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Abstract

In this paper, we present an approach to transfer that involves analogical mapping of symbols across different domains. We relate this
mechanism to Icarus, a theory of the human cognitive architecture. Our system can transfer skills across domains hypothesizing maps
between representations, improving performance in novel domains. Unlike previous approaches to analogical transfer, our method uses
an explanatory analysis that compares how well a new domain theory explains previous solutions under different mapping hypotheses.
We present experimental evidence that the new mechanism improves transfer over Icarus’ basic learning processes. Moreover, we argue
that the same features which distinguish Icarus from other architectures support representation mapping in a natural way and operate
synergistically with it. These features enable our analogy system to translate a map among concepts into a map between skills, and to
support transfer even if two domains are only partially analogous. We also discuss our system’s relation to other work on analogy and

outline directions for future research.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Many computational learning methods require far more
training instances than humans to achieve reasonable per-
formance in a domain. A key reason is that humans often
reuse knowledge gained in early settings to aid learning in
ones they encounter later. This phenomenon is known as
transfer in cognitive psychology, where it has received far
more attention than in Al and machine learning.

Much of this research has focused on transfer of com-
plex skills for tasks that involve action over time (e.g.
Kieras & Bovair, 1986; Singley & Anderson, 1988). This
paper reports on a computational approach to transfer that
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takes a similar perspective. We focus on the acquisition of
cognitive skills from experience and on how transfer
improves behavior on distinct but related tasks.

We share with many psychologists the idea that transfer
is mainly a structural phenomenon. This suggests that
transfer is linked closely to how an agent represents knowl-
edge in memory, how its performance methods use these
structures, and how its learning elements acquire this
knowledge. Theoretical commitments to representation,
performance, and learning are often associated with the
notion of a cognitive architecture (Newell, 1990). Thus, it
seemed natural for us to study transfer in the context of
Icarus (Langley & Choi, 2006), an architecture that takes
positions on each of these issues.

In previous research (Choi, Konik, Nejati, Park, &
Langley, 2007), we showed that, Icarus is natively capable
of producing near transfer due to its commitments to rela-
tional, hierarchically composable, and goal-indexed knowl-
edge representations, plus its mechanisms for using and
acquiring such structures. This form of transfer is due to
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the application of literally similar knowledge in multiple
tasks, represented in IcArRUs as generalized skills acquired
by a flexible learning method.

However, literal similarity does not explain all transfer
phenomena. Humans often reason analogically between
situations that are very different in the surface but contain
structural correspondences apparent in statements such as
“an electric battery is like a reservoir”. Structural mapping
theory (Gentner, 1983) explains this kind of analogy by
detecting structural correspondences between two
domains. This paper investigates a related approach. Our
focus is to explain far transfer, defined as transfer between
domains that employ different symbols to represent rela-
tions among objects. We introduce a new mechanism for
goal-directed analogical reasoning that identifies mappings
between such domains, and we use that mapping to port
both conceptual and procedural knowledge into a new set-
ting. We combine this mechanism with features of IcARrus,
resulting in a system that acquires skills from experience in
one problem domain and employs them in another, despite
significant differences in vocabulary.

More specifically, we develop a novel algorithm for rep-
resentation mapping, called Gama (goal-driven analogical
mapping) that identifies correspondences between rela-
tional representations through explanatory analysis. This
process is mainly guided by pragmatic (i.e. related to the
purpose of analogy) considerations, using the terminology
of Holyoak and Thagard (1989), but it is also biased to sat-
isfy structural and semantic constraints as defined by Gent-
ner (1983). We claim that:

e Goal-directed analogy enables far transfer in a cognitive
system.

e The same features that distinguish Icarus from other
cognitive architectures support goal-directed analogy
in a natural way.

We support the first claim via computational experi-
ments on far transfer tasks. In particular, we demonstrate
a significant increase in problem-solving speed due to
mapped knowledge, and then present the results of a lesion
study that shows the speedup is due to the Gama algo-
rithm. We support the second claim by illustrating the
dependence of Gama on core features of the Icarus
architecture:

e two separate long-term memories for procedural (skills)
and declarative knowledge (concepts);

e skills indexed by the goals they achieve (thus associating
all procedural knowledge elements with declarative
knowledge elements); and

e hierarchical and composable representations for both
skills and concepts.

These features work synergistically with Gama by letting
it translate a map among concept predicates into a map

between skills, and by supporting far transfer even in the
case of partial analogy.

We elaborate on these ideas in the pages that follow.
The next section presents an experimental testbed for com-
puter games that illustrates the benefits of reusing learned
knowledge structures. In Section 3, we review Icarus’
assumptions about representation, performance, and learn-
ing, and how these assumptions support near transfer. In
Section 4, we describe our representation mapping algo-
rithm, Gama, showing how it transfers IcARUS concepts
and skills across domains. In that section, we also discuss
how Icarus’ architectural commitments help Gama to sup-
port transfer. In Section 5, we evaluate our claims using
specific experiments with game playing domains. We con-
clude by reviewing related efforts on structural transfer
(Section 6), describing our priorities for future research
on this topic (Section 7), and stating our conclusions (Sec-
tion 8).

2. The transfer setting

Our research has studied transfer via a collection of
challenge problems phrased as source-target pairs. Here,
the object is to solve the source problem, extract transfer-
able knowledge from that experience, and demonstrate that
these structures improve the agent’s ability to solve the tar-
get problem. We measure transfer by comparing the time
required to solve the target problem with and without
exposure to the source.

We have employed the general game playing (GGP)
framework (Genesereth, Love, & Pell, 2005) to structure
this task. GGP encodes tasks (typically games) in a first-
order logic language that employs separate theory elements
to describe legal moves, state transitions, and the initial
state associated with game instances. GGP also enforces
a careful evaluation model by presenting game rules at
the same time as game instances. This requires agents to
employ general mechanisms for performance and learning,
while constraining the role of background knowledge.

We have studied three types of far transfer tasks, char-
acterized by the nature of the analogy within each
source-target pair. Abstraction tasks admit a one-to-one
correspondence between symbols denoting objects and/or
relations, and allow elements in the source with no target
corollary. Fig. la gives an example drawn from a game
called Escape, where the agent’s goal is to direct the
explorer to an exit. The source task requires nailing logs
together to create a bridge over the river, while the target
requires tying barrels together with rope. The predicates
for nailing and tying differ from source to target and while
the logs correspond to the barrels, the hammer has no tar-
get corollary. This makes transfer difficult because the
agent must discover the mapping between source and tar-
get symbols and abstract away the parts of the source
knowledge (e.g., knowledge about hammer) that is not
applicable in the target.
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(a) Abstraction scenario (b) Reformulation scenario (c) A cross-domain scenario
in Escape in Wargame from Escape to mRogue

Fig. 1. Source-target scenario pairs.

Reformulation scenarios consist of isomorphic problems

created by consistently replacing all source symbols to
obtain the target task. Fig. 1b gives an example taken from
a domain called Wargame, where the goal is to maneuver
the soldier to the exit while avoiding/defeating enemies.
The enemies actively seek the soldier and move twice as

fas

t, but they can become stuck at walls. Supply points

contain weapons and ammunition. These transfer problems
are difficult because the agent must discover a deliberately
obscured source-target relation.

