects (possibly withcomponents), an interval of time during which certainnumeric attributes of these objects (such as location,velocity, or temperature) change in a �xed direction,and the derivatives of these attributes. For instance,the event of an agent picking up a cup might involvethree qualitative states: (1) the arm moves down to-ward the cup, while the hand opens; (2) the hand closesaround the cup; and (3) the arm and cup move upward,away from the cup's previous location.Icarus represents a problem in terms of an initialqualitative state, a desired qualitative state, and thedi�erences between these states. A plan to solve aproblem includes three additional components { anoperator (which typically reduces one or more di�er-ences), an initial subplan (to transform the initial stateinto one meeting the operator's preconditions), anda �nal subplan (to transform the operator's postcon-ditions into the desired state). Thus, Icarus plansinclude more than a sequence of actions; they also



Page 2 The ICARUS Architecturecontain a problem-solving trace that produced the se-quence. Operators themselves may be plans, or theymay point to primitive actions (such as raising an arm)over which the agent has direct control. Abstract plansare probabilistic summaries of speci�c plans, contain-ing pointers to their components { abstract states, op-erators, and subplans { along with associated probabil-ities. For example, a generic plan for picking up an ob-ject (a manipulation plan) might have three subprob-lems, analogous to the event described above. Icarususes the same approach to store route knowledge (nav-igation plans), with places acting as states and withoperators like move and turn.Components of IcarusOur designs for the Icarus architecture call for threemain components: a perceptual system (Argus), aplanning system (D�dalus), and an execution sys-tem (M�ander). Argus and D�dalus invoke thememory system (Labyrinth) to retrieve structuredexperiences from long-termmemory, which include ob-jects, states, and plans.1 Labyrinth �rst sorts eachcomponent of an experience through memory, startingat the root node of the memory hierarchy. At eachlevel, the memory system uses an evaluation functioncalled category utility (Gluck & Corter, 1985) to selectthe best child node in which to incorporate the experi-ence, or to decide whether the experience is su�cientlynovel to store as a separate disjunct. In the formercase, the process recurs to the next level; in the latter,sorting halts. After sorting each component of an ex-perience, Labyrinth classi�es the composite, takinginto account both the classi�cations of the componentsand relations among them. The Labyrinth modulesearches for the best bindings between components inthe concept and those in the experience as describedby Thompson and Langley (in press). If the experi-ence has several levels in its componential structure,this recursive process continues until the highest levelof the experience has been classi�ed. For instance, toclassify an object like a table, Labyrinth would �rstclassify its legs and top, and then use the conceptsformed by these components, as well as the spatial re-lations among them, to classify the table instance it-self. Similarly, to classify a new problem, Labyrinthwould �rst classify the objects in the initial and �nalstates, then classify the two states themselves, and �-nally classify the overall problem description in termsof its states and the di�erences between them.In order to interact with the environment, an agentmust be able to perceive and recognize objects andevents; this is the function of the Argus component.This module accepts sequences of qualitative statesgenerated by a `parser' subroutine, which constantly1We have initial implementations of these components,but we have yet to enhance them in accordance with ourdesign and combine them into an integrated architecture.

