
Creating and Using Tools in a Hybrid Cognitive Architecture

Dongkyu Choi
Department of Aerospace Engineering

University of Kansas
Lawrence, KS 66045 USA

dongkyuc@ku.edu

Pat Langley and Son Thanh To
Institute for the Study of Learning and Expertise
2164 Staunton Court, Palo Alto, CA 94306 USA

patrick.w.langley@gmail.com
son.to@knexusresearch.com

Abstract

People regularly use objects in the environment as tools to
achieve their goals. In this paper we report extensions to the
ICARUS cognitive architecture that let it create and use com-
binations of objects in this manner. These extensions include
the ability to represent virtual objects composed of simpler
ones and to reason about their quantitative features. They also
include revised modules for planning and execution that op-
erate over this hybrid representation, taking into account both
relational structures and numeric attributes. We demonstrate
the extended architecture’s behavior on a number of tasks that
involve tool construction and use, after which we discuss re-
lated research and plans for future work.

Introduction
The ability to create and use complex tools is a distinctive
feature of human cognition. People use objects in their sur-
roundings to help achieve goals, sometimes combining mul-
tiple objects into a new tool that fits their need. This involves
planning but focuses on constructing physical artifacts to
achieve other ends, rather than generating isolated action se-
quences. For example, scenes from a popular television se-
ries, MacGyver, often depicts the protagonist creating tools
from materials that seem unrelated to his objectives. The
character ingeniously uses objects in ways for which they
were not intended, often combining them into a tool for his
purpose. Current AI systems, including our current work, do
not demonstrate such creative abilities.

In this paper, we report progress toward intelligent agents
that exhibit the ability to create and use physical tools. Our
approach extends an existing cognitive architecture to sup-
port this capacity. In the next section, we present a scenario
that illustrates how tool construction and use can help an
agent achieve its goals. Next we briefly review ICARUS, an
architecture for physical agents, and we describe extensions
to its representation and processes that let it create and use
tools. After this, we report runs in a simulated environment,
drawing on the scenario presented earlier, that demonstrate
the revised system’s abilities. We conclude by discussing re-
lated work and plans for future research.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Motivating Scenario
We can clarify the challenge of tool creation and use with a
scenario. Consider a robot that wants to escape from inside a
crumbled building. Its goal is to move from a location inside
the building to another one outside, but between them is a
wide gap in the floor that the robot cannot traverse and an
opening in the wall that is too high for it to reach without
other support. The robot observes some wooden planks of
different lengths and thicknesses. Knowing its own weight
and the maximum height it can climb, it stacks planks across
the gap to build a bridge that will support its weight. The
robot then crosses the bridge and thus traverses the gap. In
a similar fashion, it builds a staircase to the opening on the
wall, goes up the staircase, and escapes from the building.

In this scenario, the robot manipulates objects in its envi-
ronment and assembles them into tools which it then uses
to achieve its goal. To create the right tool, it considers
both structural and numeric factors. Wooden planks laid
over the gap can serve as a basic bridge, but they must be
long enough to cross the gap and strong enough to hold the
robot’s weight. A single plank may appear qualitatively suf-
ficient, but a second plank may be needed to make the bridge
strong enough. For an effective staircase, the building blocks
must be arranged to give enough footing on each step and the
steps should be no higher than the robot can climb.

We can view bridges and staircases as tools that are con-
structed from available components. Computing the load a
bridge must hold or the height of a step requires quantita-
tive reasoning about objects’ positions and dimensions, but
the agent must first devise some qualitative structure that its
numbers describe. We believe the scenario provides a rea-
sonable challenge for testing an intelligent agents’ ability to
create and use tools, as it requires a combination of qualita-
tive and quantitative reasoning.

A Brief Review of ICARUS
ICARUS (Langley, Choi, and Rogers 2009) is a cognitive ar-
chitecture that provides an infrastructure for building intelli-
gent agents that operate in physical settings, simulated or ac-
tual. As with other architectures like Soar (Laird et al. 1986)
and ACT-R (Anderson and Lebiere 1998), it makes com-
mitments about the representation of content, the memories
that store that information, and the processes that manipu-
late it. ICARUS incorporates many ideas from cognitive psy-



Table 1: Sample ICARUS concepts for the staircase problem.