Finally, cross-domain scenarios draw the source and

target problems from different games. Fig. Ic shows an
Escape to mRogue example (after the ancient text game),
where the agent gets points for gathering treasure, defeat-
ing monsters, and exiting the playing field. These scenarios

do
on

not deliberately support analogies, but all games occur
2D grids and involve reaching a goal after surmounting

obstacles by collecting and employing appropriate tools.
Transfer pairs in this class are difficult because the agent
must identify both the symbol mapping and the portions

of

the source solution that are preserved.

3. The Icarus architecture

IcArus is a cognitive architecture in the tradition of

work on unified theories of cognition (Newell, 1990). As
such, it provides general-purpose reasoning mechanisms
and representation. We discuss these components in the
traditional order, beginning with the key representational
elements (concepts and skills), followed by the operations
that employ them (inference, execution, and learning).
We place these components in context at the section’s
end by describing the capacity for near transfer they natu-
rally support.

Table 1
Example IcaruUs concepts.

3.1. Representation of concepts and skills

The IcaArus architecture makes several commitments
about knowledge representation. First, it supports two dis-
tinct structures to represent tasks; concepts describe situa-
tions in the environment while skills describe how to
achieve such situations. Both concepts and skills are orga-
nized in hierarchies, which consist of primitive structures in
the terminal nodes and nonprimitive ones in the internal
nodes. This means that Icarus can employ multiple layers
of abstraction to describe the current state and the proce-
dures for manipulating that state.

Icarus’ long-term conceptual knowledge is described by
concept clausesthat resemble traditional Horn clauses in
first-order logic (Table 1). An Icarus agent uses primitive
concepts like location to describe symbolic and numeric
features of the perceived state. Higher-level concepts such
as atExit are defined in terms of other concepts and enable
the agent to form beliefs (concept instances) given other
concept instances. Since concepts can also represent fea-
tures of desired states, IcArRus uses them to describe the
goals.

Icarus’ skills and concepts correspond to hierarchical
task networks like those in SHOP2 (Nau, Cao, Lotem, &
Munoz-Avila, 1999) with one additional constraint; the
skills are indexed by the goals they are intended to achieve.
All skill clauses (Table 2) have a head, which indicates the
skill’s goal, and start conditions, which describe the situa-
tion when it is applicable. Primitive skills like location in
Table 2, achieve their goal by executing an action, move
in this case, while nonprimitive skills specify more complex
activities that involve decomposing the skill into subskills
(e.g., atExit is decomposed into subskills such as holding).

It is important to note that the skills and concepts con-
tain different kind of information, even though Icarus uses

Primitive Concept

(location explorer ?x ?y)
:percepts
(entity explorer x-cord ?x
y-cord ?y)

Nonprimitive Concept

(atExit ?agent)
:relations
(location exit
(location ?agent

?x ?y)
?x ?y)
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Table 2
Primitive and non-primitive Icarus skills.
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Primitive Skills

(location explorer ?x ?y)

start: (location explorer ?x1 ?y)
(add ?x ?x1 1)
(direction east)
(nextToExplorer east ?x ?y)
(not (blocked east ?x1 ?y))

actions: (move explorer east)

(atExit ?agent)

start: (obstacleType ?0Obstacle ?Type)
(location ?Obstacle ?Xo ?Yo)
(canCompromise ?Property ?Type)
(not (destroyed ?Obstacle))

subgoals: (property ?Item ?Property)

(atExit ?agent)
start:
subgoals:

Nonprimitive Skills

% constructs an item

% that can overcome ?0Obstacle
(holding ?Item)
(nextToExplorer ?X3 ?Xo ?Yo)
(atExit ?agent)

(location exit ?X ?Y)
(location ?agent ?X ?Y)

the same predicate symbols to refer both. A concept p
defines what p is and when its instances can be inferred,
while the skill p is a constructive definition that describes
how instances of p can be achieved or created through
actions. For example, while the atExit concept (Table 1)
defines when an agent is at an exit location, the atExit skill
(Table 2) describes how to bring the agent to that exit
location.

Icarus skill clauses refer to concepts in their head, start
conditions, and subgoals. The SHOP2 formalism also
refers to defined predicates in its methods’ preconditions,
but their heads and bodies refer to arbitrarily named tasks
and subtasks. Icarus’ use of goals (desired concepts) in
their place plays important roles in execution and learning.

3.2. Execution of hierarchical skills

The Icarus architecture operates in cognitive cycles,
spanning conceptual inference, skill selection, and physical
execution (Fig. 2). The system derives its beliefs via a bot-
tom-up inference process, initiated by object descriptions
that arrive in the agent’s perceptual buffer. After it infers
primitive beliefs from these percepts, inference over
higher-level concepts generates additional beliefs. In con-
trast, 1carus performs skill selection in a top-down man-

ner, starting with the unsatisfied goal having the highest
priority. On each cycle, it finds a path from this goal down-
ward through the skill hierarchy; each skill along this path
must have an unsatisfied head and be applicable given cur-
rent beliefs, with the terminal node being a primitive skill
that Icarus executes in the environment. This differs from
traditional production-systems (Neches, Langley, & Klahr,
1987), which require multiple cycles and use of working
memory to traverse levels of an implicit goal hierarchy.

Since the architecture repeats this procedure on each
cycle, agents combine reactivity with goal-driven behav-
iors. IcARrUS is goal-driven because an applicable skill path
corresponds to an abstract partial plan for achieving the
goal. The system is reactive because it reevaluates skill path
on each execution cycle. Moreover, there is a bias towards
persistence because the execution module prefers portions
of the path selected on the previous cycle as long as they
are still applicable.

3.3. Learning hierarchical skills

Nejati, Langley, and Koénik (2006) reported an analyti-
cal method to learn hierarchical skills. This mechanism
inputs the goal and a solution trace that achieves it, stated
as a sequence of observed states and actions that produce

Perceptual
Buffer
Long-Term Short-Term
Conceptual Conceptual
Memory Memory
> Environment
Long-Term Problem Solving Sé}]gg;gﬁfﬁn
Skill Memory Skill Learning Memory
[ Motor
Buffer

Fig. 2. A schematic of memories and processes in the IcArRus architecture.
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them. The mechanism interprets the solution trace in the
context of the system’s conceptual knowledge and primi-
tive skills and explains how the solution path produced
the desired goal. Then, it outputs a skill hierarchy for
achieving that goal.

The learning component starts it analysis with the top-
level goal and explains it with a recursive procedure, where
a set of goals are either decomposed into subgoals using
conceptual definitions or explained in terms of the effects
of primitive skills. The system then applies the same proce-
dure recursively on the subgoals and the corresponding
parts of the solution trace, until it generates all the explana-
tions necessary for the overall task. The architecture trans-
forms the resulting explanation structure into hierarchical
skills and adds them to skill memory for future use.

This learning method is related to previous techniques for
explanation-based learning (Segre, 1987), but instead of
compiling away the explanation structure, it uses this to
determine the structure of the skill hierarchy. We reported
another approach (Langley & Choi, 2006) for learning skill
hierarchies that relies on means-ends problem-solving
instead of an explanatory analysis of solution traces,
although it requires more search through the problem space.

