
Guiding Inference through Relational
Reinforcement Learning

Nima Asgharbeygi, Negin Nejati, Pat Langley, and Sachiyo Arai

Computational Learning Laboratory
Center for the Study of Language and Information

Stanford University, Stanford CA 94305, USA
{nimaa, negin}@stanford.edu
langley@csli.stanford.edu

arai@tu.chiba-u.ac.jp

Abstract. Reasoning plays a central role in intelligent systems that op-
erate in complex situations that involve time constraints. In this paper,
we present the Adaptive Logic Interpreter, a reasoning system that ac-
quires a controlled inference strategy adapted to the scenario at hand,
using a variation on relational reinforcement learning. Employing this in-
ference mechanism in a reactive agent architecture lets the agent focus its
reasoning on the most rewarding parts of its knowledge base and hence
perform better under time and computational resource constraints. We
present experiments that demonstrate the benefits of this approach to
reasoning in reactive agents, then discuss related work and directions for
future research.

1 Introduction

A fundamental goal of artificial intelligence is to develop systems that demon-
strate intelligent behavior in complex environments. Such systems should be
capable of assessing situations, reasoning about them, and making informed de-
cisions even when confronted with constraints involving time and computational
resources. For example, an embodied agent can benefit greatly by drawing in-
ferences (internal beliefs) about its immediate situation (as perceived through
sensors) using knowledge about the world (inference rules).

Because we are concerned with reactive agents, we focus here on data-driven
bottom-up approaches to inference, rather than query-based top-down ones.
Such agents need a belief state about the world in order to make a decision and
take an action in any situation, so bottom-up inference over relational inference
rules is the natural choice. However, it is clear that a reactive agent operating
under time constraints cannot afford to exhaustively make all possible inferences.
Rather, like humans, it must give priority to drawing more important conclu-
sions and delay others. Such an informed agent may overlook important items
on occasion, but it can still respond rapidly and its performance will degrade
gracefully as complexity increases. This approach differs significantly from most



AI research on efficient matching and inference, which has combined exhaustive
methods with clever indexing schemes (Doyle [1], Forgy [2]).

In this paper, we assume that a knowledge-rich reactive agent cannot afford to
make all possible inferences, and thus must focus its attention. We are interested
in an “anytime” inference mechanism that achieves high utility by inferring
the most useful inferences within a given time limit. Moreover, under no time
constraint, it should generate the same belief state as the exhaustive inference
mechanism. As an implication, we prefer not to modify the structure of inference
rules (unlike previous work on speedup learning, such as Zelle and Mooney [3]),
but rather to have an adaptive reasoning system that learns over the relational
structure in order to use it more efficiently.

Our solution, called the Adaptive Logic Interpreter (Adlin), consists of two
components—a value-driven inference process that iteratively selects the im-
plied instantiated inference rule with the highest expected utility, and a learning
mechanism that estimates these utilities based on received rewards. The latter
uses a variation of relational reinforcement learning over the logical structure
of inference rules. It incorporates a generalization mechanism that models the
values estimated for instances of each first-order inference rule using regression
methods. This model is then used to estimate the initial expected utility for new
instances of the corresponding inference rule.

We should mention that, since the problem involves relationally represented
states and actions, it is naturally posed as relational reinforcement learning
(Tadepalli et al. [4]). Nevertheless, our generalization mechanism differs from
the methods employed in earlier works on this topic. For example, Dzeroski et
al. [5] applied inductive logic programming methods to induce first-order regres-
sion trees as generalizers. However, our approach represents the generalization
knowledge as a set of linear regression models over the first-order predicates.
We claim that our approach to relational reinforcement learning uses the prior
knowledge encoded in the relational structure of a given domain effectively, and
that it is capable of generalizing across distinct objects of the same class and
transferring to tasks of different sizes.

Furthermore, in contrast with traditional reinforcement learning over phys-
ical actions, our formulation deals with actions that are internal to the agent.
More specifically, we interpret each inference step as a mental action taken at
some internal state that updates the agent’s belief state but not the physical
world. We hypothesize that the resulting adaptive attention method will let re-
active agents make informed inferences under time constraints, and thus respond
appropriately in complex environments.

We begin by reviewing Icarus, a reactive agent architecture that currently
relies on exhaustive inference to characterize situations and decide on its actions.
After this, we describe Adlin’s method for giving priority to high-utility beliefs
and an associated mechanism for learning their values. Next, we formalize our
hypotheses about the benefits of this method and report experimental studies
that demonstrate them empirically. In closing, we discuss related research on
controlled inference and suggest directions for future work.