monitors objects within the agent's sensory range, de-tects qualitative breaks, and continually produces aqualitative description of objects and the events inwhich they participate. Argus takes these object andstate descriptions, uses an attention mechanism similarto that used in Gennari's (1990) Classit to focus ona subset of objects and attributes, and passes the re-duced description to Labyrinth for classi�cation. Insome cases, a call to Labyrinth may retrieve not justan abstract state A, but also a high-priority problemfor which A is the initial state. For instance, an agentmight be eating supper when it notices a tiger walkinto the room. In such a situation, the current taskloses priority and Argus posts a new problem, to theactive portion of memory.The D�dalus component (Allen & Langley, 1990)uses a variant of means-ends analysis to generate plans.This involves breaking the initial problem (an initialstate and a desired state) into subproblems on whichthe system recursively calls itself. The module in-vokes Labyrinth to retrieve an appropriate opera-tor or stored plan, based on the problem's precon-ditions, postconditions, or the di�erences it reduces.This generates two subproblems: one to change theinitial state into another that satis�es the precondi-tions of the operator, and one to change the state thatresults from applying the operator into one that satis-�es the goal conditions. The terminating case of therecursion is a problem that can be solved by a singleoperator whose preconditions are met. IfD�dalus de-tects a loop or a dead end, it backtracks and retrievesa di�erent operator, producing a heuristic depth-�rstsearch through the means-ends space. In cases whereIcarus has previous experience with a similar problemclass, Labyrinth will retrieve the entire plan associ-ated with that class. In this situation, D�dalus car-ries out a form of derivational analogy, checking eachsubplan to determine its relevance to the problem orsubplan at hand, using it as a guide if appropriate,and resorting to means-ends analysis to handle novelaspects.Icarus' �nal component,M�ander (Iba, 1991), isresponsible for executing plans and motor schemas.In order to execute a plan generated by D�dalus,M�ander traverses the recursive plan structure, exe-cuting each step in turn. When it encounters a prim-itive action in the plan, M�ander runs the associ-ated e�ectors for the speci�ed amount of time. Bar-ring complications,M�ander eventually �nishes exe-cution, bringing Icarus to the desired state for whichthe plan was engineered. However, failed expectationscan occur at any time during execution, which maynecessitate replanning from the current (unexpected)situation. The perceptual system (Argus) has controlover the degree of monitoring for failed expectationsduring execution of a plan.



The ICARUS Architecture Page 3Control of Icarus' ComponentsOur designs for Icarus assume that its percep-tual, planning, and execution components run asyn-chronously, carrying out their activities independentlybut storing and reading information from an activesubset of long-term memory. Argus and D�dalusinvoke the Labyrinth module as a subroutine, butthey operate independently of one another and ofM�ander. The components do a�ect each others' be-havior, but this occurs indirectly through changes toactive memory , the portion of the concept hierarchythrough which experiences have recently passed.For example, the planner (D�dalus) constantlychecks the active portion of memory for newly addedtasks. Upon encountering a problem with a higherpriority than its current focus, it interrupts process-ing and works on the new problem until it generates aplan or a more important task comes along. In the pro-cess, D�dalus calls on Labyrinth to retrieve similarproblems from memory and to store the resulting plan.During D�dalus' operation, the execution mod-ule (M�ander) constantly inspects the developingplan, which resides in active memory. If the proba-bility of backtracking associated with this plan is lowenough, the component initiates execution as soon asthere is a completed subplan. In executing a sub-plan, M�ander carries out actions that alter theenvironment, potentially producing new qualitativestates. However, any changes in D�dalus' currentplan, whether due to interruption or backtracking,cause M�ander to shift its focus as well.The perceptual system (Argus) senses the result-ing state and compares it to the expected state storedwith the plan in active memory. The frequency of thesecomparisons is determined by the probability of expec-tation failure stored with the plan. If the predicted andobserved states are similar enough, the module con-cludes that the operator had the anticipated e�ect andtakes no action except to store the result in memory.However, if Argus detects a signi�cant discrepancy,it adds a new problem to active memory to transformthe current state into the �nal state speci�ed in theoriginal plan, giving it a priority that is high enoughto interrupt work on the current problem.Icarus' perceptual component also continues tomonitor the environment for situations that suggestentirely new problems. In some cases, classi�cation ofthe current state by Labyrinth leads to retrieval ofa stored problem. In this case, Argus posts the newtask in active memory, where the planner will notice itand consider whether to interrupt its current activity.Characterizations of IcarusNow that we have examined Icarus' memory struc-tures, mechanisms, and overall control structure, letus consider how the framework fares on some issuesthat are central to integrated architectures.