3.4. Near transfer in Icarus through generalized skills

In our previous research (Choi et al., 2007), we demon-
strated IcArRUS’ near transfer capabilities on Urban Com-
bat, a real-time, first-person perspective game.”? We
claimed that the architecture achieves this effect due to its
use of relational, hierarchically composable, and goal-
indexed skills, along with mechanisms for using and acquir-
ing them. These representational commitments mean that
skills exist as independent knowledge elements that can
be composed in novel ways. The learning algorithm just
described utilizes this capability by acquiring many small
skills that will be composed at run-time as opposed to cre-
ating a single macro with a long sequence of actions (Moo-
ney, 1990). Icarus’ flexible execution mechanism supports
this ability by making skill decomposition decisions at
run-time based on observed situations.

Icarus’ relational representation facilitates transfer by
increasing generality of the encoded skills such that they
apply in circumstances that are only qualitatively similar
to the situations that led to their acquisition. Learning sup-
ports this generality by employing relational background
knowledge. As a result, the learned skills reference the sys-
tem’s conceptual vocabulary, letting Icarus retrieve them
more flexibly during execution. For example, suppose an
agent has acquired a skill that has the goal of reaching a
target location. Its start conditions will indicate that this
location is collectively-blocked (a background concept that
matches when multiple objects collectively impede a path),
and it will have subgoals for reaching the closest blocking

2 Details of this game are available at http://www.urban-combat.net.

object and trying to overcome it (e.g., by jumping over
it). The generality of the collectively-blocked concept lets
the agent apply this learned skill in novel situations where
multiple objects collectively block a path in very different
configurations.

Icarus’ goal-indexed skill representation facilitates
transfer by enabling the skills learned on different occa-
sions to be composed in new situations in novel ways. In
cases where learned skills are partially incorrect or inaccu-
rate given the current situation, the execution module can
dynamically replace the unusable subskills with others or
it can return control to alternative higher-level skills. For
example, suppose that Icarus is executing a navigation
skill for reaching a target location in a partial information
game. When the agent encounters an unexpected impasse
such as a destroyed bridge, its source navigation skill for
traversing that region may become inapplicable. Given
alternate learned skills, the agent could try to achieve the
same subgoal by constructing a raft, or by falling back to
default exploration skills that search for an alternative path
to a goal location.

4. Far transfer through representation mapping

Although the architectural mechanisms described in the
previous section account for interesting transfer phenom-
ena, IcArRuUs does not exhibit far transfer in cases where
the source and target domains are represented with differ-
ent symbols. This section describes a new method for rep-
resentation mapping and transfer that enables better reuse
of knowledge in such settings.

Analogical mechanisms are often described in terms of
distinct steps. Here, we extend Thagard, Holyoak, Nelson,
and Gochfeld’s (1990) decomposition by including an addi-
tional first and fifth step:

1. Performance and learning in the source domain.

2. Retrieving or selecting plausibly useful
knowledge.

. Mapping between the source and the target domains.

4. Translating source information for appropriate use with

the target.
5. Performing with the transferred knowledge.
6. Subsequent learning in target domain.

source

w

We have developed a new representational transfer algo-
rithm called Gama (Goal-driven Analogical Mapping) to
support far transfer by handling the mapping and transla-
tion tasks identified above (steps 3 and 4). We use Gama to
transfer executable knowledge, and demonstrate it in a set-
ting (see Section 5) that includes performance and learning
in the source domain as well as performance in the target
domain (steps | and 5, above). Gama consists of two parts:
the representation mapper finds the correspondences
between source and target symbols, while the representa-
tion translator uses those correspondences to translate
source skills and concepts into skills and concepts in the
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target domain. The following subsections describe these
components of GAMA in more detail. Note that we have
not fully integrated Gama into the IcArus architecture,
so we make no commitments about how and when the
retrieval of relevant past experiences (step 2 above), and
transfer should occur in general.

The input of GAMA consists of source and target domain
theories®, a solution for a source task, and source skills
learned from that solution. The output comprises target
skills and concepts constructed from transferred source
knowledge. The new transfer mechanism uses skills learned
in the source domain to improve performance in the target
domain. To this end, the representation mapper finds the
correspondences between source and target symbols, while
the representation translator uses those correspondences to
translate source skills and concepts into skills and concepts
in the target domain. In the following subsections, we
describe these components of Gama in more detail.

4.1. Representation mapping

The intuition behind the representation mapper is that
there is an opportunity for analogy if one can explain the
solution for a source problem in target terms. In overview,
the algorithm employs a source problem and an explana-
tion of how the source problem is solved as input. Next,
it generates an analogous explanation from the perspective
of the target domain theory by matching target theory
clauses against the source explanation. This first forges
links between the source and target theories, then returns
as output correspondences between concept predicates
(and objects) of the source and target theories.

In more detail, the input consists of source and target
domain theories, source solution, and learned source knowl-
edge. The domain theories describe the initial state, rules
and goal using IcarUS concepts and primitive skills.* The
source solution consists of a goal instance and a sequence
of action-state pairs achieving that goal. Finally, learned
source knowledge contains an explanation of the source
solution and learned source skills automatically generated
by the learning system described in Section 3.3. The source
explanation is an intermediate structure produced by this
learning method consisting of a directed graph in which
the nodes are facts that were relevant for achieving the
source goal and the links represent their justification in
terms of source theory clauses. The output is a representa-
tion map — a set of source-target predicate (or object) cor-
respondences that can convert source skills and concepts
to the target representation. GamMa hypothesizes correspon-
dences between source and target predicates by aligning
target theory clauses against the source explanation. The

* In the GGP setting, we assume that an agent knows the rules of both
source and target games but initially does not possess strategic knowledge
in either domain.

* We use a preprocessor that automatically translates GGP game rules
to IcAruS’ representation.

system starts this process by forming a correspondence
between the source and target goals. Next, GAMA expands
the source goal using the explanation for how it was
achieved, and the target goal using the target theory for
how it might be achieved. Gama then searches for map-
pings among predicates and objects that let the target the-
ory match onto the source explanation.

Gama’s search is guided by constraints and heuristics
described in the next section. Whereas hard constraints
cause GAMA to backtrack, heuristics and soft constraints
determine the order of search through the space of corre-
spondences and the preference among alternative map-
pings. Once GaMa finds a consistent alignment, it returns
as output a representation map M, which is a hypothesized
set of correspondences between the source and target con-
cept predicates such that, given M, the target theory can
explain the source solution in a similar fashion to the given
source explanation. Gama also facilitates transfer between
domains that are analogous at an abstract level by allowing
partial mappings that do not perfectly align the source
explanation with the target theory. However, it tries to
minimize the amount of abstraction with a bias that prefers
mappings which cover as much of the source explanation
as possible.

