
Learning Hierarchical Task Networks by Observation

Negin Nejati negin@stanford.edu

Pat Langley langley@csli.stanford.edu

Tolga Konik konik@stanford.edu

Computational Learning Laboratory, Center for the Study of Language and Information, Stanford University,
Stanford, CA 94305 USA

Abstract

Knowledge-based planning methods offer
benefits over classical techniques, but they
are time consuming and costly to construct.
There has been research on learning plan
knowledge from search, but this can take sub-
stantial computer time and may even fail
to find solutions on complex tasks. Here
we describe another approach that observes
sequences of operators taken from expert
solutions to problems and learns hierarchi-
cal task networks from them. The method
has similarities to previous algorithms for
explanation-based learning, but differs in its
ability to acquire hierarchical structures and
in the generality of learned conditions. These
increase the method’s capability to trans-
fer learned knowledge to other problems and
supports the acquisition of recursive proce-
dures. After presenting the learning algo-
rithm, we report experiments that compare
its abilities to other techniques on two plan-
ning domains. In closing, we review related
work and directions for future research.

1. Introduction

In recent years, hierarchical task networks have
emerged as a powerful framework for representing and
organizing knowledge about action (Ilghami et al.,
2002; Wilkins & desJardins, 2001). With access to
such content, an agent can generate or execute plans
far more effectively than it can from domain operators
alone, because the knowledge specifies how to decom-
pose complex tasks into simpler ones. Such approaches
have been applied successfully to a variety of challeng-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the authors.

ing domains, and they scale to complexity much better
than classical planning methods.

Despite their clear advantages, hierarchical task net-
works can be difficult and time consuming to construct
manually. This suggests the use of machine learning to
acquire the knowledge base from experience, but, de-
spite a substantial literature on learning for planning
(Zimmerman & Kambhampati, 2003), there have been
remarkably few efforts toward acquiring hierarchical
plan structures. Moreover, most work in this area has
focused on learning from the results of search, which
can produce poor solutions and may even fail entirely
on some tasks.

An alternative approach is to learn from traces of
an expert’s behavior. Research on behavioral cloning
(e.g., Sammut, 1996) incorporates this idea, but typ-
ically learns flat rules for reactive control. Two
other paradigms – learning apprentices (e.g., Mitchell
et al., 1985) and programming by demonstration (e.g.,
Cypher, 1993) – emphasize different induction meth-
ods and problems but also focus on nonhierarchical
structures. In this paper, we adapt the general idea
of learning from expert traces to acquire a class of hi-
erarchical task networks – teleoreactive logic programs

– that are distinctive because they index methods by
the goals they achieve. We can state the learning task
more precisely in terms of its inputs and outputs:

• Given: a set of operators that produce predictable
effects under known conditions;

• Given: a set of training problems, each of which
specifies an initial state and a goal;

• Given: for each training problem, a sequence of
operator instances that achieves the goal from the
initial state;

• Find : a teleoreactive logic program that repro-
duces the solutions to the training problems and
generalizes well to new ones.



Learning Hierarchical Task Networks by Observation

We will see that, unlike research on behavioral cloning,
our approach chains backward from the goal achieved
by each sample trace to analyze the reasons for each
action. In this sense, it bears similarity to early work
on explanation-based learning, which also relied on
goal regression. However, these methods jettisoned
the explanation structure after learning, whereas our
approach retains it to determine the hierarchical orga-
nization of learned knowledge.

In the next section, we describe the knowledge struc-
tures given to and acquired by our method, along with
the performance mechanisms that operate over that
knowledge. After this, we describe the learning algo-
rithm in detail and illustrate its operation on a simple
example. Next we report experiments with the tech-
nique on two planning domains, including comparisons
with more traditional learning methods. Finally, we
examine at more length how our approach relates to
earlier work on learning plan knowledge and discuss
some directions for additional research.

2. Knowledge Representation

Before we can explain our performance and learning
methods, we must first describe the representation we
use to encode the knowledge they use and acquire.
This formalism supports a specialized class of hier-
archical task networks that we call teleoreactive logic

programs, which Langley and Choi (2006) report in
more detail. Such programs consist of two distinct but
interconnected knowledge bases that describe different
aspects of a domain.