2 Architectural Framework

Our vehicle for studying controlled inference has been Icarus, a reactive ar-
chitecture for physical agents that has been described at length in Choi et al.
[6]. Here we summarize the framework briefly, emphasizing those aspects most
relevant to our current topic. We believe our approach will be applicable to other
knowledge-rich reactive agent architectures that include an inference component.

An Icarus agent lives in an environment composed of a dynamic collection
of objects whose attributes and mutual relations change over time. Like other
agent architectures, Icarus operates in cycles. On each iteration, descriptions
of objects perceivable to the agent (perceptions) are deposited into a perceptual
buffer from which the system bases its inferences and generates a belief state.
The interpreter then finds which skills match against the resulting belief state,
selects the best applicable skill instance, and executes it in the environment.

Skills are Prolog-like rules that let the agent respond to different situations
in the environment. These are organized in a hierarchy, so that each skill calls on
lower-level skills or executable actions. Each skill specifies initiation conditions
that match against descriptions of perceived objects or inferred relations among
those objects. Unlike many reactive frameworks, Icarus bases its decisions not
only on primitive perceptions but also on its inferred beliefs.

In this paper we are mainly concerned with Icarus’ inference mechanism
which, on each cycle, generates the agent’s belief state based on the perceptions
and the domain knowledge. Knowledge about the domain is stored in a long-
term conceptual memory as a set of concept definitions. Concepts are first-order
logical inference rules, each stated in terms of relations that must hold among
objects, relations that must not hold for them, and arithmetic tests. In addi-
tion, associated with each concept is a reward function that specifies its utility
to the agent when an instance of the concept holds. Like skills, concepts are
defined in terms of perceptual entities and lower-level concepts, thus producing
a hierarchical structure.

Table 1 presents three concept definitions from the blocks world. The first
concept determines if the perceived object ?b is a block. The second concept
defines a left-of relation between two blocks. It holds between two perceived
objects ?b1 and ?b2 of type block (specified in :percepts) whenever is-block
predicate holds for both of them and their x positions satisfy the condition
specified in :tests, which simply states that the x position of ?b1 must be less
than that of ?b2. The reward associated with this concept is always zero. The
relation defined by the next concept, between, can be interpreted similarly, but
notice that its reward is a function of the attributes of the perceived objects, in
this example the x positions of the blocks involved.

On each execution cycle, the architecture initiates its inference procedure by
examining the lowest-level concepts at the bottom of the hierarchy and infer-
ring matched instances. Inferring a concept instance means checking whether its
conditions hold based on the current belief state and, if so, adding the instance
to the belief state. Icarus then proceeds up the hierarchy, checking concepts
that include newly inferred elements in their definitions. The process recurses



Table 1. Three examples of Icarus concept definitions from the blocks world.

(is-block (?b) (between (?b1 ?b2 ?b3)

:percepts ((block ?b xpos ?x)) :percepts ((block ?b1 xpos ?x1)

:reward 0.0) (block ?b2 xpos ?x2)

(block ?b3 xpos ?x3))

(left-of (?b1 ?b2) :positives ((left-of ?b1 ?b2)

:percepts ((block ?b1 xpos ?x1) (left-of ?b2 ?b3))

(block ?b2 xpos ?x2)) :reward (* 10 (- 30 ?x3 ?x2 ?x1)))

:positives ((is-block ?b1)

(is-block ?b2))

:tests ((< ?x1 ?x2))

:reward 0.0)

upwards, continuing until the entire hierarchy has been processed or, in the
time-constrained case, until reaching the deadline.

We will refer to this inference method as exhaustive, because it considers
concepts in a bottom-up, breadth-first manner with no control over the reason-
ing strategy. Clearly, this approach will not scale well to complex domains in
which the knowledge base is large. Even worse, when the agent operates under
time constraints, early termination can produce an inaccurate description of the
environment, which in turn can produce undesirable behavior for the agent.

3 A Method for Controlled Inference

In order to overcome the drawbacks of exhaustive inference, a reasoning system
requires some way to focus its cognitive attention on useful candidates. In this
section, we introduce Adlin, our adaptive logic interpreter. We begin by present-
ing a method for value-driven inference that gives priority to beliefs with higher
expected utilities. After this, we describe a learning method that estimates these
utilities from experienced rewards. Finally, we consider Adlin’s generalization
mechanism for compactly modelling the knowledge learned over belief instances.
The resulting system should fare better than an exhaustive version when the
number of possible inferences exceeds the number that can be made in the time
the agent has available.

