
Relational Temporal Difference Learning

Nima Asgharbeygi nimaa@stanford.edu

David Stracuzzi stracudj@csli.stanford.edu

Pat Langley langley@csli.stanford.edu

Center for the Study of Language and Information, Computational Learning Laboratory,
Stanford University, Stanford, CA 94305 USA

Abstract

We introduce relational temporal difference
learning as an effective approach to solv-
ing multi-agent Markov decision problems
with large state spaces. Our algorithm uses
temporal difference reinforcement to learn a
distributed value function represented over
a conceptual hierarchy of relational predi-
cates. We present experiments using two do-
mains from the General Game Playing repos-
itory, in which we observe that our sys-
tem achieves higher learning rates than non-
relational methods. We also discuss related
work and directions for future research.

1. Background and Motivation

Most research in AI views intelligent behavior as
search through a problem space to achieve goals. Di-
recting that search is crucial to an agent’s success,
but crafting search-control heuristics manually is dif-
ficult and prone to error. An alternative response is
to acquire such heuristic knowledge through learning.
One common approach formulates this task as learn-
ing control policies from delayed reward, with policies
encoded by expected value functions over Markov de-
cision processes (Sutton & Barto, 1998). This general
approach to reinforcement learning has been studied
in many settings and from many perspectives.

Most work in this tradition uses limited representa-
tions and downplays the role of background knowl-
edge. As a result, typical systems search a very large
state space and thus learn far more slowly than do
humans placed in similar situations. Research on tem-
poral abstraction (Dietterich, 2000) and state abstrac-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the authors.

tion (Asadi & Huber, 2004) aims to increase learning
rates, but few efforts have utilized the more powerful
relational representations that are standard in other
AI subfields. Recent work on relational reinforcement
learning (Dzeroski et al., 2001) uses first-order repre-
sentations to provide effective abstraction, but it does
not take advantage of action models, which are an im-
portant source of knowledge in many domains.

In this paper, we report a new approach to learn-
ing from delayed reward in multi-player games. Our
framework is similar to relational reinforcement learn-
ing in its reliance on first-order representations. How-
ever, it employs a variant of temporal differencing,
which is more appropriate than Q-learning when an
action model is available, as Tesauro (1994) and Bax-
ter et al. (1998) have demonstrated.

As in Dzeroski et al.’s work, we use a relational rep-
resentation to support effective generalization across
states, which should produce more rapid learning.
However, rather than using relational regression trees
to encode expected values, we use a factored repre-
sentation that associates component values with rela-
tional predicates. These are combined into an over-
all score, much as in traditional state evaluation func-
tions. Our work offers a novel approach to combin-
ing ideas from relational reinforcement learning and
feature-based temporal difference learning.

In the next section, we describe our representation of
states, moves, and expected values, the performance
system that uses this knowledge to play games, and
our method for relational temporal difference learning.
We then present experiments designed to demonstrate
the advantages of this approach. This includes dis-
cussion of the general game playing domain and the
specific games on which we evaluate our method. We
conclude by discussing related work and outlining di-
rections for future research on relational learning from
delayed reward.

Relational Temporal Difference Learning

2. Relational Temporal Differencing

Most work in reinforcement learning has relied on tab-
ular representations of value functions or hand-crafted
features implemented as special functions to summa-
rize important properties of states. The former suffers
from inefficiency of representation, slow learning rates,
and intractability in large state spaces. Although the
latter can offer compact representations and better
learning rates, it is domain specific and does not pro-
vide a flexible framework to support automatic feature
construction.

In this section, we propose a different view on approx-
imate value function representation. Our framework
makes a close connection to feature-based reinforce-
ment learning, but draws on a more flexible and ex-
pressive representation of value functions over rela-
tional structures. Dzeroski et al. (2001) have pur-
sued a similar approach that learns Q functions. This
framework has an important drawback, since Q val-
ues implicitly encode both the distance to and size of
the next reward (Tadepalli et al., 2004). This com-
bination can be difficult to predict in model-free and
non-deterministic environments. We focus here on the
simpler case, in which an action model is available and
only state values must be learned.