Informability and LearningKnowledge is essential for dealing with a complex phys-ical environment, and one way Icarus can acquireknowledge is directly from a programmer. Because ob-ject concepts, places, plans, and motor skills are allrepresented in a single formalism, a user can introducenew knowledge by entering an initial `background hi-erarchy'. To simplify this process, one need only pro-vide the structure of the hierarchy (i.e., nodes and thelinks among them) and descriptions for terminal nodes;since Icarus assumes each node is a probabilistic sum-mary of its children, it can easily compute descriptionsfor abstract nodes.The architecture can also acquire knowledge fromexperience, altering its concept hierarchy to re
ect per-ceived objects and places, generated plans, and exe-cuted action sequences. Icarus' main learning schemeis embedded in Labyrinth, which is responsible notonly for retrieving knowledge from long-term memorybut also for storing it there. As in Fisher's Cobweb,this module relies on three basic learning operationsthat are interleaved with the process of retrieval. First,whenever an experience is sorted through an exist-ing node in the concept hierarchy, Labyrinth aver-ages its description into the probabilistic descriptionof that node. Second, when an experience reaches aterminal node in memory, the module creates a newnode N that is a probabilistic summary of the expe-rience and the terminal node, making both childrenof N . Finally, if an experience is su�ciently di�erentfrom all children of a node N , Labyrinth creates anew child of N based on the experience. Note thatIcarus incorporates each experience into its hierar-chy incrementally , modifying long-termmemory in thevery act of retrieval. To mitigate e�ects of training or-der, Labyrinth can also restructure its hierarchy bymerging two concepts or splitting an existing concept.The above mechanisms are su�cient for experi-ences in which the attributes are directly observable,but to incorporate a composite object into a node,Labyrinth must also determine the best character-ization of the experience. Recall that the values ofattributes in composite concepts can themselves pointto other concepts, which may have similar descriptionsand thus occur near each other in memory. In suchcases, Labyrinth applies an attribute generalizationoperator, which replaces these alternative `values' withtheir common parent. The result is a simpler descrip-tion that may implicitly include values that were notrepresented in the original list of alternatives.Labyrinth also stores and updates probabilitieson three additional characteristics of plans and motorskills that can lead to changes in behavior over time.First, for each abstract problem it retains the proba-bility that each associated operator and subplan willprove useful in solving analogous problems. For prob-lem classes in which this probability is low, D�daluswill learn to stop using stored solutions, shifting from



Page 4 The ICARUS Architecturederivational analogy to reliance on search heuristics.For problems in which the probability is high, it willinstead learn to stop checking for appropriateness anduse stored operators and subplans automatically, ef-fectively planning with macro-operators. Second, foreach abstract problem Labyrinth stores the proba-bility that a subplan or operator will be abandoneddue to failure to generate a complete solution duringplanning. For classes of situations in which this `back-tracking probability' is low, M�ander will learn tobegin executing initial parts of the plan without wait-ing for a complete solution. Finally, for each state in anabstract plan, Labyrinth retains the probability thatthis state (or one matching it) will actually result if theplan is executed. Although Icarus operates in closed-loop mode by default, for classes of plans that have alow probability of violated expectations, the agent willlearn to shift toward open-loop processing.GeneralityAs noted earlier, we have designed Icarus to controla physical agent handling tasks like object and placerecognition, navigation, and manipulation. However,the architecture is general enough to suggest applica-tions in other areas of arti�cial intelligence. These in-clude diagnosis of devices and diseases, problem solv-ing in abstract domains such as mathematics, andeven natural language processing. In each of thesedomains, Icarus should be able to represent and or-ganize knowledge, retrieve and use it e�ciently, andacquire it from experience. Our long-term aim is anarchitecture as general as that embodied by the hu-man information-processing system, but our researchbias is to focus on sensori-motor tasks (involving someplanning components) and to explain abstract behav-ior as an outgrowth of these basic operations.VersatilityTaken together, Icarus' components interact to sup-port a broad range of behaviors and methods. As men-tioned above, the architecture retains statistics aboutthe probability of successful plan reuse, which lets itmimic planning with derivational analogy, search con-trol rules, and macro-operators. In a similar manner,the storage of backtracking probabilities lets Icarusvary the degree to which it interleaves planning andexecution, whereas information about violated expec-tations supports the continuum from closed-loop toopen-loop behavior. In addition, the notion of goalpriorities, combined with Icarus' interruption mecha-nism, allows both single-minded and distractable plan-ning. Also, D�dalus takes preconditions into accountduring operator retrieval, giving aspects of both for-ward chaining and means-ends analysis. Moreover,the planner takes advantage of abstractions when theyare available, falls back on speci�c cases when neces-sary, and resorts to systematic search when neither ispresent in memory.