3.1 Value-Driven Inference

Our approach to value-driven inference assumes that, for each candidate belief,
the agent computes an expected utility, which it then uses to select the next
instance to consider. The technique incorporates an agenda mechanism that
inserts items into a list sorted by their priority levels, selects the topmost item
to process, and iterates. This method is flexible enough to control inference, yet
simple enough to incur little computational overhead.



(is-block A) (is-block B)  (is-block C)  (is-block D)

A                  B                 C                  D

infer (is-block B)

(is-block A)  (is-block B) (is-block C)  (is-block D)

A                   B                 C                  D

(left-of A B)  (left-of B A)

Fig. 1. A simple example of state and fringe update from the blocks world. The literals
in bold belong to the belief state, whereas the others belong to the fringe.

More formally, we can specify a set of real values V : U 7→ R that is defined
over U , the set of all concept instances. These values differ from the rewards
associated with concept definitions and may be specified in order to achieve
a desired objective or reasoning strategy. As we will see later, Adlin learns
the values V to capture not only the immediate rewards, but also the future
benefits of inferring different belief instances. Also notice that assigning scalar
values to concept definitions would not be sufficient. The number of instantiated
beliefs derived from one concept definition can be very large, in which case the
inference system should be able to prioritize between them and infer only those
with highest expected utility. This will let the system guide the inference process
in a best-first manner, rather than a depth-first or breadth-first one.

Before describing the inference process, we should introduce a few more tech-
nical terms. We define the mental state, st, as the set of instances inferred to
be true after t inference steps within the current execution cycle. Each inference
step consists of selecting an instance that has not yet been inferred and checking
whether it holds. This involves examining whether its child instances are be-
lieved and whether all its variable constraints and arithmetic tests are satisfied.
At the beginning of each reasoning cycle, s0 is empty. The fringe Fst at any state
st is the set of all inferrable concept instances, that is, those instances not yet
inferred within the current execution cycle whose children are already included
in the state st.

A valid action au is an inference step that infers the instance u ∈ Fst−1

at the current step t. Finally, a value-driven inference mechanism is one that
performs a valid action a(V, Fst−1) at each step t. In other words, every inference
step depends entirely on the value assignment V and the contents of the current
fringe. In this paper, we use a special greedy case of this mechanism class that
always selects the highest value instance in the fringe. More precisely, we define
agreedy(V, Fst−1) as the action to infer the instance arg maxu∈Fst−1

V (u). This
choice will prove reasonable when we consider the objective of the inference
process shortly.

An example from the blocks world should illustrate the approach more clearly.
Suppose the knowledge base consists of the three concept definitions introduced
in Table 1 and there are four blocks in the environment. Figure 1 shows how
executing an action updates the belief state and the fringe. Once the system
selects inferring (is-block B) as the action, it checks whether this concept
instance holds. Because B is a block, Adlin adds this instance to its belief



state and, because (is-block A) is already in the state, (left-of B A) and
(left-of A B) become inferrable, so it adds them both to the fringe.

3.2 Value-Learning Mechanism

As mentioned earlier, the nature and computation of expected utilities are con-
tingent upon the objective of the value-driven inference mechanism. Here we
define the objective in terms of reward, ru, produced by an inference action au,
which we define as

ru =
{

Ru(xu), if u is inferred to true;
0, otherwise, (1)

where Ru is the reward function associated with concept u and xu denotes the
attribute vector for perceived objects on which u depends. As we have noted,
this reward function quantifies the desirability to the agent of instances for the
given concept. When an instance does not match, it contributes zero reward.
Therefore, ru provides a reasonable measure for the immediate success of the
corresponding inference action.

We assume the agent aims to maximize the cumulative absolute reward over
each execution cycle, that is WT =

∑
u∈st

|ru|, subject to the constraint that the
t inference steps in this cycle take no more than T units of time. This objective
is equivalent to minimizing W∞ −WT , which represents the error in calculated
utility of the time-constrained system with respect to the utility calculated under
no time constraints. In the terminology of value-driven inference, this objective
translates to finding V values such that the inference strategy (approximately)
maximizes WT under a given time constraint T .

These values should capture not only the immediate expected reward for
each inference action, but also its benefit for later inference steps. To this end,
we adapt an approximate reinforcement learning method based on the account
of states and actions presented earlier. We will let Q(st, a) indicate the expected
value of taking inference action a at state st. Recall that, unlike most work on
reinforcement learning, our states and actions are completely internal to the
agent. Furthermore, as equation (1) suggests, the source of reward is distributed
over the entire knowledge base. This lets the learning element consider only the
relevant parts of reward at each step.