2.1. Reinforcement Learning in Markov Games

Consider a two-player stochastic Markov game
〈S, T,A1,A2, R1, R2〉, where S denotes the space
state, T (s′|s, a1, a2) the transition probability of reach-
ing state s′ if the players choose actions a1 and a2 in
state s, Ai(s) the set of actions available to player i
at state s, and Ri(s, a1, a2) the reward that player i
receives at state s in which the players select actions
a1 and a2, respectively.

Littman (1994) generalizes single-agent Q-learning in
MDPs to minimax Q-learning for zero-sum Markov
games, in which we have R1(s, a1, a2) = −R2(s, a1, a2)
for all possible assignment of s, a1, and a2. The value
functions for the two players are always negative of
each other, i.e., V1(s) = −V2(s) and Q1(s) = −Q2(s),
so only one value function must be learned. Minimax
Q-learning is given by the update rule:

Q1(s, a1, a2) := Q1(s, a1, a2) + α
[

R1(s, a1, a2)

+ γV1(s) − Q1(s, a1, a2)
]

, (1)

V1(s) = max
π1∈Π(A1)

min
a2∈A2

π(a1)Q1(s, a1, a2) . (2)

Note that in a simultaneous-move Markov game the
optimal policy is not necessarily deterministic. The

maximum in (2) is taken over all distributions on the
set of available actions A1. Szepesvari and Littman
(1999) have shown that an agent following the mini-
max Q-learning algorithm converges to the optimal Q
function with probability one.

Modifying minimax Q-learning to update a V function
instead of a Q function is straightforward. Let λ be
the parameter that determines how far back a tempo-
ral difference value should propagate. The minimax
TD(λ) learning algorithm is then

V1(sk) := V1(sk) + αλt−k
[

r1t+1
+ γV1(st+1) − V1(st)

]

,
(3)

for k = 1, . . . , t. This is very similar to the single-
agent TD(λ) update rule, but in practice it requires
more conditions to guarantee convergence. If the fixed
joint policy π = (π1, π2) of the two players explores
all state-action pairs infinitely many times, then the
algorithm will converge to V π

1 . Furthermore, if policy
π converges to minimax policy in the limit of infinite
exploration, then the algorithm will converge to the
optimal value function V ∗

1 . The minimax policy π =
(π1, π2) is given for any state st by

π1 = arg max
π∈Π(A1)

min
a2∈A2

∑

a∈A1

[

γ
∑

s

T (s|st, a, a2)V1(s)

+ R1(st, a, a2)

]

π(a) , (4)

with π2 defined analogously for the second player.

2.2. Relational Temporal Difference Learning

Now suppose that states in S are factored, such that
each state S is a set of relational ground literals from
a finite set of possible ground literals.1 More for-
mally, let L = {L1, . . . , Ln} be a set of first-order
predicates such that each Li is an entity of the form
Pname(v1, v2, . . . , vk), with Pname as the name of pred-
icate Li and each vi a parameter variable that can
represent one of a fixed set of domain constants.

Each valid binding of constants to these variables gives
a ground literal of predicate Li. Denote the set of all
groundings of predicate Li by ILi

. Then each state St

is described as St = IL1
(St) ∪ IL2

(St) ∪ · · · ∪ ILn
(St),

in which ILi
(St) ⊆ ILi

denotes the set of groundings
of predicate Li that are true in state st. Thus, the
predicates in L must provide a complete description
of the current state. Game descriptions in the GGP
framework provide an example of factored state repre-
sentations.

1We use capital S to denote factored states, as opposed
to s for non-factored states.

Relational Temporal Difference Learning

Table 1. A subset of predicates included in the sets L and
C for the TicTacToe domain.

Line(a1, a2, a3)
⇐ Column(a1, a2, a3) ∨ Row(a1, a2, a3) ∨

Diagonal(a1, a2, a3)

CanMakeLine(p, b1, b2, b3)
⇐ (p = X ∨ p = O) ∧ Line(b1, b2, b3) ∧

Cell(p, b1) ∧ Cell(p, b2) ∧ Cell(EmptyCell, b3)

HasFork(q, c1, c2, c3, c4, c5)
⇐ (q = X ∨ q = O) ∧ (c2 6= c4) ∧

CanMakeLine(q, c1, c2, c3) ∧
CanMakeLine(q, c1, c4, c5)

Given a factored state encoding, we can define a re-
lational structure on top of this representation. Con-
sider a hierarchical set of predicates C = {C1, . . . , Cm},
which we call conceptual predicates, each defined in
terms of lower level predicates (including those from
L). A conceptual predicate Ci can be also thought of
as a function ICi

that returns a set of groundings of
concept Ci given a set of ground literals for each of the
children predicates of Ci.