Table 3 presents an example from an alignment process.
In overview, GAMA expands a given correspondence into
antecedents using the explanation on the source side and
the domain theory on the target side, creating an opportu-
nity to establish new mappings. The alignment starts with
the correspondence (atExit explorer) <> (atGoal hero)
between the top-level goals. On the target side, GAMA uni-
fies the goal instance (atGoal hero) with the target concept
clause (atGoal ?agent), which it will expand later to con-
tinue the mapping process. It matches those subconcepts
against the antecedents of (atExit explorer) in the source
explanation. Consequently, GAMA generates a new set of
correspondences between the antecedent pairs such as
(location explorer 5 0) < (place hero ?X ?Y), which it will
expand later. Note that, in this Table, the antecedent cor-
respondence (not (blocked east 4 0)) < true exemplifies a
case when GaMA could not construct a perfect alignment
and leaves the source explanation node without a target
correspondence.

Table 4 presents the pseudo-code for the Gama algo-
rithm. Given a source explanation E, target theory 7, the
source and target goals Gy and Gr, GAMA starts the align-
ment process by forming a correspondence between Gg and
Gr. At any given time, it keeps track of a partially
expanded correspondence between E and T using two data
structures. The set of cndidate correspondences C contains
correspondences that are not examined yet, whereas the
correspondence support set S accumulates the correspon-
dences committed to so far. The algorithm uses S to con-
struct its output and to ensure that the collected
correspondences are globally consistent. C and S are ini-
tialized with the top-level goal correspondence Gs < Gr.
On each iteration, GamA picks the most promising corre-
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Source Explanation

state28: (atExit explorer) <«
state0 : (location exit 5 0)
state28: (location explorer 5 0)
state28: (location explorer 5 0) <«
state0 : (direction east)
(not (blocked east 4 0)
(add 5 4 1)
state27: (location explorer 4 0)
(nextToExplorer east 5 0)
state28: (move explorer east)

Target Theory

% concept clause
(

atGoal ?agent)
:relations (place goal ?X ?Y)

(place ?agent ?X ?Y)

¢ primitive skill clause
(place hero ?X1 ?Y1)

:start (direction east)
(add ?X1 ?X2 1)
(place hero ?X2 ?Y1)
(nextToHero east ?X2 ?Y1)
raction (move hero east)

Expand goals : (atExit explorer) <«

Hypothesize correspondences:
(atExit ?X) ¢ (atGoal ?X),

Unify on target side:
(atGoal hero) =

Align antecedents:
(location exit 5 0)

Hypothesize correspondences:
(location ?A ?B ?C) <>

exit <> goal, 5 < ?X,

Expand:

(location explorer 5 0) <>

Unify on target side:
(place hero ?X ?Y) =

Align antecedents:
(direction east)
(not (blocked east 4 0)
(add 5 4 1)

(location explorer 4 0)

(

(

Ed

>
nextToExplorer east 5 0
move explorer east)

Alignment Process

(atGoal hero)

(atGoal ?agent)

<> place(goal ?X ?Y)
(location explorer 5 0)«> place(hero ?X ?Y)

(place ?A ?B ?Q)
0 <& ?Y

(place hero ?X ?Y)
(place hero ?X1 ?Y1)

(direction east)
< true
<> add (?X ?X2 1)
(place hero ?X2 ?Y)
) <
<> (move hero east)

explorer <> hero

(nextToHero east ?X2 ?Y)

spondence sy < ¢y € C based on a heuristic function / (Sec-
tion 4.2). Next, it applies a correspondence expansion on
so < ty, where correspondences are formed between
theantecedents of sy and ty,. During correspondence expan-
sion, it generates source antecedents sy, . . ., s, that justify s,
in the source explanation, and target antecedents ¢, ..., 1,
that regress the goal, #, through a single concept or prim-
itive skill clause. These antecedents are concepts in the
source and target domains, which Gama seeks to analogize.
A correspondence expansion returns an antecedent align-
ment A ={...,(s; < ¢;),...} that is a pairwise correspon-
dence between source and target antecedents. If the
number of source and target antecedents are not the same,
the system allows a partial antecedent alignment with cor-
respondences such as true < t; or s; < true, which is the
basis for learning mappings between domains that are sim-
ilar only at an abstract level. However, the method assigns
a high heuristic cost to such abstract correspondences.
After each correspondence expansion, GAMA updates its
data structures. It removes the expanded correspondences

from C, and adds the newly created antecedent correspon-
dences to C as well as to S. The algorithm backtracks if the
newly added correspondences create inconsistency in S
based on constraints we describe in the next subsection.
This process continues recursively until C is empty, when
it returns a representation mapping constructed using the
information in S.

This pseudo-code defines a search process generated by
the nondeterministic correspondence expansion function.
This function calculates all possible antecedent alignments
for a given correspondence, but returns them one by one
(per a heuristic order) each time the algorithm backtracks
to a given choice point. For example, in Table 3 the first
correspondence expansion results in (location explorer 5
0) <> (place hero ?X ?7Y), but Gama also considers an incor-
rect alternative correspondence (location exit 5 0) < (place
hero ?X ?Y)during its search. The algorithm sorts its alter-
natives at choice points using a heuristic function /() that
we describe shortly. When new additions to the correspon-
dence support set S violate constraints, GAMA backtracks.



T. Konik et al. | Cognitive Systems Research 10 (2009) 270-285

Table 4
The Gama algorithm, with line numbers for nondeterministic steps in bold.
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gama(Gs: source goal, Gr: target goal, T: target theory, E: source explanation ) :- (1)
heuristic function h() returns a confidence value for a set of correspondences
initial correspondence ¢ : = (Gs <> Gy) 2)
correspondence support set S : = {c} 3)
candidate correspondences C : = {c} “)
garma-loop(S, C, 7, E) 5)
gama-loop(S, C T, E) :- (6)
if C={} terminate with a mapping determined by S (7)
select candidate correspondence ¢ € C (using /(c) for ordering candidates) )
C=C-{c} ©)
‘ antecedent correspondences 4 := correspondence-expansion(c, S) | (10)
new candidate correspondences Cpey := CU A4 (11)
new correspondence support set Syey 1= SU A4 (12)
backtrack if Spew violates constraints or /(Syew) < min-output-value (13)
gama-loop(Sews Chews 15 E) (14)
correspondence-expansion(s¢->to, S) :- (15)
A :=select an antecedent alignment {...(s; <> ¢, ... } consistent with S such that (16)
a source explanation sy < s1,..., s, is in E,

a target clause 7 <1, ..

., tm exists in T, where ¢ unifies with #,, and

the selection is ordered by the heuristic function 4(A4).

A is assigned empty set if sy or tg does not have antecedents.

It also backtracks to an earlier choice point if the heuristic
value of the collected correspondences in S is too low (e.g.,
if there are too many abstractions).

4.2. Constraints and heuristics used in representation
mapping

If not controlled, the space of all possible representation
mappings is very large. Like other techniques that find
analogies, ours is guided by several constraints and heuris-
tics. These fall into three groups: pragmatic, structural, and
semantic constraints, using the terminology of Holyoak
and Thagard (1989).

Pragmatic constraints concern the purpose of analogy
and play a central role in GAMA. In our case, the purpose
of analogy is to transfer source skills that can achieve a tar-
get goal and the search process is guided through forma-
tion of an explanation of that target goal. Moreover,
GamMa considers only correspondences that are necessary
to transfer relevant source skills. In particular, it forms cor-
respondences for the symbols that occur in the explanation
of the source goal that corresponds to the target goal, and,
consequently, for the symbols in the source skills learned
from that explanation.