However, Icarus is not as versatile as one might de-sire. For instance, D�dalus only supports the genera-tion of totally ordered plans, and it cannot produce ab-stract or conditional plans. Although qualitative stateswith duration can be used to represent both achieve-ment goals and maintenance goals, the planning com-ponent can handle only the former, and our design forIcarus lacks even a representation for avoidance goals.Another basic limitation involves the structure of long-term memory, which assumes that each concept has asingle parent in the `is-a' hierarchy; thus, a given ex-perience can be classi�ed in only one way. These limi-tations may be removed in future versions of Icarus,but they are not handled by the current design.RationalityA fully `rational' agent would bring all knowledge inmemory and in its environment to bear in perception,planning, and execution, but time constraints forceIcarus to manage with heuristic approaches. For in-stance, rather than attempting to process all sensoryinput, the architecture uses its attention mechanismto focus on features that appear relevant for predic-tion. Gennari (1990) reports experiments that sug-gest attention increases recognition e�ciency with lit-tle degradation of predictive accuracy. The transitionfrom closed-loop to open-loop behavior carries similaradvantages, even though automatized skills occasion-ally lead to accidents and errors. Icarus also satis�ceswith respect to planning, employing a limited searchthat is directed by stored heuristic knowledge. In somecases this approach leads to nonoptimal plans or evento planning failures when solutions exist, but generallyit produces useful plans with reasonable e�ort. Evenretrieval is heuristic in nature, using a greedy approachthat sometimes `forgets' experiences stored in memory,but that is generally both e�cient and accurate.TaskabilityIcarus supports the ability to switch readily from onetask to another. Recall that the architecture describestasks or problems in terms of a current state and adesired state; thus, initiating a new task requires thecreation of a new state pair with high enough priorityto override the ongoing problem. An external user canpropose such tasks via explicit commands, which typi-cally would be described by reference to states and ac-tions that already exist in the agent's long-term mem-ory such as clean the carpet, fetch the paper,and dance a jig. When the user speci�es a command,Icarus retrieves a goal state and passes it along withthe current state to the planner. A more sophisticatedapproach would allow the user a more open represen-tation language that can describe novel desired states(e.g., ride a unicorn) or actions (e.g., dance thetwist) in terms of sensori-motor primitives.In addition to receiving outside commands, theagent can also respond to internal drives. These are



The ICARUS Architecture Page 5structures in memory { stored problems { that matchagainst key situations, such as noticeable hunger orextreme fatigue. Classi�cation of a new state by theperceptual system can lead Icarus to retrieve a de-sired state that di�ers from the one currently beingpursued. If the retrieved goal has higher priority thanthe current one, the planner will interrupt its activi-ties and switch to the new task. Once the problem hasbeen solved, control will pass back to the original task,unless another one has taken over in the meantime.ReactivityIcarus may face environments that range from sta-ble to changing and predictable to unpredictable, andthis continuum of situations calls for varying degreesof reactivity. As we have mentioned, the architecturecan adjust the degree to which it monitors the envi-ronment while carrying out actions, thus supportingbehaviors that are appropriate to these di�erent sit-uations. In stable and predictable environments, theagent can monitor infrequently and thus execute ac-tions more automatically, freeing attentional resourcesfor other purposes. In contrast, an unstable and un-predictable environment would require frequent moni-toring. For example, if the agent is strolling on a smalldesert island on a calm day, it can devote little atten-tion to its path and appreciate the waves and clouds.However, on a windy day it must be on constant guardfor falling coconuts, and so must attend carefully toits path and nearby palms. Reactivity is not alwaysnecessary or desirable, and Icarus can behave appro-priately for its current environs.Another aspect of reactivity involves interruption,and earlier we discussed Argus' facility for postingnew problems that can interrupt ongoing plan gen-eration. However, such interruption is undesirable ifthe agent is working on a high-priority task and thenewly proposed problem is tri