Because the state space S of all possible states st can be intractably large,
the classical tabular representations of Q(st, a) for Q learning or V (st) for value
learning are impractical. Inspired by the MAXQ framework [7], we introduce a
value decomposition that expresses the Q function in terms of V values:

Q(st, a) =
∑
u∈st

V (u) + V (ua) , (2)

where ua denotes the concept instance inferred by action a. While making the
problem tractable, this approximation establishes a relationship between the



reinforcement learning method and value-driven inference. In fact, equation (2)
lets us rewrite the standard stochastic Q function update rule for V values:

V (u) := αV (u) + α[ru + max
u′∈F u

st

V (u′)] , (3)

where Fu
st
⊆ Fst is the set of instances in the current fringe for which u is a

child. Furthermore, we define α as

α =
1

1 + visits(u)
, (4)

in which visits(u) indicates the number of updates performed on V (u), and α
is given by

α =
{

1, if u ∈ st;
1− α, if u /∈ st . (5)

We derive the update rule provided in equation (3) from the standard stochastic
Q function update rule [8]:

Q(s, a) := (1− α)Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)].

We can safely assume γ = 1, since we are dealing with a finite-horizon problem.
Substituting the value decomposition in (2) and the definition of reward in (1)
into this update rule gives

∑
u∈st−1

V (u) + V (ua) := (1− α)(
∑

u∈st−1

V (u) + V (ua))

+ α[rua + max
valid a′

(
∑
u∈st

V (u) + V (ua′))]

:= (1− α)
∑

u∈st−1

V (u) + (1− α)V (ua)

+ α[rua +
∑
u∈st

V (u) + max
ua′∈Fst

V (ua′)] (6)

Observe that
∑
u∈st

V (u) =
∑

u∈st−1

V (u) + V (ua) · 1(ua ∈ st) , (7)

in which

1(ua ∈ st) =
{

1, if ua ∈ st;
0, if ua /∈ st

(8)

As a result, the update rule simplifies to

V (ua) := αV (ua) + α[rua + max
ua′∈Fst

V (ua′)] , (9)

with α being defined by (5). Notice that the only difference between the update
rules in (9) and (3) lies in the argument of max. In fact, we have restricted the



Cycle 1

Cycle 2

Cycle 3

(between A B C) 

24 (45.6)

(left-of C B) (left-of B C)  (left-of A C)  (left-of A B)  

0 (0)              0 (2.16)                0 (0)                0 (2.16)

(is-block A)  (is-block B)  (is-block C)                                                  

0 (0)                  0 (0)                   0 (0)

(between A B C) 

45.6 (82.53)

(left-of A B)  (left-of A D)  (left-of B C)   

2.16 (6.04)         0.97 (0.87)        2.16 (6.04)

(is-block A)  (is-block B)      (is-block D)   (is-block C)
0 (0.19)              0 (0.19)                      0 (0)       0 (0.19) 

(between A B C) 
0 (24)

(left-of B A) (left-of A B)  (left-of B C) 
0 (0)                    0 (0)                  0 (0)

(is-block A)  (is-block B)              (is-block C)                                                  
0 (0)                  0 (0)                            0 (0)

Fig. 2. An example of value propagation for three successive cycles in the blocks world.
Updated values are shown in parentheses whereas others have been used to guide
inference. The literals in grey have been inferred to be false.

argument in (3) to the set of instances that depend directly on u. This reflects
the intuition that the values of instances which depend on u are more indicative
of the desirability of inferring u than the values of other instances in the fringe.

Figure 2 shows how the values are learned and propagated in our example
from the blocks world. Each diagram illustrates part of the agent’s belief state
at the end of the corresponding inference cycle. For an easier visualization of the
procedure, the instances are ordered from left to right according to the order
in which Adlin infers them, the leftmost being the first. Having no previous
experience in this domain, the system initializes the values to zero. As Table 1
shows, only the highest level concept, between, has nonzero reward and therefor
the values remain zero until an instance of between is inferred as true. Once
the system infers (between A B C), it updates this belief’s value in propor-
tion to its reward. Equation 3 propagates this value to the immediate children,
(left-of B C) and (left-of A B), in the next cycle and consequently to the
grandchildren—(is-block A), (is-block B), and (is-block C)—two cycles
later. Note that the value updates occur after the instances are inferred and, as
a result, the updated values participate in guiding the inference one cycle later.