Table 1 shows sample predicates from the game of Tic-
TacToe. The predicate Line, along with others such
as Cell, Row, and Column that we assume are defined
elsewhere, belong to the set L. These predicates de-
scribe the game state. The predicates CanMakeLine

and HasFork, which belong to the set C, provide a
more abstract view of the states. These concepts are
used for evaluating states efficiently.

Given a state S, all true groundings of conceptual
predicates can be computed by iteratively finding the
ground literals of the predicates that depend only on
state literals, then the parent predicates built on top
of those, and so on. This produces the set of true
ground literals ICi

(s) for every conceptual predicate
Ci, i.e., the deductive closure of the predicate defini-
tions and the state description St. Figure 2 shows a
sample result of this inference process for a particu-
lar state. In complex domains, full deduction can be
very expensive to perform at every state. Asgharbeygi
and Nejati (2005) report a more efficient approach to
approximate value-controlled inference.

We represent our approximate value function in a man-
ner that is distributed over this network of relational
predicates. More precisely, we define a real-valued util-
ity U(C) for every concept C ∈ L∪C and approximate

Table 2. Sample inference results (c) for TicTacToe assum-
ing the cell constants shown in (a) and the game state
shown in (b).

C1 C2 C3

C4 C5 C6

C7 C8 C9

(a)

X X

O X

O

(b)

IL(S) IC(S)

Cell(X, C1)
Column(C1, C4, C7) . . .
Row(C1, C2, C3) CanMakeLine(X, C1, C2, C3)
Diagonal(C1, C5, C9) CanMakeLine(X, C1, C5, C9)
Line(C1, C2, C3) HasFork(X, C1, C2, C3, C5, C9)
Line(C1, C4, C7) . . .
. . .

(c)

the value of any state S as

V1(S) =
∑

C∈Winf (S)

∣

∣IC(S)
∣

∣ · U(C) , (5)

in which Winf (S) ⊆ L∪C determines a subset of predi-
cates that should influence the value of state S. This is
a design decision; one might choose Winf (S) = L ∪ C,
or restrict it to include only the highest level of con-
ceptual predicates Ci with nonempty grounding sets
ICi

(s).

With respect to our example, each predicate in C in
Table 1 (CanMakeLine and HasFork) would have an
associated utility value. Following inference, the value
of each concept’s utility is added to the value of the
state. In Table 2 (c), each member of IC(s) adds util-
ity to the value of a given state. Notice that, in this
example, CanMakeRow has two distinct groundings.
Each grounding carries the utility of the general pred-
icate, so the value of the state shown in Table 2 (b)
includes 2 · U(CanMakeRow) + U(HasFork).

Equations (3) and (5) together let us write an update
rule for predicate values U :

U(C) := U(C) + αλt−k
[

r1t+1
+ γV1(St+1)

− V1(St)
]
∣

∣IC(Sk)
∣

∣ , (6)

for all C ∈ Winf (Sk), k = 1, . . . , t. We call this class of
learning algorithms rTD(λ), where “r” refers to the re-
lational nature of the predicate hierarchy. Notice that
rTD is consistent with minimax TD in that it reduces
to (3) when there is a one-to-one mapping from states
to predicates, that is, for every state S there exists a

Relational Temporal Difference Learning

unique predicate C that has a nonempty grounding set
only at state S.

The minimax policy for rTD is still given by (4), but if
we assume that players move in alternating turns, then
the minimax policy reduces to greedy action selection.
When the Markov game is deterministic, i.e., for any
legal actions a1 and a2 at state S, T (S′|S, a1, a2) = 1
for exactly one S′ ∈ S and zero otherwise, the policy
further reduces to

a1 = arg max
a∈A1

(

γV1(S
′) + R1(S, a)

)

, (7)

when it is the first player’s turn, and similarly for π2

when it is the second player’s move. Here S′ denotes
the next state, given that the first player performed
action a in state S.