The first knowledge base includes a set of concept def-
initions that recognize classes of situations in the do-
main and describe them at different levels of abstrac-
tion. Concepts are encoded in a hierarchical language
and shape the system’s beliefs about the domain. Each
concept includes a head, which is stated as a predicate
with zero or more arguments, and a body, which in-
cludes one or more arithmetic tests or relations that
must hold. The lowest-level concepts only refer to the
perceptual inputs from the domain, while the higher
level ones can refer to other concepts as well. Table 1
shows examples of two primitive concept definitions,
on and hand-empty, and two nonprimitive concepts,
clear and unstackable, for the Blocks World.

The second knowledge base contains the definitions of
primitive and high-level skills that can be executed to
change the environment. Primitive skills are defined in
terms of the actions the agent can perform with each
clause having a head that specifies its name and argu-
ments, a set of typed variables, a single start condition,
a set of effects, and a set of executable actions. The

Table 1. Examples of concepts from the Blocks World.

(on (?blk1 ?blk2)
:percepts ((block ?blk1 x ?x1 y ?y1)

(block ?blk2 x ?x2 y ?y2 h ?h))
:tests ((equal ?x1 ?x2)

(>= ?y1 ?y2)
(<= ?y1 (+ ?y2 ?h))))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other?block)))

(unstackable (?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from)

(clear ?block) (hand-empty)))

(hand-empty ()
:percepts ((hand ?hand status ?status))
:tests ((eq ?status ’empty)))

effects of each primitive skill are known to the system
and are specified in terms of known concepts. These
correspond to primitive tasks or operators in hierarchi-
cal task networks.

Higher level skills, which are the result of the learn-
ing, specify ways to decompose complex activities into
simple ones. They correspond to methods in hierarchi-
cal task networks but differ in that the head of each
skill clause is the goal concept it achieves if executed
to completion. This introduces a connection between
concepts and skills that is essential for our learning
method, as we describe in Section 4. The body of a
high-level skill includes the necessary perceptual in-
puts, the start conditions, and the relevant subskills.
Table 2 and Figure 1 show examples of primitive and
high-level skills from the Blocks World.

Both concept and skill knowledge bases are stored in
long-term memories, while the specific instances of
them are stored in short-term memories that change
as the environment evolves.

3. Inference and Execution Mechanisms

The performance mechanisms of a teleoreactive logic
program reflect the fact that it operates in a physi-
cal setting that changes over time. As Langley and
Choi (2006) report, the basic architecture functions
in discrete cycles. On each cycle it deposits, in a per-
ceptual buffer, low-level sensory information about ob-
jects within the agent’s field of view. The system then
calls an inference module that operates in a bottom-
up, data-driven manner to infer relational beliefs from
these perceptions and concept definitions. The in-
ference procedure first produces instances of primi-



Learning Hierarchical Task Networks by Observation

Table 2. Two primitive skills for the Blocks World domain.

(unstack (?block ?from)
:percepts ((block ?block ypos ?ypos)

(block ?from))
:start ((unstackable ?block ?from))
:effects ((clear ?from)

(holding ?block))
:actions ((*grasp ?block)

(*v-move ?block (+ ?ypos 10))))

(stack (?block ?to)
:percepts ((block ?block)

(block ?to x ?x y ?y h ?h))
:start ((stackable ?block ?to))
:effects ((on ?block ?to)

(hand-empty))
:actions ((*h-move ?block ?x)

(*v-move ?block (+ ?y ?h))

(*ungrasp ?block)))

tive concepts, which depend only on perceived objects,
then asserts beliefs based on higher-level concepts.

After this, the architecture invokes an execution mod-
ule that, in contrast with inference, operates in a top-
down manner to achieve high-level goals. On each cy-
cle, using the beliefs produced during inference, the
system finds all applicable paths through the skill hi-
erarchy that start from the agent’s goal. Since goals
are stated as concept instances and the heads of non-
primitive skills refer to the concept they achieve, the
agent can easily pick executable paths that are rele-
vant to its current goal. The applicability of a skill
path depends on the applicability of every skill clause
on that path. An individual skill instance is appli-
cable when in the current state its preconditions are
satisfied but its head is not satisfied. Note that a skill
path is not about a course of action over time; it de-
scribes the hierarchical context from the highest-level
skill down to a primitive skill. When the agent carries
out the actions associated with the selected skill path,
the environment changes and the architecture repeats
the same procedure until it achieves the goal.