Structural constraints are based on structural similarity
between the source and target theories. GAMA uses struc-

tural constraints motivated by Gentner’s (1983) structure-
mapping theory and its implementation SME (Falkenhain-
er, Forbus, & Gentner, 1989). One major structural
constraint is the assumption that there is a one-to-one
relation between objects; for example, the system treats
the correspondences hero <> 7x and exit <> ?x as inconsis-
tent. On the other hand, the correspondences hero < 7x
and hero < ?y are consistent, and if both are in the corre-
spondence support set, the system unifies the variables ?x
and ?y. GamA also employs a second structural constraint
called parallel connectivity by Klenk and Forbus (2007),
which assumes that correspondences between predicates
imply correspondences between arguments. For example,
correspondences (location ?a ?b ?c)<—(place ?a ?b ?c) and
(location explorer 1 2) « (place hero ?x ?y) imply the corre-
spondences explorer < hero, 1 <> 7%, and 2 < 7y.

GaMa is mainly guided by the pragmatic and structural
constraints, but to order alternatives at choice points it also
uses semantic constraints, which involve literal similarity in
the meaning of source and target concepts. Before the algo-
rithm starts its explanatory analysis, it calculates a similar-
ity measure for each source and target predicate (and
object) pair, then inserts these into a conceptual similarity
matrix. At present, we use a naive similarity measure based
on shared symbols between source and target domains. If
source and target predicates have the same symbols, the
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correspondence is assigned the maximum similarity value.
If they do not have the same symbol, their similarity is
derived from the average similarity of the predicates that
occur in their concept definitions. Gama uses the values
from the conceptual similarity matrix in the heuristic func-
tion that orders options at choice points.

The heuristic function 4(x) (Table 4) returns a confi-
dence value for a set of correspondences x. The value of
a correspondence /(s < ¢t) is a measure of how well the
source predicate s matches against the target theory ¢,
and it is determined from a mixture of structural and
semantic considerations. If a correspondence s « ¢ is justi-
fied by previous elements in the correspondence support set
S, GaMa assigns a high positive value to A(s < ¢) based on
structural consistency. For example, in Table 3, the align-
ment (location explorer 4 0) <> (place hero ?X2 ?Y) is justi-
fied by the previously recorded correspondence (location
?A 7B ?C) & (place ?A ?B ?C) and therefore has a high
confidence value. On the other hand, if s < ¢ cannot be jus-
tified by structural evidence, GamA determines its confi-
dence value using semantic considerations. In that case,
our implementation assigns i(s < ) a value proportional
to the conceptual similarity metric® between s and 7. When
h must determine the value of a set of correspondences,
A={s) o t,5 < t,...,s, < t,}, as when 4 is an align-
ment of antecedents (Table 4, line 16), the heuristic func-
tion simply returns the average of confidence values
assigned to each correspondence in that set such that

h({s) & t1,80 < tr,...,8, & 1,}) = average(h(s; < ;).

If the number of source and target antecedents are not the
same in a comparison expansion, GAMA can still find a cor-
respondence by abstracting away some of the antecedents.
In particular, if GaAmA does not find a correspondence for a
source explanation predicate s, it can choose to construct
an abstraction mapping s < true, in which case it will also
skip aligning the decedents justifying s in the source expla-
nation. If abstraction were allowed without additional bias,
the system would generate too many alternative mappings
and would not have sufficient information to prefer among
them. For example, the trivial mapping: “abstract all ante-
cedents of top level goals” is always valid so GAMA needs
criteria to prefer better mappings if they exist.

GaMmA has the structural preference to prioritize map-
pings that have less abstraction and that explain more of
the source solution with the target theory. Abstraction cor-
respondences have a high negative value, so expansions
that generate abstractions are considered only as a last
resort. Gama also prefers smaller abstractions over larger
ones. If the system forms a source abstraction s < true,

>In our current implementation, conceptual similarity is merely
determined by the static similarity matrix generated during the initial
phase and does not use information in the correspondence support set.
Evaluating conceptual similarity given a correspondence support set may
yield a more accurate heuristic function, but only at the expense of more
computational cost.

which means that the source predicate does not have any
target correspondence, the cost of abstraction is propor-
tional to the size of the explanation structure not aligned
due to the abstraction. The algorithm estimates the magni-
tude of that value proportional to the number of all descen-
dants of s in the explanation structure. On the other hand,
if no correspondence can be found for a target predicate ¢,
the system forms an abstraction true < ¢t. This abstraction
has a constant cost, since abstraction of a theory clause
does not leave any part of the source explanation
uncovered.

4.3. Translating skills and concepts

GaMa passes a hypothesized representation map to its
representation translator component, which is responsible
for translating the source skills and concepts to the skills
and concepts of the target theory.

Translation of concepts is a simple recursive process. As
the base case, given a source concept s for which Gama has
a predicate correspondence s < ¢, all references to s are
replaced with ¢. A concept that does not have a representa-
tion translation can still be imported to the target domain
by translating its definition. In that case, we say that s is
translated analogically and a new concept definition
analogical — s is created in the target domain by translat-
ing the definition of s into target symbols. Moreover, GAMA
adds the correspondence s < analogical — s to the repre-
sentation map to be used in translation of other concepts
and skills.

The ability to translate conceptual knowledge given a
mapping between concept predicates is not very surprising.
However, the ability to transfer procedural knowledge
using a conceptual mapping is less obvious. One of the
main representational commitments of ICARUS, associating
all skills with the goals they achieve, facilitates transfer of
skills given mappings between concept predicates because
the skills are referenced with those conceptual predicates.

The representation translator imports skills from source
to target by converting predicates in the goal, subgoals, and
start conditions of these skills using hypothesized represen-
tation correspondences. The translator matches the left
hand-side of a correspondence to each conceptual predi-
cate that occurs in a source skill definition and replaces it
with the right-hand side. Table 5 presents a representation
map, a source skill, and the transferred target skill, includ-
ing three different kinds of correspondences. While the
predicate and object mappings such as (holding
7x1) <> (holding 7?x1) and doesnail < doestie translate
source skill symbols into target symbols, abstraction corre-
spondences like (property ?ltem3 hammer) < true and
(holding ?ltem3) < true mean that the predicates on the
left-hand side do not have a target correspondence and
must be dropped in start conditions or subgoals of the
transferred skills.

As the representation translator converts skills using
abstraction maps, it uses additional information the repre-
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Table 5
Importing source skills into the target domain.