((on ?o1 ?o2)

:elements ((block ?o1 ∧x ?x1 ∧y ?y1 ∧length ?length1)

(block ?o2 ∧x ?x2 ∧y ?y2 ∧length ?length2
∧height ?height2))

:tests ((*overlapping ?x1 ?length1 ?x2 ?length2)

(= ?y1 (+ ?y2 ?height2))))

((staircase ?o ?o1)

:elements ((block ?o ∧height ?h))

:conditions ((on ?o ?o1)

(staircase ?o1 ?o2)

(step-size ?step))

:tests ((<= ?h ?step)))

chology, but it emphasizes construction of intelligent sys-
tems that carry out complex activities rather than fitting the
results of psychological experiments. In this section, we re-
view the architecture, starting with assumptions for repre-
sentation and memories and then describing its mechanisms
for inference, reactive execution, and problem solving.

Representation and Memories
ICARUS distinguishes between two forms of long-term
knowledge: concepts that underlie inference and procedu-
ral skills that support activity. The framework also sepa-
rates percepts from the environment from beliefs inferred
about them. The former describe observed objects in terms
of their attributes, typically numeric, while the latter take
the form of relational literals like (on A B). This distinc-
tion will figure centrally later in the paper. The conceptual
knowledge base links percepts to beliefs through a set of de-
fined concepts. Each conceptual rule specifies the conditions
that must match to infer a belief of a given type. The condi-
tions of a primitive concept refer only to percepts and their
attribute values, whereas the conditions of a nonprimitive
concept also refer to more basic conceptual predicates.

Table 1 shows some ICARUS concepts that describe re-
lations and situations for the staircase scenario. The first
conceptual rule, for the predicate on, is primitive, as it has
only an :elements field, which describes perceived objects
and their attributes, along with a :tests field that constrains
the matched variables. This concept refers to two block ob-
jects and checks numeric relations between their positions,
lengths, and heights. The second concept, for the predicate
staircase, is nonprimitive, as it refers to other concepts in its
:conditions field. These include the concepts like on, step-
size, and staircase, so the definition is recursive. Thus, con-
cepts are organized into a hierarchy, with more complex
predicates defined in terms of simpler ones.

ICARUS skills build on its conceptual knowledge. Each
skill clause includes generalized percepts, conditions that
must hold for application, and effects that its application
produces. A primitive skill clause refers to some action that
the agent can execute directly in the environment, whereas a
nonprimitive skill clause refers to other, more basic, skills.

Table 2: Sample ICARUS skills for the bridge problem.

((pick-up ?o)

:elements ((robot ?robot)

(block ?o))

:conditions ((clear ?o) (not (holding ?robot ?any)))

:actions ((*pick-up ?robot ?o)))

:effects ((holding ?robot ?o))

((build-bridge ?block ?bottom)

:elements ((block ?block))

:conditions ((bridge ?top ?bottom))

:subskills ((stack ?block ?top))

:effects ((bridge ?block ?bottom))

Table 2 shows examples of ICARUS skills relevant to the
bridge problem in our scenario. The first skill clause, pick-
up, refers to two perceived objects, a robot and a block, and
has two conditions, one positive (for clear) and the other
negative (for holding). This clause is primitive because it
includes the executable action *pick-up. The second skill,
build-bridge, mentions one percept and one conceptual con-
dition, but it is nonprimitive because it includes the subskill
stack. Such references organize skills into a hierarchy in
which primitive clauses serve as terminal nodes, much as
in a hierarchical task network (e.g., Nau et al. 2003).

Cognitive Processes in ICARUS

The architecture utilizes its concepts and skills during pro-
cessing, which operates in four-step cycles. First, ICARUS
deposits percepts from the environment in a perceptual
buffer. The system does not model the extraction of percepts
from sensors, but they serve as plausible outputs of sensory
processing. Second, the architecture combines its concep-
tual knowledge with these percepts to infer beliefs that hold
for the current situation. ICARUS matches primitive concep-
tual clauses against perceived objects to generate low-level
beliefs, then matches nonprimitive concepts against them to
produce higher-level beliefs. For example, the first clause
in Table 1 generates a belief about the on relation when a
block’s y position equals that of another block plus its height
and when the *overlapping test is true.