To assure reactivity, on the cycle the system also con-
siders the previously executed subskills. This enables
it to invoke those subskills again if their objectives are
no longer satisfied due to unexpected events. On the
other hand, to prevent the agent from switching among
multiple intentions instead of persistently working on
one and moving to the next, the architecture prefers
skill paths that are more similar to the path that it
chose on the previous cycle.

Our approach to skill utilization bears many similari-
ties to those for hierarchical task networks (Wilkins &

Table 3. A training example for learning by observation
from the Blocks World.

Goal: (clear A)

Primitive skill sequence:
((unstack C B) (putdown C T1) (unstack B A))

Initial state:
((unstackable C B) (hand-empty) (clear C)
(ontable A T1) (on C B) (on B A))

desJardins, 2001), which have often emphasized plan
execution over plan generation. However, most work
in this tradition has relied on sophisticated notations
for describing complex activities that make them dif-
ficult to learn. Our formalism for teleoreactive logic
programs is closer to the one assumed by Ilghami
et al.’s (2002) SHOP2, which focuses on plan gener-
ation rather than execution. As we will see shortly,
this representation supports the incremental learning
of hierarchical skills from traces of expert behavior.

4. Learning Mechanism

Now that we have described the processes that inter-
pret a teleoreactive logic program to achieve an agent’s
goals, we can turn to methods for learning these struc-
tures by observation. As mentioned earlier, our ap-
proach builds on knowledge about a domain and ex-
pands upon it to incorporate skills that can achieve
complicated tasks. This background knowledge in-
cludes the definitions for concepts and primitive skills.

Our system learns from problem-solution pairs pro-
vided by the expert. Each problem is defined by a
goal instance and a specific initial state of the envi-
ronment. The solution is a sequence of primitive skill
instances provided by the expert that achieves the goal
starting from the initial state. Table 3 shows a train-
ing example for a simple problem in the Blocks World
domain. The initial state for this problem has a three-
block tower with C on B and B on A, and the goal is to
get block A clear.

Given these inputs, the algorithm proceeds to parse
and explain the solution steps using a strategy similar
to that in explanation-based learning (Ellman, 1989).
It starts by chaining backward from the goal by focus-
ing on the final primitive skill provided by the expert,
such as (unstack B A) in our example from Table 3.
At each step, it selects between two alternative ac-
counts of the expert trace.

If the primitive skill contains the goal as one of its ef-
fects, the algorithm explains the goal using skill chain-

ing. If this skill is applicable in the initial state of



Learning Hierarchical Task Networks by Observation

the problem, one can directly execute it to achieve the
goal. However, if its precondition is not satisfied, extra
work is needed to make it applicable. In this case, the
algorithm tags the single precondition of this skill as
its new goal and tries to justify the previous solution
steps with respect to it. Figure 1 illustrates the parsing
procedure on the Blocks World example from Table 3.
In this example, the last primitive skill, (unstack B

A), achieves the goal (clear A) directly, but its pre-
condition, (unstackable B A), is not satisfied in the
initial state. This unsatisfied precondition is consid-
ered as the goal the expert was pursuing before the fi-
nal move. Therefore, the algorithm proceeds to justify
the primitive skill sequence (unstack C B)(putdown

C T1) for achieving (unstackable B A).

When the goal is not one of the effects of the prim-
itive skill in the sequence, the algorithm explains it
using concept chaining. In this case, the skill either
achieves one of the goal’s subconcepts or it is an un-
necessary step that presumably achieves some other
purpose. The system determines the possible subgoals
from the definition of the goal concept, and then looks
back through the state sequence to find the order in
which the expert achieved them. All primitive skills
executed before achieving a subgoal are treated as po-
tential contributors. This can lead to considering a
skill for more than one subgoal, which is reasonable
since skills can have multiple effects that contribute to
different aims. In addition, this lets the system handle
interleaved subtraces when the expert alternates be-
tween pursuing different subgoals. When a subtrace
includes a skill that is irrelevant to achieving a goal,
the system simply ignores it. Each subgoal with its as-
sociated sequence of primitive skills poses a new prob-
lem is handled by calling the main routine recursively.