% predicate mappings

(
(
(
(holding ?x1) <> (holding ?x1)
% object mapping

doesnail <> doestie
nailable «> tieable

o

subskill abstraction
(property ?Item3 hammer) <> true

(holding ?Item3) <> true

Learned Mappings

joined ?x1 ?x2 ?x3) <> (tied ?x1 ?x2 ?x3)
do-nail ?x1 ?x2 ?x3 ?x4) < (do-tie ?x1 ?x2 ?x3 ?x4)
property ?xl ?x2) <> (property ?xl ?x2)

if source skill clause is ((joined ?Iteml ?Item2 ?NewItem) start:.. )

if source skill clause is ((joined ?Iteml ?Item2 ?NewlItem) start:.. )

Source Skill

(joined? Iteml ?Item2 ?NewItem)
start:
(property ?Item3 hammer)
(property ?Nail doesnail)
(property ?Iteml nailable)
(property ?Item2 nailable)
subgoals:
(holding ?Item2)
(holding ?Nail)
(holding ?Item3)
(holding ?Iteml)
(do-nail ?Iteml ?Item2
?Nail ?NewItem)

—>

Target Skill

(tied ?Iteml ?Item2 ?Newltem) ¢
start:

(property ?Rope doestie)
(property ?Iteml tieable)
(property ?Item2 tieable)
subgoals:
(holding ?Item2)

(holding ?Rope)

(holding ?Iteml)

(do-tie ?Iteml ?Item2
?Rope ?NewItem)

sentation mapper provides. For example, the translator
does not apply an abstraction correspondence like (holding
?ltem3) « true everywhere it matches on a source skill,
since that would generate incorrect results, such as remov-
ing all holding subgoals in Table 5. Instead, the system
keeps track of the point in the explanation structure at
which the abstraction occurred and only abstracts the cor-
responding part of the source skill.

4.4. Transfer in partial analogy

When the source and target domains have a one-to-one
correspondence, it is easy to see how GAMA can transfer
knowledge. In this subsection, we describe how it can
transfer between source-target domains that are quite dif-
ferent, as in the case of cross-domain scenarios. To that
end, we highlight four features that equip our system to
handle partial analogies.

First, GAMA’s basic explanatory analysis naturally sup-
ports abstract correspondences between domains, because
explanations refer to only relevant parts of a source
domain that play role in a solution. All other features of
a source domain are automatically abstracted during
transfer.

We have also described a second mechanism GAMA uses
to find abstract similarities. It can heuristically ignore por-
tions of the source explanation that do not align against the
target theory, or portions of the target theory that do not

match against the explanation structure. As a result of this
process, given a source predicate s that does not have a tar-
get correspondence, GAMA acquires a source abstraction
map of the form s < true, and applies it to remove portions
of the transferred source skills that are not meaningful in
the target domain.

A third method for transferring abstract similarities is
related to untranslatable source symbols — source concep-
tual predicates and objects that cannot be translated into
the target domain through correspondences or translations
of their concept definitions. If the translator were to leave
such symbols in the start conditions of a skill, the skill
would never be applicable in the target domain. Therefore,
the representation translator generalizes those skills by
removing predicates in the start condition that cannot be
translated. For example, the heavy-to-carry concept in
Table 4 does not exist in the target game, since that game
does not include a weight limit. As a result, GAMA general-
izes the transferred skill during translation by removing
that condition from the start field.

Finally, GaMA can sometimes transfer a skill, even if it
contains untranslatable symbols in its head and subgoals.
Just like in the cases of transferring concepts by translating
their definitions, our system can transfer skills with
untranslatable goals by translating the skill definitions of
those goals. A source skill s is translatable to a target skill
analogical-s, if all of its subgoals are translatable. For
example, the source skill carrying in Table 6 refers to a sub-
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Table 6

Transfer of an mRogue source skill into Wargame. Gama removes untranslatable start condition concepts such as heavy-to-carry and imports skills with

untranslatable goals such as pickedup by translating their definitions.

GAMA correspondences:

(item ?x)<>(item ?x)

Untranslatable source concepts:
heavy-to-carry, pickedup

Learned Mapping

hero <> soldier, (carrying ?x)<>(carrying ?x)

(nextHeroLocation ?a ?b)<> (nextSoldierLocation ?a ?b)

Concepts translated through their definition:

sameLocation

Source Skill

(carrying ?item)
start:

(not (heavy-to-carry ?item))
subgoals:

(pickedup ?item)

(pickedup ?item)
start:
(location hero 2?X Y)
(location ?item ?2Xi ?Yi)
(not (sameLocation ?Xi ?Yi ?X ?Y))
(heavy-to-carry ?item)
subgoals:
(nextHeroLocation ?Xi ?Yi)

——>

Target Skill

(carrying ?item)
start: <empty>

subgoals:
(analogical_ pickedup ?item)

(analogical-pickedup ?item)
start:
(location soldier °?X ?Y)
(location ?item ?2Xi ?Yi)
(not (analogical-sameLocation
?X1i  ?Y1i ?X  ?Y))
subgoals:
(intendedSoldierLocation ?Xi ?Yi)

goal pickedup for which the translator could not find a
conceptual translation. Nevertheless, this skill can still be
translated since its subgoals can be translated. In this case,
GaMA can create a new target skill analogical-pickedup®
because pickedup’s only subgoal nextHerolLocation has a
translation, namely, intendedSoldierLocation. This shows
that the system can transfer skills even if there is a
partial mapping that cannot translate all skill symbols.
Icarus’ commitment to hierarchically composable skills
plays a major role in this ability, because it lets the agent
interleave target skills with analogically translated source
skills.

5. Experimental evaluation

We have claimed that goal-directed analogy supports far
transfer. This section provides support for that claim in the
form of two computational experiments. The first examines
the magnitude of the transfer effect produced on a battery
of far transfer tasks designed by an independent agency.’
We expect a substantial increase in problem-solving speed
due to transferred knowledge. The second experiment
involves a lesion study that determines the source of power
behind the observed transfer, specifically if it is due to reuse
of generalized skills without representation mapping (the

® Since an analogically translated skill analogical-s does not have a
corresponding concept definition, the interpreter never tests to see if such
goals are achieved. This limits reactivity but enables flexible transfer.

7 This system was one of three cognitive architectures tested in the
DARPA Transfer Learning Program, via a formal evaluation process
controlled by the Navy Center for Applied Research.

lesion case) or transfer of generalized skills with representa-
tion mapping (the non-lesion case). We hypothesize that
the ability to map skills across problem representations will
qualitatively improve transfer in the non-lesion case rela-
tive to the lesion case.

5.1. Experimental methodology

Details of the general game playing framework led us to
conduct these experiments with two important changes
from the Icarus architecture. In particular, we replaced
the bottom-up inference module with a top-down mecha-
nism to handle the number of entities perceived in the envi-
ronment. Because GGP provides fully modeled,
deterministic domains, we also replaced the system’s reac-
tive execution module with one that mentally simulated
execution with N-step look ahead, using technology
adapted from Nau et al.’s (2003) SHOP2 planner. We
employed this execution module to generate solution traces
for input to the learning algorithm described earlier and to
evaluate learned skills in the target domain.

The system begins by translating the GGP game specifi-
cation into concepts and primitive skills, then invoking
automatically generated exploration skills to search for a
solution to the source problem. Upon finding one, the sys-
tem acquires new hierarchical skills (as discussed in Section
3.3) that both generalize the solution and become the
object of transfer to the target problem. After porting these
concepts and skills via representation mapping, the perfor-
mance system employs them in the target domain, falling
back on exploration behavior when guidance from source
knowledge is exhausted.