For a Markov game defined within the GGP frame-
work, in addition to the assumptions above, the re-
ward function R1(S, a1, a2) depends only on the cur-
rent state S such that the total reward for each player
is the sum of rewards associated with goal predicates
that are true at the given state:

R1(S) =
∑

G∈G1

rG · 1{|IG(S)|>0} . (8)

Here G1 is a set of goal predicates for the first player
which are just like other predicates except that each
goal predicate G ∈ G1 has an associated real-valued
reward rG. R2(S) is defined similarly for the second
player.

2.3. The Learning Agent

Our learning agent is composed of an inference en-
gine, a performance module, and a learning element.
In addition, it makes use of an external state transition
simulator which, given a joint legal action a = (a1, a2)
at state S, returns the next state S′ based on the GGP
axioms of the game. Having the set of ground literals
in current state, the inference engine deductively com-
putes all the groundings of a given conceptual predi-
cate hierarchy C. Then the performance module de-
cides what action to take at the current state.

As noted earlier, in alternating-turn games, the min-
imax policy in (4) reduces to a greedy one as in (7).
Therefore the agent only needs to consider its legal
moves at the current state (if any), perform each one
mentally and update the state and predicate ground-
ings, compute the approximate value of each next state
using (5), and select the action with the highest value
according to (7). After sending this action to the sim-
ulator to update the state, the learning element carries

out the rTD updates on predicate utilities according
to (6). In the next section, we apply rTD learning to
two such games taken from the General Game Playing
framework.

3. Experimental Evaluation

The purpose of our experimental evaluation is not to
demonstrate learning in complex games intractable for
other learning methods. Rather, the goal is to study
the behavior of our relational learning method com-
pared to non-relational approaches and to show that it
has the potential for future development. More specif-
ically, we seek to demonstrate that rTD learning ex-
hibits superior learning rates and can take advantage
of domain structure.

3.1. General Game Playing

The framework of General Game Playing (GGP)
(http://games.stanford.edu) supports competition in
a wide variety of N-person games. The game descrip-
tion language (GDL) provides a formal syntax, using a
subset of first-order logic, which lets one specify states
of the game and rules that players must follow (Gene-
sereth & Love, 2005). The game manager acts as an
administrator that tests moves for legality, commu-
nicates selected moves to opponents, checks for ter-
minating conditions, and provides scores when games
end.

A given GGP system inputs a logical description of
a game, then uses this knowledge to play the game,
including the generation of legal moves and selection
among them. Unlike specialized game players, such
as Deep Blue (Hsu, 2002) for chess or Chinook (Scha-
effer et al., 1992) for checkers, a general game player
cannot use specialized algorithms or knowledge bases
of positions constructed for particular games. Rather,
the system should be able to play any game that can
be stated in the game description language. We be-
lieve that GGP provides an excellent setting to drive
research on reinforcement learning, because it pro-
vides basic relational knowledge and offers clear per-
formance measures on a range of game-playing tasks.

3.2. Experimental Procedure

In each game, we trained our learning agent with a
series of self-play matches. This let a single agent up-
date the concept utilities for both sides of the game.
We also used an α-greedy policy during the train-
ing phase with gradually decreasing α. This ensures
sufficient exploration through a greedy-in-the-limit-of-
infinite-exploration policy.

Relational Temporal Difference Learning

Table 3. Partial list of relational predicates for TicTacToe.

IsLine(c1, c2, c3, m1, m2, m3)
⇐ Cell(x, y1, m1, c1) ∧

Cell(x, y2, m2, c2) ∧
Cell(x, y3, m3, c3)

M-M-B-Line(role, c1, c2, c3)
⇐ IsLine(c1, c2, c3, m, m, B) ∧

MarkRole(m, role)

CanCompleteLine(role, c1, c2, c3)
⇐ M-M-B-Line(role, c1, c2, c3) ∧

Control(role)

HasFork(role, c1, c2, c3, c4, c5)
⇐ M-M-b-Line(role, c1, c2, c3) ∧

M-M-b-Line(role, c1, c4, c5) ∧
(c2 6= c4)

CanBuildFork(role, c1, c2, c3, c4, c5)
⇐ M-B-B-Line(role, c1, c2, c3) ∧

M-B-B-Line(role, c1, c4, c5) ∧
IsLine(c3, c, c5, B, B, B) ∧
Control(role)

While the system was learning, we recorded its
progress after every k games by measuring its perfor-
mance against a fixed-policy reference player. We de-
fine performance as the average reward that the player
receives over the course of several matches. Thus,
we present learning curves showing performance as a
function of the number of matches the agent spent
learning. For comparison purposes, we carried out the
above procedure once with our relational learning sys-
tem and once with a traditional non-relational TD(λ)
learner with a tabular representation of value function.