3.3 Generalization Mechanism

The learning method described so far attempts to guide inference toward the
most rewarding parts of the instance space U and maximize cumulative reward
by propagating the rewards down the concept hierarchy. However, the value
learned for a single instance lives only as long as the instance remains in U . Thus,
the agent would also benefit from a generalization mechanism that summarizes
the learned knowledge about concept instances and stores it as compact models



for future use. Adlin uses such models to initialize the expected value V for
new candidate beliefs in the instance space. Without a generalization model,
the inference system would need to relearn the value functions for every new
instance, which is certainly undesirable.

Our generalization mechanism learns a linear model hc(x) = θT x for every
concept definition c. More precisely, it applies linear regression methods to incre-
mentally update the linear model hc associated with each concept definition c,
using the training examples Sc = {(V (u), x(u)) | u ∈ Uc ∩ st} at the end of each
execution cycle. Here, x(u) indicates the vector of numeric attributes for the
perceptions that appear in concept instance u and Uc ⊆ U denotes the set of all
instances derived from concept definition c. Later, when a new concept instance
is created, its corresponding linear model is evaluated to initialize the expected
value V for the candidate belief. Given this prior knowledge, the inference mech-
anism can perform more efficiently, as we will demonstrate shortly. Despite their
simplicity, these linear models appear to help significantly in improving Adlin’s
overall performance.1

Figure 2 illustrates how generalization affects the priorities of inferring var-
ious instances. Once the value for (left-of A B) becomes 2.16, the general-
ization module takes advantage of the relational structure of the state space to
update a linear model for the concept definition left-of. Adlin uses the nu-
meric attributes of blocks A and B, namely their x positions, and the value 2.16
to update the model, which it revises further based on other instances. However,
when entirely new instances of the left-of concept become inferrable, the sys-
tem uses this model to initialize their values. For example when (left-of A D)
becomes inferrable after adding (is-block D), it uses the learned model and
the x positions of A and D to generate the initial value 0.97. In this example,
the resulting value is higher than the value of (is-block C) and therefor the
system prefers to infer (left-of A D) first.

Table 2 summarizes the Adlin inference system, including its method for
value-driven inference, its mechanism for reinforcement learning, and its tech-
nique for generalizing over instances of relational concepts.

4 Experimental Evaluation

Our primary goal for designing a value-driven inference mechanism, as stated
earlier, is to make time-limited reasoning more effective by focusing cognitive
attention on relevant parts of the instance space. To collect evidence that our
approach has the desired effects, we carried out experiments within Icarus that
compared Adlin’s value-driven inference with exhaustive reasoning and also
Adlin without its generalization mechanism, all under time constraint and var-

1 Another application of the generalization models, especially in highly dynamic envi-
ronments, lies in updating the V values when the sensory attributes of the instance
change. The update frequency should be increased with the frequency and variance
of the change in sensory values.



Table 2. An outline of Adlin inference process for one execution cycle.

1. Initialization

i. At the beginning of each cycle, start with an empty state s0 = ø and let t = 0.
ii. If a new perceived object is added in this cycle, update U by adding the new

instances and initialize their V values by evaluating their hc functions.
iii. If a perceived object is deleted, update U by removing all instances that depend

on it. Initialize the fringe Fs0 with all primitive concept instances.

2. Value-Driven Inference and Value-Learning
Repeat the following steps run until time runs out:

i. Set t ← t + 1 and infer the instance u = arg maxu′∈Fst−1
V (u′) .

ii. Let st = st−1 and Fst = Fst−1 .
iii. If u is true, add it to st, compute its reward ru, and update the fringe Fst .
iv. Perform the V -value update for u:

V (u) := αV (u) + α[ru + max
u′∈F u

st

V (u′)] ,

where α = 1/[1 + visits(u)] and α is given by (5).

3. Generalization
For each concept definition c:

i. Consider the function hc(x) = θT x .
ii. For every sample point in Sc = {(V (u), x(u)) | u ∈ Uc ∩ st}, perform the

update:
θ ← θ + α(V (u)− hc(x(u))) · x(u) .

ious circumstances. We present experimental evidence in two different domains,
which we describe in detail below.

Naturally, we chose reward accuracy as the performance measure for our
comparisons. Reward accuracy refers to the ratio between the cumulative reward
obtained by the inference system under time constraints on a particular execution
cycle to the total reward that would be accumulated on the same cycle by making
all possible inference under no time constraints. This gives a measure on how
successful our inference system is in guiding inference toward the most rewarding
parts of the current instance space. Using the notation introduced in the previous
section, we can express accuracy on some specific cycle as A = WT /W∞. Recall
that WT denotes the cumulative absolute reward obtained in one cycle under
time limit T . Similarly, we can state the reward error as E = (W∞ −WT )/W∞.