ing. Under these cir-cumstances the agent should ignore distractions in theenvironment and operate in a single-minded manner,like a traditional planner. On the other hand, if thecurrent problem is less urgent, it should be easier for anew task to interrupt planning and redirect the agent'sattention. Icarus handles these di�erent situationswith priorities, which produce a range of behaviorsfrom reactive to single-minded.Scalability and E�ciencyOur designs for Icarus include the ability to bring di-verse experience to bear on larger problems that theagent has never before encountered. For example, innavigation, the agent could use pieces of routes as`macro-operators' to handle to more complex route-planning tasks. To the extent that known compo-nents can be used, and that acquired knowledge canlimit search, Icarus should have no problem scalingto larger planning tasks. Icarus' ability to perceivethe environment should also scale up well. Knowledge

of relevant objects and attributes should let the atten-tion mechanism deal with quite complex sensory in-put, including that resulting from motor skills involv-ing many joints. In addition, parsing the sensor streaminto qualitative states should greatly reduce the pro-cessing needed to handle complex actions and events.Although the hierarchical organization of memory,combined with attention, serves to minimize the costsof retrieval, Icarus does have the potential for `expen-sive chunks'. In particular, when Labyrinth sorts anexperience through memory, it must compute a plausi-ble partial match against each concept along the path.The current implementation uses a greedy algorithmthat examines the conditional probabilities of each fea-ture. However, in some domains the abstract conceptsthat reside near the top of memory acquire many fea-tures and relations, each with low information content.In such cases, even a greedy algorithm becomes quiteexpensive, and we are exploring methods for simplify-ing these abstractions.Psychological PlausibilityIcarus has many ties to the psychological literature.In particular, the architecture uses a probabilistic rep-resentation of concepts, which is consistent with manyof the psychological results reported by Smith andMedin (1981). In addition, Fisher and Langley (1990)have argued that probabilistic concept hierarchies ofthe kind used in Icarus can be adapted to account forthree broad empirical regularities noted in the litera-ture: basic-level e�ects (Gluck & Corter, 1985), typi-cality e�ects (Rosch & Mervis, 1975), and fan e�ects(Anderson, 1974). The framework also has potentialfor modeling many phenomena in rote learning.The architecture's approach to problem solving alsohas links to psychological results. Newell and Simon(1972) report evidence that humans appear to usemeans-ends analysis in novel domains, and D�dalusemploys a variant of this process. The planning com-ponent also relies on a form of reasoning by anal-ogy that is generally consistent with results on ana-logical problem solving in humans (Gick & Holyoak,1980). Furthermore, D�dalus' learning mechanismsproduces the Einstellung e�ect (Luchins, 1942), awell-established type of performance degradation, andin predictable domains, its ability to form macro-operators should lead to the automization of problem-solving skills (Neves & Anderson, 1981).Finally, the M�ander component, which is re-sponsible for executing actions, is also consistent withmany results on human motor behavior. Schmidt(1982) reports evidence for the distinction betweenopen-loop and closed-loop behavior, which is central tothis component of Icarus. The deterioration of per-formance with increased speed, predicted by Icaruswhen M�ander's actions are less frequently moni-tored, is another well-documented phenomenon (e.g.,Fitts & Peterson, 1964).



Page 6 The ICARUS ArchitectureHistorical In
uencesAs we have mentioned, our model assumes a uniformlong-term memory that stores knowledge about ob-jects, places, plans, actions, and events. Our approachto organizing, using, and acquiring knowledge drawsheavily on Fisher's (1987) Cobweb, which serves asthe underlying component of Labyrinth. However,the historical roots of our approach go back ultimatelyto Feigenbaum's (1963) Epam, which incrementallyconstructed a discrimination network from unsuper-vised instances. This work also in