During the test phase, we turned the learning off and
played the agent against a reference player. We used
a stochastically suboptimal player as reference, mean-
ing that it selects a slightly suboptimal action with
a probability of 0.1. This is particularly interesting
because it introduces some variation into the testing
procedure, as opposed to the optimal player who plays
deterministically optimal.

3.3. TicTacToe

TicTacToe is played on a 3×3 board, with players
putting X and O marks on empty cells with the goal of
achieving a line consisting of three of their own marks.
The value of the game is zero. If both players play
optimally, the game will lead to a draw. We provided
our system with a definition of seven relational con-

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

Number of Training Games

A
ve

ra
ge

 R
ew

ar
d

Relational learner
Non−relational learner

Figure 1. Performance of rTD learner playing against a
stochastically suboptimal player, compared to that of the
non-relational learner, at various point during learning the
game of TicTacToe.

cepts, five of which are illustrated in Table 3. This
table presents predicates, stated in a Prolog-like syn-
tax, that are part of the relational structure C together
with their hierarchical and logical definitions that al-
low inference of the grounding sets IC(S).

We then carried out the experiment procedure de-
scribed above. We chose a typical set of parameters
for our learning algorithm: α=0.1, γ=0.95, λ=0.9. We
employed a two-player α-greedy policy with the prob-
ability of random actions decreasing as 50/(45 + N),
with N being the number of games played so far. In
addition, we decreased the learning parameter α in a
similar manner. Our learning system was able to find
the optimal policy for the game after playing only 80
self-play matches. Figure 1 shows the resulting learn-
ing curve, along with the learning curve for the non-
relational version of the system in the same setting.

As expected, the learning rate for the relational system
is far more rapid than that for the traditional version.
The table-based learner could only show reasonable
behavior after about 1000 training games, yet it was
still suboptimal. This supports our hypothesis that
relational knowledge structures provide generalization
across different but related states.

3.4. Mini Chess

Another domain that we examined was mini Chess,
which has a 4×4 board with black and white kings
and one white rook. The goal for white player is to
mate the black king within six moves, and the goal for
black is of course to not let white succeed.

Relational Temporal Difference Learning

Table 4. Partial list of relational predicates for the ex-
tended version of mini Chess.

CornerCell(c)
⇐ Cell(1, 1, p, c) ∨ Cell(1, 5, p, c) ∨

Cell(5, 1, p, c) ∨ Cell(5, 5, p, c)

BlackKingTrappedOnEdge(BLACK, c)
⇐ Cell(xbk, ybk, BK, c) ∧

Cell(xwr, ywr, WR) ∧
EdgeCell(c) ∧
(abs(xbk − xwr) = 1 ∨ abs(ybk − ywr) = 1)

XKingsDistance(BLACK, x)
⇐ Cell(xbk, ybk, BK) ∧

Cell(xwk, ywk, WK) ∧
Cell(x, y, p) ∧
(x ≥ min(xbk, xwk)) ∧
(x < max(xbk, xwk))

ReachableByBlackBing(BLACK, x, y)
⇐ Cell(x, y, B) ∧

Cell(xbk, ybk, BK) ∧
KingMove(xbk, ybk, x, y) ∧
(¬ attacked(pp, x, y)) ∧
(¬ guarded(x, y))

We conducted experiments following the same proce-
dure as before. The background knowledge provided
to the learning agent was composed of eight simple re-
lational predicates, four of which appear in Table 4.
The original 4×4 mini Chess was very easy for the
system to learn. The learning agent found the optimal
policy in less that 100 training games of self-play, so
we extended the board size to 5×5 in order to have
a more challenging domain. All the GGP axioms re-
mained the same except for the predicates that define
the size of the board and the initial position of the
pieces on the board. We employed the same concep-
tual structure as for the original mini Chess.

One downside of our decision was that we no longer
had access to an optimal player for the extended mini
Chess. Therefore, during the test phase we took the
best policy found at the end of training process, and
used it to create a stochastically suboptimal reference
player. Figure 2 summarizes the result of this experi-
ment in the form of a learning curve. Once again, the
learning rate appears to be promisingly high.