Once ICARUS has inferred beliefs about the current situ-
ation, an execution stage attempts to find a path downward
through the skill hierarchy that it can carry out in the envi-
ronment. This module starts with a top-level goal, retrieves
a skill clause that should achieve it and has conditions sat-
isfied by current beliefs. If this skill instance is primitive,
the architecture executes its associated action; if not, then it
considers matched subskills. This recursive process returns
a path through the skill hierarchy whose execution should
bring the agent closer to its goal(s). When ICARUS cannot
find such an applicable path, it invokes a problem-solving
module that carries out search for sequences of skills which
achieve the current goals. Execution and problem solving
are tightly interleaved, with the system carrying out selected
skill instances when applicable and resorting to problem
solving when it encounters an impasse.



Table 3: An ICARUS concept that illustrates the extended
numeric representation.

((bridge ?b ?g ?leftend ?rightend)

:elements ((block ?b ∧x ?leftend ∧length ?ln)

(gap ?g ∧left ?gl ∧right ?gr))

:attributes (?left is (- ?gl 1)

?right is (+ ?gr 1)

?rightend is (+ ?leftend ?ln))

:tests ((<= ?leftend ?left)

(>= ?rightend ?right)))

We should note that, although ICARUS grounds its con-
cepts and skills in quantitative percepts and actions, the in-
ference, execution, and problem-solving modules primar-
ily produce qualitative and relational structures. This does
not keep the architecture from operating in continuous do-
mains like simulated urban driving (Langley et al. 2009;
Choi 2011), but we will see that it raises challenges for the
construction and use of complex tools.

Numeric Representation and Processing
As noted earlier, reasoning about tools often requires that an
agent operate over not only qualitative aspects of the envi-
ronment, but also its quantitative properties. In this section,
we discuss two extensions to ICARUS that let the architec-
ture support numeric processing, the first involving repre-
sentation and the second concerning planning.

Representational Extensions
ICARUS receives and processes perceptual elements that in-
clude types, names, and attribute-value pairs for objects in
the world. The original system can represent symbolic rela-
tions among objects and concepts can include simple tests
on numeric attributes. But it cannot reason about numeric
relations or specify arithmetic computations and associate
their results with a new variable. In previous research, this
limitation has caused problems when using ICARUS to con-
trol physical robots, where the continuous domain requires
encoding of numeric constraints. Naturally, this issue also
arises in tool creation and use. To address the problem,
we extended the conceptual formalism to specify arithmetic
combinations of numeric attributes and associate them with
new variables that can appear elsewhere in the concept.

Table 3 shows a sample concept that uses this extended
notation. The clause includes a new field, :attributes, that
specifies desired numeric calculations and their variable as-
signments. This specific clause states that the position of a
block’s right side (denoted by the variable ?rightend) can be
computed from its left side position, ?leftend, and its length,
?ln. The concept also specifies how to compute the left and
right positions, ?left and ?right, for a spatial gap with one
unit margins at both ends. These values are also used, along
with the left and right ends, in two inequality tests.

This extension lets ICARUS specify numeric calculations
and how to reuse their results elsewhere in a conceptual
clause, complementing the qualitative structures it could al-
ready express. However, this only describes the environ-

Table 4: An ICARUS skill for creating a bridge that illustrates
the extended numeric formalism.

((fill-gap-center ?b ?g)

:elements ((block ?b ∧x ?x0 ∧length ?l ∧weight ?w)

(robot ?robot ∧weight ?weight
∧status ?status ∧holding ?b)

(gap ?g ∧left ?gl ∧right ?gr))

:actions ((*fill-gap-center ?robot ?b ?gl ?gr))

:effects ((bridge ?b ?g ?x0 (+ ?x0 ?l))

(block ?b ∧x (/ (- (+ ?gl ?gr) ?l) 2) ∧y 0
∧len ?l ∧weight ?w)

(robot ?robot ∧weight (- ?weight ?w)
∧status ?status ∧holding nothing)))

mental situation, not how agent’s actions will alter it. In re-
sponse, we also extended the notation for skills to incorpo-
rate details about quantitative effects of their execution.

Table 4 shows a skill that takes advantage of this exten-
sion. The main change is in the :effects field, which de-
scribes the outcome of a skill’s successful execution. Pre-
viously, this field could only include symbolic effects about
relational beliefs that would become true or false after appli-
cation. In the new notation, the field can describe expected
changes not only in symbol structures, but also in the nu-
meric attributes of objects. The skill will not only cause
the symbolic relation (bridge . . . ) to become true, but also
change the block’s x position to the value of the expression,
(/ (- (+ ?gl ?gr) ?l) 2), and reduce the robot’s weight by ?w.