T. Konik et al. | Cognitive Systems Research 10 (2009) 270-285 281

In more detail, our experiments measure transfer as the
difference in agent performance (solution speed) on a given
target problem with and without exposure to the corre-
sponding source (normalized to facilitate comparison).
The non-transfer (N) agent sees the target problem alone
and must solve it by a base set of exploration skills. In con-
trast, the transfer (T) agent has the opportunity to solve the
source problem, acquire knowledge from that experience,
and make it available for transfer. The T protocol involves
several steps that are consistent with the general game play-
ing format:

. download the source game definition and initial state;

. solve the source task via exploration;

. learn hierarchical skills and concepts from the solution;

. download the target game definition;

. select a representation map;

. instantiate the mapped skills and concepts in the target;

. if learned skills fail to improve performance on the
source task, then set mapped skills = {};

. download initial state data for the target problem; and

. solve the target problem using the mapped knowledge.

~N N DR W -

\O o0

Since this experiment concerns the potential benefits of
transferred knowledge, not the cost of acquiring that
knowledge, the protocol only reflects the time required
for the last two steps in the transfer agent’s performance
score (although steps 4-6 were short by comparison). The
transfer and non-transfer agents both had access to the
same exploration skills and supporting background knowl-
edge to solve the target task. They act as a fallback to the
transfer agent if mapped knowledge does not suffice. Step is
intended to avoid negative transfer. It ensures that the sys-
tem will only attempt to transfer high-quality learned
knowledge from the source to the target task and will rely
on exploration if that test fails.

5.2. Experimental results

Fig. 3 presents the results of the experiment to measure
far transfer. It examines the magnitude of the effect

1.00

obtained in 17 scenarios, where the first five are abstraction
tasks (A), the next five are reformulation examples (R), and
the last six are cross-domain transfer tasks. Each data
point averages across ten trials of the given target problem
for the transfer agent and the non-transfer agent, both.
Values above zero indicate positive transfer (the transfer
case solution is faster than the non-transfer case), values
near-zero indicate no transfer, and values below zero indi-
cate negative transfer.

The results show that the system produces positive
transfer in 10 of 17 cases. These include several instances
of very positive transfer. For example, the 0.93 score in
CrossDomain-4 indicates that the agent solved the problem
more than ten times faster with transferred knowledge (and
five to six times faster in Escape A-1 and Wargame R-2).
The system obtains positive transfer from examples in each
of the abstraction, reformulation, and cross-domain clas-
ses. The cross-domain case is somewhat surprising, since
these scenarios were not in any way designed to afford posi-
tive transfer.

The four instances of near-zero transfer in Escape A-3,
Wargame A-1, Escape R-1, and CrossDomain-5 corre-
spond to cases where the source-source filter failed (step
above). These scenarios should produce near-zero transfer,
given that both the transfer and non-transfer agents
employ exploration to solve the target task. Escape R-2
also falls into this class, suggesting its moderate positive
transfer is due to random variation.

The instances of negative transfer in Fig. 3 are also easy
to explain. The result for Wargame-R-1 is due to an incor-
rect representation map (found in eight of ten transfer tri-
als) applied to correct skills, while the effect in
CrossDomain-1 is due to a partial map that creates action-
able but misleading skills. The effect in CrossDomain-2 is
due to random fluctuation, as that scenario also failed
the source—source filter.

In summary, we can explain the instances of zero trans-
fer as the (automatically diagnosed) failure of the learning
system to acquire useful skills, and the one case of signifi-
cant negative transfer as the product of an incorrect map-
ping. Interestingly, the instances of positive transfer are
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Fig. 3. Far transfer in 17 scenarios measured as the normalized difference of the non-transfer and transfer cases.
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Fig. 4. A lesion study showing the impact of representation mapping on transfer.

more enigmatic. The benefit could be due to either of the
two transfer mechanisms: direct application of learned
skills or transfer of learned skills via representation map-
ping. The second experiment disambiguates these effects.

The lesion study examined the source of transfer in the
11 scenarios (out of 17) where the system acquired reliable
knowledge from solving the source problem it could then
employ as a basis for transfer (i.e., the scenarios that passed
step). Fig. 4 shows the results of this study. Here, the lesion
case employs generalized skills without representation
mapping, while the non-lesion condition duplicates a sub-
set of the cases shown with representation mapping in
Fig. 3. As before, each data point averages across ten trials
of the given target problem for both the transfer agent and
the non-transfer agents.

The results show that the system without representation
mapping (the lesion condition) produces circa zero transfer
in 9 of 11 cases. This effect is easy to understand. Lacking a
representation map, the system has no mechanism for
relating source skills to target needs, so the transfer and
non-transfer agents both rely on exploratory behavior,
which produces no net transfer. The main exception is
Wargame A-2, where the terms that differed between
source and target were bound to variables in skills. This
made source skills directly applicable for the transfer agent,
leading to positive transfer.

More broadly, we can draw two conclusions from the
lesion study. First, representation mapping generates virtu-
ally all of the positive transfer observed in the 11 scenarios.
In particular, it provides the system with the capacity to
exploit learned knowledge given the representational divide
characteristic of far transfer tasks. Second, this effect
appears robust across problem classes, as it explains all
but one case of positive transfer.

Finally, we note that the scenarios were designed to
afford positive transfer. This is least true in the cross-
domain cases where the source-target relationship is
unconstrained. However, the abstraction and reformula-
tion scenarios obey what might be called a “constant con-
tent assumption”: given the correct mapping among
symbols, solutions for the source can solve the target task.
This is evident in the reformulation case, while the trans-

formations defining the abstraction class admit no new
information in the target, implying source solutions are
preserved. Experiments with even more disparate source
and target tasks would clarify the limits of the GAmA rep-
resentation mapping algorithm.

6. Related research

The research reported in this article integrates analogical
transfer based on representation mapping into a larger
architectural framework that learns to solve problems
more effectively. There are large bodies of related work
on analogy, learning, and problem-solving. In this section,
we describe the work that we believe to be most relevant,
concentrating primarily on analogy since it plays a key role
in our approach to transfer.

There are many surveys of analogy in cognitive science.
Hall (1989) gave a comparative analysis of early computa-
tional approaches to analogy, while Gentner and Holyoak
(1997) discussed analogy in the context of reasoning and
learning. Two brief, relatively recent encyclopedia articles
on analogy have emphasized the perspectives of cognitive
science and psychology (Gentner, 1999, 2003). French
(2002) and Kokinov and French (2003) provide recent
summaries of computational models of analogy, while
Holyoak (2005) gives a broad and detailed overview of
research on analogy in psychology, including computa-
tional models. One conclusion drawn in the most recent
of these articles is that “models of analogy have not been
well integrated with models of problem-solving...” and
“integration of analogy models with models of general
problem-solving remains an important research goal”.
Our work integrates analogy with problem-solving and
thus makes significant progress on this goal.

In the discussion that follows, we focus on a subset of
the research described in these surveys that is particularly
relevant to our work. We also discuss some related work
not mentioned in the reviews.

Gentner (1983) presented an early analysis of analogy in
which she proposed key hypotheses, including the one-to-
one constraint and the systematicity principle. The first
states that, in most human formed analogies, an object in



T. Konik et al. | Cognitive Systems Research 10 (2009) 270-285 283

one domain will not map to two objects in the other. The
systematicity principle states that, in general, analogies
map relations that preserve higher-order structure and rela-
tions like causes and implies. Psychological studies pro-
vided experimental support for these hypotheses (Clement
& Gentner, 1988; Krawczyk, Holyoak, & Hummel,
2005). Our approach not only incorporates both the one-
to-one constraint and the systematicity principle, but it is
also guided by the purpose of analogy (pragmatic
constraints).