Continuing with our Blocks World example, the
sequence (unstack C B) (putdown C) in Table 3
makes B and A unstackable, but none of these prim-
itive skills include (unstackable B A) as their ef-
fects. This results in concept chaining and break-
ing down (unstackable B A) into its subgoals –
(hand-empty), (on B A), and (clear B) – as de-
fined in Table 1. By tracking the order of subgoal
achievements through the state sequence, (unstack C

B) is assigned to (clear B), while both (unstack C

B) and (putdown C) are considered as contributors to
achieving (hand-empty). The method will detect the
literal (unstack C B) as an irrelevant step for this
goal later in its processing.

After the algorithm has finished parsing the expert’s
solution trace, it uses the explanation structure to
learn new skill clauses for future use. For skill chain-
ing, if the precondition P of the current primitive skill

Figure 1. Illustration of the learning algorithm on a simple
problem from the Blocks World and the acquired skills.

S is satisfied in the initial state and the expert did
nothing to achieve that, the system learns a new skill
clause with the achieved goal G as its head, P as its
start condition, and a single subskill S.1 If the ex-
pert has done work to achieve P , the system learns
a skill clause that achieves G by composing the skill
that achieves P (which has the same head as P and has
already been learned in the shallower recursion calls)
with S. The start conditions of the learned skill are
the same as the start conditions of the skill P . In Fig-
ure 1, (clear ?B) and (clear ?A) are examples of
skill clauses learned through skill chaining.

For concept chaining, if the goal G has n subgoals,
g1, . . . , gn, and m of them are satisfied in the initial
state, the lower level skills that are learned for achiev-
ing gm+1, . . . , gn comprise the subskills field of the new
skill, but the g1, . . . , gm concepts determine the start
condition of this new skill. The nonprimitive skill
(unstackable ?B ?A) in Figure 1 is an example of
a skill clause learned by this procedure. As we discuss
shortly, the acquired precondition does not guarantee
successful execution, but it still often serves as a use-
ful heuristic. The learning mechanism can produce
disjunctive skills, since different methods of achieving
a goal have the same head. This convention leads to
flexible skills, since each clause can be expanded with
all combinations of its subskills’ different clauses.

As demonstrated elsewhere (Langley & Choi, 2006),
one can use traces generated by a problem solver to
learn analogous skills. The method introduced here
replaces the problem-solving traces with ones from an
expert performing the task. Although we use a simi-
lar subroutine for creating skill clauses, the resulting
hierarchy can differ because the expert may provide
different solution traces than the problem solver. We

1For the distinction between this learned clause and the
primitive skill it incorporates, see Langley and Choi (2006).



Learning Hierarchical Task Networks by Observation

expect that learning by observation will be more prac-
tical in complex domains because of the heavy search
they impose on problem solvers.

5. Experimental Evaluation

To evaluate the behavior of our approach to learning
teleoreactive logic programs by observation, we de-
signed and carried out experiments in two planning
domains. Below we describe our experimental design,
after which we report the results of these studies.

5.1. Experimental Design

Since our method operates in an incremental man-
ner, we chose to employ an online training regimen in
which we presented randomly sampled problems one at
a time. If the system fails to achieve the goal using its
current knowledge, it retrieves an expert trace stored
with the problem. After learning a set of skill clauses
from this trace, the system turns to the next problem.
This lets us measure performance as a function of the
number of problems encountered. We selected the cu-
mulative number of tasks solved successfully as our
performance metric, primarily because different prob-
lems involved distinct levels of difficulty, and thus were
not directly comparable. We also averaged the results
across different sequences of problems to guard against
order effects. Other metrics such as CPU time are not
relevant here, as the performance system does not in-
clude a problem solver and simply fails to solve a task
if it does not have all the necessary skills.