Extensions to Processing
The original architecture could match against numeric at-
tributes of perceived objects, but it could neither perform
mathematical calculations over these numbers nor allow the
results in concept heads. The representational changes to
concepts and skills remedies these limitations, but taking ad-
vantage of them also required us to augment ICARUS’s in-
formation processing along two fronts. The first deals with
inference, which now calculates the values of arithmetic ex-
pressions in concepts and binds them to specified variables
that may appear in the heads. These numeric values, in turn,
can influence inference of symbolic beliefs at higher levels,
as they are carried upward through the hierarchy during the
conceptual inference process.

These changes to the formalism require no alteration of
the execution module, but they do necessitate changes to
problem solving. In response, the revised module computes
not only symbolic relations during its mental execution of
skills but also numeric values associated with them. The new
problem solver utilizes forward chaining, which lets the sys-
tem update numeric attributes of an object, add new literals,
or delete existing literals from the state using information
encoded in skills’ :effects field. Such mental execution has
direct effects on the projected state, but indirect changes can
also occur, which the architecture determines by invoking
the inference module. As a result, the problem solver can
generate plans that satisfy both symbolic and numeric re-
quirements specified in the agent’s goals.



Encoding and Processing Virtual Objects
Despite its new ability to reason about quantitative aspects
of the environment, the extended ICARUS still cannot rec-
ognize an existing object as a potential tool or reason about
how to create one from available elements. This is because
the architecture only recognizes primitive objects as dis-
tinct entities, not combinations of them. In contrast, peo-
ple readily view composite structures as objects themselves,
describe numeric features associated with them, and reason
about them as unified entities. To create and utilize complex
tools, ICARUS needs the ability to reify and process such
virtual objects in its environment.

Representational Extensions
The ability to include numeric attributes in concept heads
paves the way to handling virtual objects. Without this ex-
tension, the architecture can infer beliefs only as symbolic
literals, which makes them different from perceived objects
in that they lack numeric attributes. Previously, for exam-
ple, a bridge concept that describes a composite object could
only produce a symbolic belief that informs the agent about
its existence. In contrast, the new version can calculate the
values for numeric attribute associated with the bridge en-
tity, such as its thickness and weight limit.

However, computing such numeric attributes is not
enough. We also need some way to associate them with the
virtual object, which requires giving it a symbolic identifier
in the same manner as percepts. This extension effectively
eliminates the distinction in the original ICARUS between
beliefs and percepts, so the new architecture stores them in a
single working memory. The only remaining differences are
that percepts come directly from an external environment,
while beliefs are inferred, and that beliefs include a sym-
bolic relation, while percepts lack them. Of course, we can
apply this idea recursively to specify higher-level virtual ob-
jects in terms of lower-level ones.

For example, the two conceptual clauses for bridge that
appear in Table 5 not only describe the class of situations
in which one or more blocks cover a gap, but also specify
a new virtual object that denotes the bridge. This composite
object has its own attributes, such as its left position, right
position, and weight, the values of which are calculated from
the attribute values of its component objects.

Implications for Processing
Once the extended ICARUS has created virtual objects, it can
use them as if they were objects perceived directly in the
environment. The second, recursive, clause for bridge con-
cept shown in Table 5 lets the system recognize situations in
which a block is stacked on a bridge and generate another
virtual object that is also a bridge, but one with a higher
weight limit than the original one.

As the table shows, the new notation also changes the
syntax for the :elements field. Here the expression A is
B states that one should associate an identifier A with B,
which may be a percept or a relational belief. Recall that
percepts enter the perceptual buffer with such identifiers, but

Table 5: Some ICARUS concepts that specify virtual objects.

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y 0 ∧len ?len
∧weight ?weight)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1)))

:attributes (?l is ?tl

?tr is (+ ?tl ?len)

?r is (+ ?tl ?len)))

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y ?y ∧len ?len
∧weight ?w)

?b1 is (bridge ?b1 ∧gap ?gl ∧left ?l
∧top-left ?tl1 ∧top-right ?tr1
∧right ?r ∧weight ?w1)

?b1 is (block ?b1 ∧x ?tl1 ∧y ?y1
∧len ?len1 ∧weight ?w2)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1))

(= (+ ?y1 1) ?y)

(<= (+ ?tl1 1) ?tl)

(<= (+ ?tl ?len 1) ?tr1))

:attributes (?weight is (+ ?w ?w1)

?tr is (+ ?tl ?len)))

that ICARUS must name its beliefs before it can associate nu-
meric attributes with them. The extended architecture retains
the identifiers for these virtual objects in working memory,
so they can appear as arguments in higher-level beliefs that
result from conceptual inference.