uenced Schank's(1982) theory of dynamic memory, which claims thatthe long-term store is an interleaved hierarchy, thatretrieval involves sorting experience through memory,and that this process leads to memory reorganization.However, our concern with psychological phenomenahas led us to incorporate Gluck and Corter's (1985) no-tions of probabilistic representation and category util-ity, which they have used to explain basic-level e�ects.Another central feature of Icarus is the use ofmeans-ends analysis to control the planning process.Newell, Shaw, and Simon (1960) were the �rst to usethis technique, in their GPS model of human prob-lem solving, but very similar methods have been usedin Minton et al.'s (1989) Prodigy and Jones' (1989)Eureka, two systems that learn in planning domains.Our approach also borrows ideas from Veloso and Car-bonell's (1989) work on derivational analogy and fromrelated research on case-based reasoning (e.g., Ham-mond, 1990). However, Icarus' representation ofstates, operators, and problems has been in
uencedby work in qualitative physics (Forbus, 1985), whichfollows a quite di�erent tradition.Relation to Other ArchitecturesOur goal of constructing an integrated cognitive archi-tecture has also been in
uenced by earlier work towardthis end, particularly that concerned with learning.Some well-known examples of such architectures areAnderson's (1983) ACT*, Laird et al.'s (1986) Soar,Minton et al.'s (1989) Prodigy, and Mitchell et al.'s(in press) Theo. Like Icarus, these architectures at-tempt to cover a broad range of behaviors within a uni-�ed theoretical framework, though they di�er in theirgenerality and theoretical content.Each architecture clearly de�nes a set of memoriesand their characteristics, with domain knowledge re-siding in a long-term memory that is modi�ed throughlearning. Soar, Prodigy, and ACT* all representthis knowledge in the form of production rules, thoughthe latter also includes a separate declarative memory.Theo represents knowledge in frames, each contain-ing slots that refer to other frames. The production-system architectures take no explicit stance on the or-ganization of memory, presumably because of the as-sumption that production rules are matched in paral-lel. Theo's links between frames provide a more ex-

plicit indexing scheme, providing paths to access onepiece of knowledge from many others. Icarus alsotakes an explicit stance on memory organization, usingabstractions to index their specializations, and usingcomponents to index the composite concepts in whichthey take part.All �ve frameworks identify a set of primitive pro-cesses supported at the architectural level. In thosebased on production systems, the primitive actions in-volve matching condition sides and applying one ormore of the matched rules. In Soar and Prodigy,this occurs during an elaboration cycle, in which se-lection, rejection, and preference rules `vote' in favorof particular states, operators, and goals; the archi-tecture then makes a decision based on these votes.ACT* makes less commitment about the nature ofits productions, with some acting as operators, oth-ers as goal generators, and others as inference rules.In Theo the primitive operation involves slot access,which it uses to retrieve data, facts, procedures, andpreferences. Icarus diverges from these systems, us-ing heuristic classi�cation as its primitive operation forboth perception and planning. Moreover, our architec-ture makes inferences (including operator preferences)through `pattern completion' on retrieved concepts, ascheme that is quite di�erent from the constrained di-rectional inference rules encoded in productions andframes.In addition, all the architectures incorporate a basiclearning mechanism that constitutes a form of incre-mental hill climbing. Chunking in Soar, knowledgecompilation in ACT*, and explanation-based learningin Prodigy have much in common, e�ectively cachingthe results of rule or operator applications to sim-plify future processing. Theo also employs a form ofcaching, although its stored knowledge takes the formof partial results for slot values rather than productionrules. In contrast, the central learning mechanism inIcarus is concept formation, the process of updatingprobabilistic descriptions and altering the structure ofthe concept hierarchy. This scheme is primarily in-ductive in nature whereas chunking and its relativesinvolve analytical learning.SummaryIn this paper we described our designs for Icarus, anintegrated architecture for controlling physical agents.In our framework, diverse types of knowledge are rep-resented and organized in a uni�ed concept hierar-chy. Icarus includes three asynchronous componentsfor perception, planning, and execution, which call onan underlying module that updates and accesses long-term memory, and which a�ect each others' behaviorthrough changes to the active portion of this memory.The framework fares well on some issues that are cen-tral to integrated architectures, and has many featuresthat are consistent with the psychological literature.