4. Related Research

There is a small but growing body of research on re-
lational reinforcement learning to which the rTD al-
gorithm is closely related. Tadepalli et al. (2004)

0 20 40 60 80 100 120

−100

−50

0

50

100

Number of Training Games

A
ve

ra
ge

 R
ew

ar
d

Relational learner
Non−relational learner

Figure 2. Learning curve for the rTD learner on the ex-
tended version of mini Chess when tested against a sto-
chastically suboptimal player, in comparison to that of the
traditional TD learner.

motivate this paradigm in terms of challenges that
standard reinforcement learning faces in relational do-
mains. These include function approximations to ex-
ploit relational structure, generalization across ob-
jects, transfer across tasks, and the use of prior knowl-
edge. Our approach to value function approximation
takes direct advantage of domain structure by assign-
ing utilities to relational predicates. This allows rTD
to generalize across different ground literals for each
predicate. Furthermore, our system makes explicit use
of prior knowledge in learning and in value prediction.

By contrast, previous work on relational reinforce-
ment learning has focused on different responses to
the above challenges. Dzeroski et al. (2001) adapted
relational regression algorithms to take advantage of
relational structure in describing Q values. For ex-
ample, the TG algorithm (Driessens et al., 2001) in-
duces a relational regression tree that predicts Q val-
ues. However, our system relies on state values so
that the learning algorithm makes explicit use of the
domain description.

Another closely related line of work comes from
Guestrin et al. (2003), who report a system that di-
rectly approximates the value function by additively
decomposing it into local functions for each class of
objects, then calculating weights for the combina-
tion by solving a linear program using constraint-
sampling methods. Their approach assumes that re-
lations among objects do not change over time. Our
method does not make that assumption, as our learned
value function is defined over relational predicates
rather than classes of objects. Less closely related

Relational Temporal Difference Learning

approaches include approximate policy iteration (e.g.,
Fern et al., 2004) and explanation-based reinforcement
learning (e.g., Boutilier et al., 2001).

A second area of related research comes from the ap-
plication of reinforcement learning to game playing.
Kaelbling et al. (1996) note that two-player games do
not fit into the basic reinforcement learning framework
because the goal is to maximize reward against an op-
timal and potentially adaptive adversary, rather than
in a fixed environment. Nevertheless, Littman (1994)
and others have adapted such standard algorithms to
a general class of multi-player games.

One of the best known applications is Tesauro’s (1994)
TD-Gammon, which used temporal-difference learn-
ing to achieve professional-level play in Backgam-
mon. More recently, Baxter et al. (1998) have re-
ported KnightCap, a system that used temporal dif-
ferencing in chess. Both relied on feature-based func-
tion approximators to estimate values, but these in-
volved propositional features rather than relational
structures. Levinson and Weber (2000) have also used
learning from delayed reward to improve chess play.

5. Concluding Remarks

Our utilization of the General Game Playing frame-
work to evaluate rTD reflects our concern with flexi-
ble approaches to learning. We believe a critical as-
pect of this work is the use of relational represen-
tations. Our experiments with GGP games demon-
strated rapid rates of improvement and thus provide
initial support for this claim. However we must aug-
ment this work with additional studies on more dif-
ficult domains, games or otherwise. We should em-
phasize that our work is done within the framework
of temporal difference learning, and hence does not
go beyond the inherent assumptions of the framework,
including stationarity of learned policies.

This preliminary work is a starting point for research
in two important directions. First, we should explore
improvements to the value function representation and
associated learning algorithms. Although we achieved
impressive learning rates, we believe the representa-
tion must be enhanced to maintain this ability in more
complex domains. One possible improvement would
assign confidence measures to the learned predicate
values so that the learning algorithm can make more
informed updates toward increasing the overall confi-
dence of state value predictions.

With respect to learning, having an effective explo-
ration strategy is crucial, and it is well known that
α-greedy exploration usually gives relatively slow con-

vergence rates. A better alternative would be an explo-
ration function that assigns optimistic, imaginary out-
comes to under-explored states and produces greedy
exploration toward unexplored regions of the state
space. Confidence measures could also be useful in
an exploration scheme that guides the learner toward
states with less confident value estimates.