What we have described suffices for ICARUS to draw in-
ferences about composite objects, but not to use them for
driving agent activity. Of course, virtual objects can also ap-
pear in the effects field of skills, which means that the prob-
lem solver can form expectations about their creation or de-
struction upon execution. This means, for example, that the
agent can use its hierarchical skills to form plans that involve
constructing composite objects which enable later steps that
achieve its goals. But it can also use search to generate plans
entirely from primitive skills and, by invoking the inference
process, deduce that an action sequence has the side effect
of creating a complex virtual object that it can use as a tool.

Demonstrations of the Extended Architecture
To confirm that the extended system behaves as intended,
we carried out demonstration runs on the scenario described
earlier. Here an ICARUS agent controls a simulated mobile
robot to reach its destination. In one case, there is a chasm
between the initial and the goal location; in another prob-
lem, the goal is at a higher location than the robot can reach
directly. In both cases, the agent can use blocks of different
sizes to build a bridge or staircase, which it can then use.



B0
B1 B2

B3

R0

G1

B0

R0

G1

B2
B3

B1

Figure 1: Initial and final states for one version of the bridge
problem. The robot, R0, starts on the lefthand side and must
use blocks to build a bridge over the gap, G1, to reach its
goal on the righthand side.

Simplifying Assumptions
The primary aim of these demonstration runs was to show
that the extensions to ICARUS, described earlier, support the
creation and use of tools. For this reason, we introduced four
simplifying assumptions that made the planning and execu-
tion tasks somewhat easier than they would be in a realistic
simulation:

• Although ICARUS allows durative skills that require re-
peated application to achieve their effects, in the runs all
skills produce results in one step;

• The 2D simulated environments let agents pick up and
stack objects without first needing to approach them or to
move around obstacles;

• Agents must use planning to find a sequence of skills that
construct composite objects that can serve as tools, but
skills for using them operate in one step; and

• We provided agents with hierachical concepts for tools
that appear as conditions on these tool-using skills, effec-
tively serving as affordances (Zech et al. 2017).

Ideally, future demonstrations should use more realistic sim-
lated environments that eliminate these assumptions. Never-
theless, the reported runs offer clear proof of concept that the
extended architecture can represent, reason about, construct,
and use tools to achieve goals in continuous settings.

Creating and Traversing a Bridge
In the first setting, the robot must build a bridge to cross the
chasm, using long wooden blocks of different lengths and
strengths. The agent knows that, for the robot to traverse the
bridge safely, it must: (1) cover the chasm by a margin of at
least a foot at each end; (2) withstand the robot’s weight and
any payloads; and (3) if it is made from stacked blocks, in-
clude a staircase at each end with steps no higher than a foot
and at least a foot wide. The agent has no skill that directly
creates a bridge, so it must use problem solving to find some
plan to build one that satisfies these requirements. The sys-
tem must then execute this plan, building the bridge in the
environment and crossing the chasm to reach its destination.

For this problem, we gave ICARUS four concepts and four
primitive skills, including the ones shown in Tables 4 and 5.

B0
B1B2

B3

R0

EXIT

B4

W0

B0
B1 B2

B3

R0

EXIT

B4
W0

Figure 2: Initial and final states for one version of the stair-
case construction and climbing problem.

Using this knowledge, the agent can recognize situations in
which a block is stacked on another, detect a bridge com-
posed of blocks, pick up a block to either stack it on another
or cover a chasm, and finally cross the bridge when it is com-
plete. Figure 1 shows an initial state in which the robot per-
ceives itself, a chasm, and four blocks that are two, four, six,
and eight units in length and that have weight limits of one,
five, one, and two, respectively. Block B1 is on block B0 and
block B2 is on block B3.

Given these initial and goal states, the problem solver uses
forward-chaining search to find a plan that achieve its goal
in nine steps. During this process, ICARUS first considers a
bridge that only withstands a weight of two units, which is
insufficient for the robot to cross. Next the system considers
stacking a second block on the first to create a bridge with
the maximum load of three units. This is still not sufficient,
so it stacks yet another block, making a bridge that is strong
enough for it to cross the chasm safely.