Because our approach to learning by observation con-
structs an explanation of the expert trace, it seems
appropriate that we compare its behavior to tradi-
tional methods for explanation-based learning. We
considered two variations on this idea, each tied to
one of our theoretical claims. First, we maintain that
our method should acquire more flexible knowledge
than explanation-based techniques because it retains
the explanation structure in its skill hierarchy. Thus,
we implemented a standard algorithm for learning a
flat macro-operator (Mooney, 1990) from each expert
trace that collects a set of sufficient conditions, with
constants replaced by variables, to achieve that prob-
lem’s top-level goal. This macro-operator can solve the
training problem on which it is based, but the method
finds very specific conditions, and preliminary experi-
ments suggested it generalized so poorly to new tasks
that we did not pursue it further.

A second claim revolves around our method for select-
ing conditions on learned skills, which does not rely
on goal regression and only uses information about

component skills and concepts. For comparison pur-
poses, we developed an alternative technique that still
learns hierarchical skills by analyzing expert traces,
but that invokes the same condition-finding scheme
for each clause as for macro-operator formation. This
produces conditions that are sufficient to achieve the
goal in each clause’s head, making them more specific
than those our method generates, but also less likely
to initiate chains of action that the agent cannot com-
plete. Initial studies suggested that this alternative
generalized reasonably well, so we included it in our
formal experiments.

We settled on two domains for our studies: the Blocks
World and Depots, which we describe more fully later.
The former is not especially difficult, but it is well
understood, and we had a handcrafted task network
that we could compare with learned skills. Depots
is a more challenging domain that involves a much
larger search space, which we predicted would help
distinguish our approach from the explanation-based
alternative. However, because we had no handcrafted
program against which to compare learned skills, we
could only evaluate the methods on this domain in
terms of their behavior.

5.2. Experiments with the Blocks World

The Blocks World consists of a table, a gripper, and
several cubical blocks that are distributed in one or
multiple columns on the table. The system distin-
guishes different situations in the environment using
nine defined concepts, including the ones in Table 1.
It can also change its environment using four primi-
tive skills: stack, unstack (see Table 2), pickup, and
putdown. The goals refer to configurations of blocks
that are defined via existing concepts. This knowledge
is sufficient, in principle, to solve all the problems in
the domain by employing extensive search. However,
when there are more than a few blocks in the environ-
ment, search is slow and impractical.

Our experiment used 240 random problems with three
distinct goals: clear, holding, and on. The environ-
ment included up to seven blocks with random initial
configurations and the difficulty level of the problems
ranged from one to 16-step solutions. Inspection re-
vealed the system learned skills that are equivalent
to the handcrafted ones. Figure 1 shows the skills
acquired from the sample input in Table 3. These
high-level skills equip the system to achieve goals like
clearing a block on many new problems. One reason
is their potential for being applied recursively. For
example, the learned skills in the figure can clear a
block regardless of the number of blocks on top of



Learning Hierarchical Task Networks by Observation

Table 4. Some examples of skills acquired in the Blocks
World using explanation-based learning.

(clear (?A)
:percepts ((block ?A)(block ?B)

(block ?C))
:start ((hand-empty)(on ?B ?A)

(on ?C ?B)(clear ?C)
:ordered ((unstackable ?B ?A)

(unstack ?B ?A)))

(unstackable (?B ?A)
:percepts ((block ?A)(block ?B)

(block ?C))
:start ((hand-empty)(on ?B ?A)

(on ?C ?B)(clear ?C))
:ordered ((clear ?B)(hand-empty)))

it. Table 4 shows the analogous skills learned by the
explanation-based method, which have very specific
start conditions. This results in learning distinct ver-
sions of (clear ?A) for problems with different num-
ber of blocks stacked on block A.

The left hand graph in Figure 2 shows the superior
performance of our system compared to explanation-
based learning. The plots show the cumulative num-
ber of successful examples averaged over 20 different
selections and orderings of 100 input problems in the
Blocks World domain for each algorithm. On average,
our system learns 14 new skills from a few problems
and solves 100 percent of the test problems, while the
explanation-based method learns 119 skills and solves
fewer than 50 percent of the novel problems. The dot-
ted line shows the behavior of an expert who can solve
all problems from the outset. Our method’s behaviour
follows this line very closely, with a small lag caused
by a few failures at the early stages of learning. The
small error bars show that the behaviors are similar
across different problem orderings.