On another front, we should develop methods that au-
tomatically construct the high-level predicates neces-
sary to encode relational value functions. Our rela-
tional language provides a suitable formalization for
this problem. Several approaches hold promise, includ-
ing analytical generation of relational predicates from
the symbolic description of the domain (e.g., Fawcett
& Utgoff, 1992), statistical approaches to discovering
emerging patterns (Dong & Li, 1999), and using meth-
ods similar to explanation-based learning to find use-
ful predicates from observed expert traces. Also, con-
fidence measures should be useful in selecting states
that require additional predicates to give more accu-
rate value estimates.

Taken together, these extensions should produce more
robust methods for reinforcement learning that take
full advantage of the potential that relational repre-
sentations offer. They should also let us demonstrate
rapid learning over the broad range of domains that
arise in the General Game Playing framework, as well
as other settings in which relational structures play an
important role.

Acknowledgments

This material is based on research sponsored by
DARPA under agreement FA8750-05-2-0283. The
U. S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as representing
the official policies or endorsements, either expressed
on implied, of DARPA or the U. S. Government.

References

Asadi, M., & Huber, M. (2004). State space reduction
for hierarchical reinforcement learning. Proceedings

of the Seventeenth International FLAIRS Confer-

ence (pp. 509–514). Miami Beach, FL.

Asgharbeygi, N., & Nejati, N. (2005). Guiding infer-
ence through relational reinforcement learning. Pro-

ceedings of the Fifteenth International Conference

on Inductive Logic Programming (pp. 20–37). Bonn.

Relational Temporal Difference Learning

Baxter, J., Trigdell, A., & Weaver, L. (1998). Knight-
cap: A chess program that learns by combining
TD(λ) with game-tree search. Proceedings of the Fif-

teenth International Conference on Machine Learn-

ing (pp. 28–36). Madison, WI: Morgan Kaufmann.

Boutilier, C., Reiter, R., & Price, B. (2001). Sym-
bolic dynamic programming for first order MDPs.
Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence (pp. 690–697).
Seattle, Washington.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposi-
tion. Journal of Artificial Intelligence Research, 13,
227–303.

Dong, G., & Li, J. (1999). Efficient mining of emerging
patterns: Discovering trends and differences. Pro-

ceedings of the Fifth International Conference on

Knowledge Discovery and Data Mining (pp. 43–52).
San Diego, CA.

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order deci-
sion tree learning. Proceedings of the Twelfth Euro-

pean Conference on Machine Learning (pp. 97–108).
Freiburg, Germany.

Dzeroski, S., Raedt, L. D., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
43, 7–52.

Fawcett, T., & Utgoff, P. E. (1992). Automatic feature
generation for problem solving systems. Proceedings

of the Ninth International Workshop on Machine

Learning (pp. 144–153). Aberdeen, Scotland.

Fern, A., Yoon, S. W., & Givan, R. (2004). Learn-
ing domain-specific control knowledge from random
walks. Proceedings of the Fourteenth International

Conference on Automated Planning and Scheduling

(pp. 191–199). Whistler, British Columbia.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in
relational mdps. Proceedings of the Eighteenth Inter-

national Joint Conference on Artificial Intelligence

(pp. 1003–1010). Acapulco, Mexico.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4, 237–285.

Levinson, R., & Weber, R. (2000). Chess neigh-
borhoods, function combination, and reinforcement
learning. Proceedings of the Second International

Conference on Computers and Games (pp. 133–
150). Hamamatsu, Japan.

Littman, M. L. (1994). Markov games as a frame-
work for multi-agent reinforcement learning. Pro-

ceedings of the Eleventh International Conference on

Machine Learning (pp. 157–163). New Brunswick,
NJ: Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement

learning: An introduction. Cambridge, MA: MIT
Press.

Szepesvari, C., & Littman, M. (1999). A unified analy-
sis of value-function-based reinforcement learning
algorithms. Neural Computation, 11, 2017–2060.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Re-
lational reinforcement learning: An overview. Pro-

ceedings of the ICML’04 Workshop on Relational

Reinforcement Learning (pp. 1–9). Banff, Alberta.

Tesauro, G. (1994). TD-Gammon, a self-teaching
backgammon program. Neural Computation, 6,
215–219.