Once it has found this plan, the ICARUS agent executes
it in the simulated environment over 29 cycles, first picking
up B2 to clear B3 and stacking B2 on B1. Next the system
picks up the longest block B3 and covers the gap with it.
Then the robot picks up another block, B2, and stacks it on
B3 to create a stronger bridge, after which it stacks B1 on
the result to make it even stronger. At this point, the robot
traverses the reinforced bridge to reach its goal.

We ran the extended architecture on 20 similar problems
that involved four blocks of random lengths and weight lim-
its. The system executed plans that had the average duration
of 29.6 cycles with a standard deviation of 10.7 cycles. We
also ran it, with the same knowledge, on a slightly differ-
ent goal description in which the robot must carry a certain
block as its payload across the chasm. In this altered sce-
nario, the ICARUS agent generated a similar plan, this time
requiring that it construct an even stronger bridge, then pick
up the payload for delivery. Again, the robot executed this
plan in the simulated world to achieve its goal.

Constructing and Climbing a Staircase
In the second scenario, the robot must escape from a room in
which the exit is higher on the wall than it can reach without
assistance. The environment contains long wooden blocks of



different lengths that the agent can use to build a staircase for
reaching the exit. The system knows that a staircase must:
(1) have steps that are no taller than a foot for the robot to
climb successfully and at least a foot wide so it can step on
them safely; (2) be no further than a foot from the wall at
its highest point; and (3) have a height that is within a foot
of the exit’s height. The robot must build a staircase that
satisfies all these requirements before it can ascend and exit
the room.

For this problem, we provided ICARUS with seven con-
cepts and four primitive skills. The robot could use this
knowledge to recognize situations in which one block is on
top of another, categorize a virtual object as a staircase, pick
up a block to either stack it on another or place it on the
ground, and leave the room when it reaches the exit. Fig-
ure 2 shows one example of this scenario in which the robot
perceives itself, the wall, and five blocks with lengths of 1.5,
1.5, 3, 4.5, and 1, respectively, and with heights of one unit.

The problem solver uses forward search to generate a plan
that, in 13 steps, achieves the exit goal. During planning,
ICARUS mentally constructs a staircase from three blocks
that will let it leave the room, but only after considering
shorter stairways. Once it has found this plan, the robotic
agent executes it in the simulated environment, which takes
41 cognitive cycles. This involves picking up block B4 to
clear the area around the wall and stacking it on block B1.
The agent then picks up block B2 to clear B3 and stacks B2
on B4. The robot continues stacking the blocks B3, B2, and
B4, in that order. At this point, it recognizes that it has built
an acceptable staircase, so the robot climbs the stairs and
exits the room, achieving its goal.

As another demonstration run, we used a variation on this
problem that required the system to combine a number of
shorter blocks to form steps for the staircase. This involved
generating a more complex plan with additional steps that
led to more virtual objects, greater search during planning,
and longer execution times than in the first run, but the sys-
tem handled them without any special difficulty.

In summary, the runs have demonstrated that the ex-
tended architecture can represent and reason about numeric
attributes and virtual objects during inference, problem solv-
ing, and execution. This lets the revised ICARUS infer be-
liefs that incorporate numeric attributes, associate them with
composite entities that its actions produce, and use this con-
tent to generate and carry out plans that achieve symbolic
goals subject to numeric constraints. Together, these abilities
support the construction of tools, such as bridges and stair-
cases, from available components and their use once built.

Related Research
The extensions to ICARUS that let it create and use tools
have clear precedents that merit discussion. We focus here
on two contributions that we consider most important – rea-
soning over numeric attributes and using virtual objects. We
have discussed the architecture’s forward-chaining planning
module elsewhere (To et al. 2015). We will not repeat our
observations here except to note that it can use primitive
skills, hierarchical ones, and their combination to generate
plans, although the first option requires more search.

Research in cognitive architectures (Langley, Laird, and
Rogers 2009) has emphasized symbolic representation and
processing, due to their focus on high-level cognitive tasks.
Nevertheless, well-established frameworks like Soar and
ACT-R adopt an attribute-value notation that can easily en-
code the types of numeric object-based inputs we assume in
both working memory and production rules. Both architec-
tures have been used to control robotic agents, which cer-
tainly requires quantitative processing. However, they treat
numeric manipulation as a special case of symbol process-
ing, rather than giving them equal status, at the architecture
level, as does the extended version of ICARUS.