5.3. Experiments with Depots

Depots is a more complicated domain that was intro-
duced in the Third International Planning Competi-
tion (Bacchus, 2000). With crates that can be loaded
into trucks and driven to different locations where they
are unloaded and stacked onto pallets, it combines at-
tributes of Blocks World with logistics planning. Since
a typical problem involves many objects and each state
has many possible actions, search can be very expen-
sive in this domain and manually coding the knowledge
base is challenging. We gave the system 23 concepts
and eight primitive skills, and we used two different
goals that refer to configurations of one or two crates.

For this study, we generated 96 random problems for
use in the experiment. These problems include up to
five crates, with difficulty levels ranging from one to
13-step solution paths depending on the initial con-
figuration. The right-hand graph in Figure 2 shows
the cumulative number of successes averaged over 20
different problem orderings for our algorithm.

The number of skills our system learns through this
experiment is 42 on average, which is not sufficient to
solve all the problems, but which does solve 70 per-
cent of them. For this domain, although the hierarchi-
cal explanation-based algorithm generated some cor-
rect skills, it was very slow and could solve very few
of the problems. As anticipated, because the learned
skills are overspecific, it creates many skills (e.g., some
100 skills resulted from only four problems). However,
we may be able to improve these results by generat-
ing multiple traces from a single problem. For ex-
ample, if a goal G is associated with a skill sequence
S1, S2, S3,. . . ,Sn, the current technique learns one skill
that achieves G using these subskills, but the subse-
quences (S2, S3, . . . , Sn), (S3, S4, . . . , Sn), . . . , (Sn) are
also valid sequences for achieving G and can be used
for training purposes. On the other hand, this would
produce a more complex collection of skills that could
slow response time further.

6. Related Research

Developing agents that can learn complex skills from
experience has been a recurring goal in artificial in-
telligence. A common approach to this problem has
focused on learning from delayed external rewards.
Some methods (e.g., Moriarty et al., 1999) search
through the space of the policies directly, whereas
others (e.g., Kaelbling et al., 1996) estimate value
functions for state-action pairs. In contrast, our ap-
proach differs by learning from traces of expert behav-
ior rather than from exploration and by constructing
hierarchical structures rather than flat policies.

There has been some work on learning control poli-
cies from expert traces. One of the main paradigms,
known as behavioral cloning, transforms the observed
traces into supervised training cases and induces re-
active controllers that reproduce the behavior in sim-
ilar situations. This approach typically casts learned
knowledge as decision trees that determine which ac-
tions to take based on sensor input (e.g., Urbancic &
Bratko, 1994). More recently, some efforts (e.g., Isaac
& Sammut, 2003) have used goal information, stated
as desired values for state variables, to improve the
robustness of the learned controllers. In contrast, our
approach infers intermediate structural goals by ex-



Learning Hierarchical Task Networks by Observation

0 20 40 60 80 100

Number of problems encountered

0
20

40
60

80
10

0

C
um

ul
at

iv
e 

pr
ob

le
m

s 
so

lv
ed

Expert behavior

Explanation-based learning

Hier. task network learning

0 20 40 60 80 100

Number of problems encountered

0
20

40
60

80
10

0

C
um

ul
at

iv
e 

pr
ob

le
m

s 
so

lv
ed

0 20 40 60 80 100

Number of problems encountered

0
20

40
60

80
10

0

C
um

ul
at

iv
e 

pr
ob

le
m

s 
so

lv
ed

Expert behavior

Hier. task network learning

Figure 2. Cumulative number of solved problems in the Blocks World and Depots domains, with 95 percent confidence
intervals. The diagonal lines depict the behavior of an expert who solves all the problems.

plaining the expert behavior in terms of the top-level
goal and background knowledge. Moreover, our frame-
work differs from most work on behavioral cloning by
incorporating a hierarchical and relational representa-
tion for states and activities.