4.1 Blocks-world Domain

Our first experiments used a simple blocks-world environment because it gave us
systematic control over factors of interest. The only objects in the environment
are blocks placed in line, each with a name and a position specified as its distance
from a reference point, which we call the origin. We used the three relational
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Fig. 3. Comparison between reward accuracies of three inference systems in the blocks-
world environment over decreasing amounts of available time for each inference cycle.

concepts defined in Table 1. Clearly, when a large number of blocks are present,
the number of feasible between relation instances will be enormous. We assume
that the agent is located at the origin and prefers to interact with blocks sitting
close to it. Therefore, we assigned a reward function to the highest level concept
as a linear function that favors relations whose corresponding blocks are closer
to the origin. The other two concept definitions had no assigned reward function.

We expected Adlin to outperform exhaustive inference in terms of reward
accuracy. However, we also anticipated that the degree of dominance would de-
pend on factors such as the time limit for each inference cycle, domain com-
plexity, and the rate of environmental change. First we considered the effect of
time constraints on the behavior of three different inference systems: Adlin,
Adlin without generalization, and exhaustive inference.2 We expected that, as
the available time for inference decreases, all three inference mechanisms would
become less accurate, but we hypothesized that Adlin’s performance would
degrade more gracefully.

We let each system learn for 200 cycles under a fixed time limit of 0.04 seconds
in an initial world state with six blocks. We then tested the system under various
time limits ranging from 0.19 to 0.01 seconds, in a dynamic environment in which
a new block was added every 25 cycles, for a total of 100 cycles. At the end we
measured the average inferred reward during the last 10 cycles and averaged
the results over 20 independent runs. Figure 3 summarizes the results for the

2 One might also consider an inference system that uses a greedy policy based on the
immediate rewards of individual belief instances. In our example domains, however,
there is no reward function assigned to low level concepts and hence such an inference
mechanism should perform no better than exhaustive inference.
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three inference systems considered. The accuracy of the exhaustive inference
method is almost zero for this range of time limits. Clearly, Adlin provides a
superior reward accuracy for most values of the time constraint. Its performance
degrades only for extremely tight time limits (0.03 to 0.01 seconds), which is
mainly caused by the computational overhead of its generalization mechanism.

Next we studied the effects of domain complexity, which refers to the size of
the instance space. We let each system operate in a situation similar to the pre-
vious experiment, but we increased the complexity by abruptly adding objects,
ranging from one to eight blocks, at cycle 200 and then ran the system for 100
more cycles. As before, we measured the average inferred reward over the final
10 cycles for 20 independent runs. Figure 4 depicts the results as a function of
the number of blocks added. As expected, exhaustive inference performs very
poorly. Adlin without generalization gives better performance, but it cannot
handle the excess complexity in the environment and, eventually, when the en-
vironment becomes too complex, it only obtains as much reward as it could in
the initial world state.

In contrast, when equipped with generalization, Adlin demonstrates sub-
stantially better performance, as shown by the dotted line in Figure 4. This
result signifies that the generalization mechanism plays an important role in
dealing with new inference instances. Notice, however, that Adlin’s performance
degrades considerably when more than three blocks are added. This is because
the first three new blocks are close to the origin and hence contribute a signifi-
cant increase to the total reward, whereas the other new blocks are far from the
origin and hence much less important. Nonetheless, these blocks distract Adlin
to some extent and cause the degradation in its performance.
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The last factor we considered was the rate of change in the environment. We
set up a similar experiment to the one above but, after the 200-cycle learning
period, instead of introducing an abrupt change, we inserted the new blocks
one at a time with a specific number of cycles between consequent insertions.
Thus, we systematically varied the rate of change in the world and measured
the average performance of each inference system over its last 10 cycles. As
Figure 5 illustrates, Adlin is the most robust of the three systems across a wide
range of rates. However, for very rapidly changing environments, even Adlin’s
performance degrades significantly, as seen when we added one block per cycle.
In the closing section, we propose some responses to this issue.

4.2 In-city Driving Domain

As a more realistic, and hence more interesting, domain for evaluating Adlin
we chose an in-city driving environment. This is an appropriate domain both
because of its complexity and its inherent time constraints in collision-like situ-
ations. In this simulated environment [6], all objects take a rectangular form on
a Euclidean plane. The simulator supports static objects such as road segments,
intersections, lane lines, and buildings, as well as dynamic ones like vehicles. One
of the vehicles is controlled by an Icarus agent and all others follow realistic
physical laws but with predetermined behavior.