Other paradigms also support a combination of symbolic
and numeric processing. For example, logic programming
emphasizes symbolic notations but can incorporate quanti-
tative values and constraints, although they do not typically
operate over time, as do ICARUS agents. AI planning sys-
tems also focus on symbolic tasks but have been adapted
to include numeric content (e.g., Coles et al. 2012). These
describe activity over time, but work in this tradition sel-
dom supports the storage and use of hierarchical skills. Most
robotic systems emphasize low-level numeric processing to
the exclusion on high-level cognition. Hybrids like the 3T ar-
chitecture (Bonasso et al. 1997) support both, but they adopt
separate, specialized notations rather than offering a uni-
fied framework for cognition and action. Perhaps the closest
robotics work (Levihn and Stilman 2014; Erdogan and Stil-
man 2014), also concerned with tool creation, propagates
physical constraints to ensure a symbolic planner considers
only acceptable configurations of objects.1

As for the virtual objects, most production-system archi-
tectures (Klahr, Langley, and Neches 1987) support rules
that introduce new symbols, with associated attribute val-
ues, in elements they add to working memory. However,
they do not elevate their creation to the architectural level
or make theoretical claims about the way such objects are
defined, processed, and used by other mechanisms. Our ex-
tended framework associates virtual objects with concept in-
stances that reside in belief memory, so that any conceptual
rule in long-term memory can generate them during the in-
ference process. This allows a tight integration with other
components of the ICARUS architecture.

Otherwise, the paradigm most relevant to our use of vir-
tual objects is scene understanding (e.g., Antanas et al.
2012), which attempts to infer models of the environment
from images or videos. Classical approaches construct a hi-
erarchy of entities, from edges to angles to surfaces to 3D
object models (Binford 1982). ICARUS’ virtual objects are
directly analogous to these intermediate entities, and its cal-
culation of derived attribute values maps directly on compu-
tations of angles and volumes in vision systems. However,
work in this paradigm has focused on scene interpretation,
not with goal-directed activity. Thus, although such systems
might be able to describe and recognize tools like bridges
and stairs, they cannot use them to achieve objectives.

1Brown and Sammut (2012) report a novel approach to learning
tool usage by the analysis of training cases, but their research has
different aims than our own.



Plans for Future Work
We have shown that the extended ICARUS can represent and
reason about tools, it can construct such tools from avail-
able objects, and it can then use them to achieve its goals.
Nevertheless, we must still address a number of challenges
that our work to date has left unexamined. The most obvious
limitations involve the system’s dependence on handcrafted
knowledge about composite tools.

ICARUS already includes mechanisms for learning hierar-
chical skills from successful problem solving (Langley et al.
2009), and we can use this ability to acquire structures for
constructing bridges, staircases, and similar artifacts, as well
as ones for using them after they have been created. The lat-
ter will be useful in more realistic environments that require
sequences of actions for tool use, such as taking repeated
steps up a staircase. These mechanisms acquire new skills
from individual solutions obtained through search, so learn-
ing can be very rapid.

A more challenging hurdle involves the acquisition of
concepts that recognize composite tools. Here we plan to
draw on another extension to ICARUS (Li et al. 2012) that,
when it uses a problem solution to create a new skill, also
defines a new conceptual predicate that describes the condi-
tions under which that skill will achieve the relevant goals.
These conceptual rules may be disjunctive or even recur-
sive, so the mechanism should be able to produce concepts
for recognizing bridges, staircases, and other tools that may
have arbitrary numbers of components.

However, we can best take advantage of this ability by
separating the issues of tool construction and tool use. If we
present an ICARUS agent with a problem that it can solve
with an existing configuration of objects, say two blocks that
cover a gap, it could learn both a hierarchical skill for us-
ing that configuration and a concept that recognizes similar
‘bridge’ configurations in the future. Given such knowledge,
it could then solve, and learn from, new problems that re-
quire the construction of a bridge before its traversal. This
decomposition is not strictly necessary, but inventing the
bridge concept from scratch would require more search than
determining how to build one after having used another.

These are certainly not the only challenges that remain be-
fore we have a mature account of tool construction and use.
For instance, numeric simulation of durative operators, as
in Langley et al.’s (2016) PUG architecture, seems relevant
to determining whether an agent can use a tool to achieve
its goals. The ability to interleave planning, execution, and
monitoring is also important in settings where tools are not
fully reliable. However, the creation and use of tools is one
of the distinguishing features of human intelligence, so we
should not be surprised that many open problems remain.