The ICARUS Architecture Page 7Although we have detailed ideas about Icarus' com-ponents, the overall architecture must still be inte-grated and tested. Many issues remain open, but webelieve Icarus constitutes a promising theory of in-telligent behavior that deserves further exploration. Itmay be some time before our implementation reachesthe point of controlling a physical robot, but we feelthat we are rapidly making progress in that direction.AcknowledgmentsWe would like to thank John Gennari and DeepakKulkarni, who have contributed much to the design ofthe Icarus architecture, and John Bresina and SteveMinton, who provided helpful comments on an earlierdraft of this paper. ReferencesAllen, J. A., & Langley, P. (1990). Integrating mem-ory and search in planning. Proceedings of the1990 Darpa Workshop on Innovative Approachesto Planning, Scheduling, and Control (pp. 301{312).San Diego, CA: Morgan Kaufmann.Anderson, J. R. (1974). Retrieval of propositional in-formation from long term memory. Cognitive Psy-chology , 6 , 451{474.Anderson, J. R. (1983). The architecture of cognition.Cambridge: Harvard University Press.Feigenbaum, E. A. (1963). The simulation of verballearning behavior. In E. A. Feigenbaum & J. Feld-man (Eds.), Computers and thought. New York:McGraw{Hill.Fisher, D. H. (1987). Knowledge acquisition via incre-mental conceptual clustering. Machine Learning , 2 ,139{172.Fisher, D. H., & Langley, P. (1990). The structureand formation of natural categories. In G. H. Bower(Ed.), The psychology of learning and motivation:Advances in Research and Theory (Vol. 26). Cam-bridge, MA: Academic Press.Fitts, P. M. & Peterson, J. R. (1964). Informationcapacity of discrete motor responses. Journal of Ex-perimental Psychology,67, 103-112.Forbus, K. D. (1985). Qualitative process theory. InD. G. Bobrow (Ed.), Qualitative reasoning aboutphysical systems. Cambridge, MA: MIT Press.Gennari, J. H. (1990). An experimental study of con-cept formation. Doctoral dissertation, Departmentof Information & Computer Science, University ofCalifornia, Irvine.Gick, M. L., & Holyoak, K. J. (1980). Analogical prob-lem solving. Cognitive Psychology , 12 , 306{355.Gluck, M., & Corter, J. (1985). Information, uncer-tainty and the utility of categories. Proceedings ofthe Seventh Annual Conference of the Cognitive Sci-ence Society (pp. 283{287). Irvine, CA: LawrenceErlbaum.

Hammond, K. J. (1990). Case-based planning: Aframework for planning from experience. CognitiveScience, 14 , 385{443.Iba, W. (1991). A computational theory of human mo-tor learning . Doctoral dissertation, Department ofInformation & Computer Science, University of Cal-ifornia, Irvine.Jones, R. (1989). A model of retrieval in problem solv-ing . Doctoral dissertation, Department of Informa-tion & Computer Science, University of California,Irvine.Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).Chunking in Soar: The anatomy of a general learn-ing mechanism. Machine Learning , 1 , 11{46.Luchins, A. S. (1942). Mechanization in problem solv-ing: The e�ect of Einstellung. Psychological Mono-graphs, 54 (248).Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,D. R., Etzioni, O., & Gil, Y. (1989). Explanation-based learning: A problem solving perspective. Ar-ti�cial Intelligence, 40 , 63{118.Mitchell, T. M., Allen, J., Chalasani, P., Cheng, J.,Etzioni, O., Ringuette, M., & Schlimmer, J. C. (inpress). Theo: A framework for self-improving sys-tems. In K. VanLehn (Ed)., Architectures for intel-ligence. Hillsdale, NJ: Lawrence Erlbaum.Neves, D. M., & Anderson, J. R. (1981). Knowledgecompilation: Mechanisms for the automatization ofcognitive skills. In J. R. Anderson (Ed.), Cognitiveskills and their acquisition. Hillsdale, NJ: LawrenceErlbaum.Newell, A., Shaw, J. C., & Simon, H. A. (1960). Reporton a general problem-solving program for a com-puter. Proceedings of the International Conferenceon Information Processing (pp. 256{264).Newell, A., & Simon, H. A. (1972). Human problemsolving . Englewood Cli�s, NJ: Prentice-Hall.Rosch, E., & Mervis, C. (1975). Family resemblances:Studies in the internal structure of categories. Cog-nitive Psychology , 7 , 573{605.Schank, R. C. (1982). Dynamic memory. Cambridge,UK: Cambridge University Press.Schmidt, R. A. (1982). More on motor programs. In J.A. S. Kelso (Ed.), Human motor behavior: An intro-duction. Hillsdale, New Jersey: Lawrence ErlbaumAssociates.Smith, E., & Medin, D. (1981). Categories and con-cepts. Cambridge, MA: Harvard University Press.Thompson, K. & Langley, P. (in press). Concept for-mation in structured domains. In D. H. Fisher & M.Pazzani (Eds.) Computational approaches to con-cept formation. San Mateo, CA: Morgan Kaufmann.Veloso, M. M., & Carbonell, J. G. (1989). Learn-ing analogies by analogy { the closed loop of mem-ory organization and problem solving. Proceedingsof the DARPA Workshop on Case-based Reasoning(pp. 153{158). Pensacola Beach, FL: Morgan Kauf-mann.