The vehicle controlled by the agent can perceive objects that are in its field
of view, defined by the radius of a circle centered at its current position. The
objects are described by numeric attributes like distance, angle, relative velocity,
and angular velocity. The Icarus agent also perceives its own properties, includ-
ing distance and angle with respect to lane lines, as well as its speed and the angle
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Fig. 6. Comparison between reward accuracies of three inference systems in the in-city
driving environment over decreasing amounts of available time for each inference cycle.

of its steering wheel. The agent must drive the vehicle safely by staying on the
right side of the road, making necessary turns, and avoiding collisions. These con-
straints produce a complex environment which requires reasoning about many
objects with different priorities.

In our first experiment in the driving domain, we again considered time con-
straint as the independent variable, while holding complexity and rate of change
fixed. Figure 6 summarizes the results for the three inference systems in our
study, namely Adlin, Adlin without generalization, and exhaustive inference.

In this experiment, we had the agent drive around a block in the simulated
city at a constant speed of 15 miles per hour. We let each system learn under a
fixed time limit of 0.5 seconds while making a complete turn around the block.
Then we measured the average reward inferred by the system when turning
around the same block at the same speed, but under different time constraints
ranging from 0.19 to 0.01 seconds. Figure 6 presents the resulting accuracies
averaged over 20 independent runs for each system. Adlin demonstrates a higher
tolerance of time constraints, especially for time limits between 0.13 to 0.03
seconds. However, we observed a similar sudden degradation of performance for
extremely tight time constraints as seen earlier in the blocks-world study.

In the driving domain, the rate of change and complexity of the environment
are mainly determined by the agent’s speed of driving. Therefore, we cannot
vary these factors separately while keeping the other fixed. In response, our next
experiment evaluated each inference system in the driving domain for differ-
ent driving speeds. As the agent drives faster both complexity and the rate of
change in the environment increase. The complexity increases since the overlap
of the visible areas across the cycles decreases and therefore more of the per-
ceived objects are new. Figure 7 shows the average reward achieved by different
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Fig. 7. Average inferred rewards achieved by different inference systems in the driving
domain for different driving speeds.

inference systems for different driving speeds, compared to the total reward that
is available in the environment.

We let each system learn under a time constraint of 0.4 seconds while the
agent was driving on a straight street at a speed of 5 miles per hour. Then
we tested the system under a 0.08-second time limit while driving at different
constant speeds that ranged from 10 to 50 miles per hour. We computed inferred
rewards over the entire test period, again averaged over 20 independent runs. The
curves of Figure 7 show the superior performance of Adlin for speeds under 35
miles per hour, although its reward accuracy decreases at higher speeds. Clearly,
even Adlin has difficulty in dealing with highly dynamic environments, here
represented as driving speeds over 40 miles per hour. Again, we will return to
this issue in Section 6.

5 Related Research on Inference and Learning

The challenge of reasoning under resource constraints is nearly as old as the
field of artificial intelligence, but the problem has typically been neglected in
classical theories of normative behavior. The common approach to mitigating
the problem in practical intelligent systems has been to employ heuristic, and
usually domain-dependent, control strategies to guide reasoning. For example,
the meta-level reasoning system developed by Genesereth and Ginsberg [9] lets
the designer write Prolog-like control clauses that specify how inference rules
should be prioritized.

However, research on the topic of bounded rationality has attempted to deal
with the problem in a domain-independent way. Early work by Simon [10] ex-
amined humans’ reliance on satisficing strategies when confronted with complex



decision-making tasks. More recently, Horvitz [11] has discussed limitations of
traditional normative approaches in dealing with real-world complexity and pro-
posed adapting such methods to reason about the reasoning process itself. Sim-
ilarly, Russell and Wefald [12, 13] sought to develop a theoretical framework for
meta-reasoning that was based on probability and decision theory. Our approach
shares the idea of considering computations as mental actions with Russell and
Wefald analysis.

Other work has focused on learning control rules to reduce search or speed up
processing (see for example Minton [14]), some of which has dealt with monotonic
inference. Zelle and Mooney [3] combined explanation-based learning techniques
with inductive logic programming ideas to learn such control conditions over
inference rules. In a different approach, Cohen and Singer [15] used bootstrap-
ping to learn similar rules. These approaches assumed a query-based, top-down
inference mechanism and sought to modify the logic program itself in order to
achieve performance gains. In our work, however, we consider a data-driven,
bottom-up inference process that is more appropriate for reactive agents, for the
reasons discussed earlier. In addition, our approach operates on top of a fixed
logic program and modifies the way it is utilized by the logic interpreter.