Concluding Remarks
In this paper, we reported extensions to the ICARUS archi-
tecture that support the creation and use of tools. These in-
cluded the ability to associate numeric attributes with con-
cepts and skills, as well as calculate their values during in-
ference, execution, and problem solving. Another augmen-
tation let conceptual rules refer to new, complex objects that

were composed from existing ones and to derive values for
their numeric attributes during the process of conceptual in-
ference. Together, these capabilities let the extended archi-
tecture not only represent and reason about tools it creates
from components available in the environment, but also use
those tools to achieve its goals.

We demonstrated this new functionality in two simulated
environments, one that involved creating and traversing a
bridge and another that required constructing and climbing
a staircase. We will not claim that other approaches, such as
AI planning methods, cannot handle the same tasks, but they
would not represent or recognize the fact that tools played a
key role in their solutions. Humans clearly exhibit this abil-
ity, and we believe that ICARUS’ approach to tool creation
and use has many similarities. Nevertheless, we have taken
only the first steps, and future work should include demon-
strations in more realistic environments and use of learning
mechanisms to acquire tool-related concepts and skills.

Acknowledgements
We dedicate this work in memory of Mike Stilman, a friend
and colleague who inspired us to bridge the gap between
robotics and cognitive systems. This research was supported
by Grants N00014-12-1-0143 and N00014-15-1-2517 from
the Office of Naval Research.

References
Anderson, J. R.; and Lebiere, C. 1998. The atomic compo-

nents of thought. Mahwah, NJ: Erlbaum.
Antanas, L.; Frasconi, P.; Costa, F.; Tuytelaars, T.; and

Raedt, L. D. 2012. A relational kernel-based framework
for hierarchical image understanding. In G. Gimel’farb
et al., Eds., Structural, syntactic, and statistical pattern
recognition, 171–180. Berlin: Springer.

Binford, T. O. 1982. Survey of model-based image analy-
sis systems. International Journal of Robotics Research
1:18–64.

Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.; Miller,
D. P.; and Slack, M. G. 1997. Experiences with an archi-
tecture for intelligent, reactive agents. Journal of Experi-
mental & Theoretical Artificial Intelligence 9:237–256.

Brown, S.; and Sammut, C. 2013. A relational approach
to tool-use learning in robots. In F. Riguzzi and F.
Elezn, Eds., Inductive Logic Programming, 1–15. Berlin:
Springer.

Choi, D. 2011. Reactive goal management in a cognitive ar-
chitecture. Cognitive Systems Research 12:293–308.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012.
COLIN: Planning with continuous linear numeric change.
Journal of Artificial Intelligence Research 44:1–96.

Erdogan, C.; and Stilman, M. 2014. Incorporating kino-
dynamic constraints in automated design of simple ma-
chines. Proceedings of the 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2931–
2936. Chicago: IEEE Press.

Fikes, R.; and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.



Klahr, D.; Langley, P.; and Neches, R. Eds. 1987. Production
system models of learning and development. Cambridge,
MA: MIT Press.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial Intelli-
gence 33:1–64.

Langley, P.; Barley, M.; Meadows, B.; Choi, D.; and Katz,
E. P. 2016. Goals, utilities, and mental simulation in con-
tinuous planning. Proceedings of the Fourth Annual Con-
ference on Cognitive Systems. Evanston, IL.

Langley, P.; Choi, D.; and Rogers, S. 2009. Acquisition of
hierarchical reactive skills in a unified cognitive architec-
ture. Cognitive Systems Research 10:316–332.

Langley, P., Laird, J. E., and Rogers, S. 2009. Cognitive
architectures: Research issues and challenges. Cognitive
Systems Research 10:141–160.

Levihn, M.; and Stilman, M. 2014. Using environment ob-
jects as tools: Unconventional door opening. Proceedings
of the 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2502–2508. Chicago: IEEE
Press.

Li, N., Stracuzzi, D. J., and Langley, P. 2012. Improv-
ing acquisition of teleoreactive logic programs through
representation extension. Advances in Cognitive Systems
1:109–126.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Re-
search 20:379–404.

To, S. T.; Langley, P.; and Choi, D. 2015. A unified frame-
work for knowledge-lean and knowledge-rich planning.
Proceedings of the Third Annual Conference on Cogni-
tive Systems. Atlanta, GA.

Zech, P.; Haller, S.; Lakani, S. R.; Ridgeand, B.; Ugur, E.;
and Piater, J. 2017. Computational models of affordance
in robotics: A taxonomy and systematic classification.
Adaptive Behavior 25:235–271.