Falkenhainer et al. (1989) used Gentner’s analogy the-
ory as the basis for an early computational model, the
structure-mapping engine (SME). In later work, the PHI-
NEAS system (Falkenhainer, 1990) used analogical map-
ping as part of a larger theory formation process that
involved explanation and that included retrieval, transfer,
and qualitative simulation. While his system uses qualita-
tive models of dynamic systems as background knowledge
and applies them in a qualitative simulation setting, our
system uses action models and applies them in a prob-
lem-solving setting. Unlike our system that learns how to
achieve goals, Falkenhainer’s system uses analogy to
improve imperfect target domain theories.

Klenk and Forbus (2007) describe another system built
upon SME that learns new general domain knowledge in
the domain of rotational kinematics by analogy with trans-
lational kinematics. This system finds analogies between
worked source and target solutions to physics problems,
which involve mental activities such as simplification of
formulas. In contrast, the solutions our system uses are
sequences of action with physical effects, and instead of
solutions in the target domain, we use target domain theory
to form analogies. Moreover, while our system learns how
an agent should behave in the target, Klenk et al.’s system
learns how the target domain functions.

Burstein (1988) described CARL, a system that con-
structed analogies which mapped actions, preconditions,
and results. The program also constructed maps between
relations and objects; however, unlike our algorithm that
maps whole source solutions and explanations against a
target theory automatically, CARL incrementally con-
structs and refines maps by interacting with a teacher that
specify partial maps, demonstrate actions one by one, and
give feedback on predictions about the expected effects.

Holyoak and Thagard (1989) advocated the use of prag-
matic constraints involving goals. They implemented an
analogy engine called ACME and applied it to a collection
of examples including the atom-solar system analogy.
However, their algorithm assumed that pragmatic values
for predicate matching were given, leaving open question
of how they arise. In contrast, our system’s goal-driven
explanatory analysis is implicitly based on the pragmaticity
principle.

Several researchers have used goals in analogy. For
instance, one of the earliest analogy systems (Winston,
1982) used causal networks to infer the motives of an agent
based on a similar situation with another agent. However,

this work used small examples that involved bits of plots or
stories. It did not deal with complex plans and it did not
involve cross-domain transfer, as does our approach. Pur-
pose-directed analogy (Kedar-Cabelli, 1985, 1988) used
goals, causal relations, and explanations to show how an
object satisfies a given purpose. For example, a styrofoam
cup lets one drink hot liquids just as does a ceramic mug
with a handle. Her system introduced the use of goal
regression to guide analogical reasoning. Veloso and Car-
bonell’s (1993) PRODIGY/ANALOGY used a goal-direc-
ted form of analogy to improve the performance of a
means-ends planner. They conducted experiments in a
logistics domain that involved moving objects using trucks
and planes. Neither work incorporates representation map-
ping between relations or involve cross-domain transfer.

Our approach also bears similarities to work on analog-
ical problem-solving. VanLehn and Jones’ (1993) CAS-
CADE used a form of analogical search control to guide
top-down chaining through an AND-OR tree. Their sys-
tem stored a semi-persistent mapping that it reused later
in a given problem but it did not map across domains or
representations. Jones and Langley’s (2005) EUREKA also
used analogical search control, in this case to direct a
means- ends problem solver that spread activation through
stored subproblem decompositions. This system exhibited
a limited ability for cross-domain transfer, but only when
provided with connections between predicates.

In summary, our approach is closely related to, and
builds upon, earlier research that involved structural anal-
ogy and pragmatic constraints. It has been guided by psy-
chological results on structural analogy, but it incorporates
pragmatic information about goals and explanations.
Moreover, it is distinguished by its use of analogical repre-
sentation mapping to achieve cross-domain transfer.

7. Directions for future research

Our future work will advance our ability to reuse previ-
ously acquired knowledge in robust ways. We plan to pur-
sue this goal by improving the representation mapping and
translation mechanisms, and by completing their integra-
tion into the ICARUS cognitive architecture.

We intend to improve the representation mapping tech-
nology by supporting more complex mappings between
source and target domains. For example, while our current
work allows predicate abstraction in cases where there is no
exact match, we can also consider the elimination of and
reordering of predicate arguments. This change will
increase the number of possible representation maps, and
require additional attention to search control.

We can also improve the quality of representation maps
by employing feedback from the application of transferred
skills. For example, we can test mapped skills and reduce
the heuristic score for any map that produces a failed skill
in the target domain. This process can be interleaved with
map generation. We can also remodel the map evaluation
heuristic to reflect an expected utility of transferred knowl-
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edge, again updated from experience. This change would
focus Gama on the most useful mappings. In addition,
we can construct mechanisms for cumulative transfer that
incrementally augment the representation map as the agent
accrues experience in the target domain over time. We can
expand the impact of representation mapping by employ-
ing learning in IcAarus to improve transferred knowledge
in the target domain. We are pursuing this avenue now
by tuning and patching somewhat incorrect skills via the-
ory refinement.

Our larger goal is to integrate representation mapping
into Icarus at the architectural level. This would require
us to address the retrieval problem, and fold representation
mapping into the architecture’s cognitive processing, such
that is invoked under appropriate conditions. These are
non-trivial extensions, but they would produce a version
of Icarus that seeks opportunities to retrieve, transfer,
and apply knowledge from prior experience to current
tasks, in analogy to human behavior.

8. Concluding remarks

In this paper, we discussed an approach to transfer that
involves analogical mapping of symbols across different
domains. We combined this method with representational
assumptions from Icarus, a theory of the human cognitive
architecture. Our transfer algorithm, Gama, conducts rep-
resentation mapping to generate correspondences between
source and target concepts by matching the explanation
of a source solution against the target theory. Next, it con-
ducts representation translation by using those correspon-
dences to import source skills and concepts into the target
domain. GaMA is a pragmatic system guided by the pur-
pose of analogy, since its search is directed by the target
goal that the system aims to achieve using transferred
skills. Tt further constrains search by using structural and
semantic constraints. We showed how Gama finds abstract
similarities even when the source and target domains are
partially analogous. Its representation mapper contributes
to abstraction by omitting parts of an explanation that can-
not be aligned to the target theory, whereas its representa-
tional translator handles unmapped source symbols by
translating their concepts and skills definitions or by omit-
ting them when generalization is appropriate.

We claimed that the same features which distinguish
Icarus from other architectures facilitate representational
transfer. Most notably, indexing skills by their goals sup-
ports transfer by enabling use of conceptual correspon-
dences in translating skills. Moreover, hierarchically
composable skill representation allows transfer even in
the cases of partial mappings letting the agent interleave
analogically translated skills with mapped skills. We pre-
sented experimental evidence that our new representational
transfer mechanism improves on more basic learning pro-
cesses. We also demonstrated far transfer among reformu-
lation tasks, abstraction tasks, and in less constrained
cross-domain scenarios. In this research, we have taken

steps towards the adaptation of past experience to current
goals, which is important for building cognitive architec-
tures that learn continuously and cumulatively.
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