Our approach has more in common with research on relational reinforcement
learning, at least in its broad sense defined by Tadepalli et al. [4], and hierarchi-
cal reinforcement learning [7]. However, as mentioned earlier, our variation on
relational reinforcement learning differs from the initial work by Dzeroski et al.
[5] in its use of linear regression models distributed over first-order concepts to
support generalization. Moreover, in contrast to most work on these topics, our
states and actions are cognitive rather than physical and they are completely
internal to the agent.

Our work also shares some of its basic ideas with the recent work by Guestrin
et al. [16], including relational representation of states and actions, distributed
reward over the relational structure of first-order predicates, additive approxi-
mation of value function, and class-based generalization. Nevertheless, there are
significant differences in problem setting and approach. Guestrin et al. consid-
ered a planning problem modeled by a relational Markov decision process with
fixed relations in the world, discrete attributes, and given transition probabili-
ties. They also took a linear programming approach to solving their problem. In
contrast, we have addressed an inference problem modeled as a reinforcement
learning problem over a relational state structure with dynamic relations and
continuous attributes. Our approach holds the promise of rapid learning and the
ability to scale to large state spaces, which makes it closer in spirit to work on
explanation-based reinforcement learning (e.g., Dietterich and Flann [17]).

6 Concluding Remarks

In this paper, we introduced the Adaptive Logic Interpreter (Adlin), which
uses a value-driven inference mechanism combined with reinforcement learning
to deal with the challenge of data-driven inference under time constraint. Our



experiments in dynamic domains showed that Adlin performs well in guiding
the reasoning process toward high-utility parts of the knowledge base and out-
performs exhaustive inference system. This difference was especially large under
short time limits and high rates of environmental change.

However, when the time constraint is extremely strict or the environment
is changing too rapidly, Adlin does not provide a satisfying performance gain.
This is partly due to the computational overhead involved in the system and
partly because, in the current system, every instance in the agent’s belief state
is inferred on the current execution cycle, regardless of whether it was true or
false on the previous cycle. Although this simplification did not appear to be a
crucial restriction in our experimental studies, it should certainly be addressed
in future extensions.

One basic approach to dealing with this issue is to incorporate the simple
idea behind truth maintenance systems and Rete matchers [2]. These systems
maintain the truth value of each inference instance unless the evidence support-
ing that instance changes, in which case its truth value is updated. It should be
straightforward to extend Adlin to consider only instances with changed evi-
dence as candidates for inference, from which it then selects high value instances
to actually infer. This should let the system concentrate on the belief instances
that need to be reinferred. Nevertheless, a more refined approach would consider
the intensity of change in the environment and its corresponding effect on each
belief instance. More precisely, we propose the idea of probabilistically persistent
belief, in which the agent persists in maintaining a belief instance and only up-
dates it with some probability that depends on its intrinsic variance given the
amount of change in evidence for that instance. Such a probabilistic measure can
be applied either to reduce the number of candidate inferences or to modulate
their expected values to incorporate the effect of their change of evidence into
the value-driven inference process.

Clearly, our design of Adlin assumes that the domain’s reward structure is
additively decomposable over the concepts (first-order predicates). However, this
does not impose any fundamental restriction on generality of our approach, for
two reasons. First, interactions among different concepts in the reward function
can be expressed by their relational structure. For example, imagine a preda-
tor/prey scenario in which proximity of a predator lowers the reward of proximity
of a mate for a prey animal. This effect can be captured by defining a higher
level concept that describes the relational situation (proximity of mate given the
proximity of a predator) and assigning it a low reward function. Second, the
behavior produced by a non-decomposable reward structure can often be well-
approximated by a decomposable one. In the above example, suppose the reward
function assigned to “predator proximity” (or to the concepts built on top of it)
is higher than the reward associated with “mate proximity.” Then Adlin would
pay more attention to the former and, should it hold, to reasoning on top of it,
effectively being less concerned about the latter.

Finally, from the point of view of agent architectures, a complete attention
mechanism must consider not only the concept instances that the agent believes,



but also the skills by which it interacts with its environment. Therefore, in the
longer term, a promising direction is to extend our attention mechanism to cover
skill inference and selection. Such an extension would require considering both
the temporal effects and the top-down nature of skill execution. Despite the
need for further improvements, Adlin has already revealed its potential for the
effective control of inference, which in turn has taken us closer to a practical
attention mechanism for reactive agents.
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