Könik and Laird (2004) report an approach to behav-
ioral cloning that uses a relational representation and
learns hierarchical controllers, but it requires the ex-
pert to annotate the trace with information about the
start and end of activities at each level. A few other
systems also learn hierarchical structures from expert
behavior. Ilghami et al. (2005) describe a method
for constructing hierarchical task networks, but they
assume the hierarchical structure is given and use a
version-space algorithm to determine conditions on
methods. Tecuci’s (1998) Disciple acquires hierarchi-
cal rules, but it requires user information about how
to decompose problems and the reasons for decisions.

Other research on learning skills by observing others’
behavior has, like our own, utilized domain knowledge
to interpret traces. Some work on explanation-based
learning (e.g., Segre, 1987; Mooney 1990) took this
approach, as did the paradigms of learning appren-
tices (e.g., Mitchell et al., 1985) and programming by
demonstration (e.g., Cypher, 1993; Lau et al., 2003).
Both often used analytic methods to generate candi-
date procedures, but neither focused on the acquisi-
tion of hierarchical skills, and programming by demon-
stration typically requires user feedback about candi-
date hypotheses. As noted earlier, our approach dif-
fers from explanation-based learning in that it retains
the explanation structure and does not use deductive
analysis to determine start conditions on new skills.

7. Concluding Remarks

In this paper, we have presented a new approach to
learning hierarchical task networks from observation.
We explained our reliance on expert traces to avoid
the need for extensive search during problem solving.
We also reviewed the notion of teleoreactive logic pro-
grams, a special class of task networks that are indexed
by the goals they achieve, along with mechanisms for
executing them to reach these objectives. After this,
we described the details of our method for learning skill
clauses from solution traces, which alternates between
chaining off skills and concept definitions to generate
an explanation of the expert’s behavior. The system
then creates one skill clause for each node in the expla-
nation structure, using a simple technique for finding
conditions on clauses that uses only local information.

Our approach incorporates ideas from a number of dis-
tinct traditions, including behavioral cloning, learn-
ing apprentices, and programming by demonstration,
but it goes beyond these movements to construct hi-
erarchical structures that generalize well to new prob-
lems. Moreover, experiments in two domains demon-
strated that our method learns much more rapidly
than explanation-based techniques, whether they con-
struct flat macro-operators or take advantage of the
learned skill hierarchy. This suggests that our ap-
proach to constructing hierarchical task networks of-
fers advantages over more traditional techniques for
learning plan knowledge.

Despite these encouraging results, our work on learn-
ing by observation remains in its early stages, and our
current implementation makes some simplifying as-



Learning Hierarchical Task Networks by Observation

sumptions that we should remedy in future work. One
assumption is that the expert trace includes all rele-
vant steps, whereas a more robust agent might infer oc-
casional steps that it does not observe. Another is that
learner knows the agent’s goals, whereas an improved
system would infer them from the trace and back-
ground knowledge. Our current method also assumes
that the environment changes only when the agent
takes some action, whereas future versions should han-
dle settings in which some events are due to indepen-
dent physical causes or other agents’ behaviors.

In addition, our approach relies heavily on accurate
knowledge about each skill’s effects, whereas a more
flexible learner would also include some ability to re-
vise its action models based on observed results. Fi-
nally, the current system assumes that the expert has
carried out the best sequence to achieve the goal,
whereas a more sophisticated approach would analyze
the trace for loops or other inefficiencies and remove
them before learning. We hope to address each of these
issues in future learning systems that combine domain
knowledge with traces of expert behavior to acquire
complex hierarchical task networks.

Acknowledgements

This paper reports research sponsored by DARPA un-
der agreement FA8750-05-2-0283. The U. S. Govern-
ment may reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyrights.
The authors’ views and conclusions should not be in-
terpreted as representing official policies or endorse-
ments, expressed on implied, of DARPA or the Gov-
ernment. We thank Dongkyu Choi for discussions that
contributed to the ideas presented in this paper.

References

Bacchus, F. (2001). AIPS’00 planning competition.
AI Magazine, 22 , 47–56.

Cypher, A. (Ed.). (1993). Watch what I do: Program-

ming by demonstration. Cambridge, MA: MIT Press.

Ellman, T. (1989). Explanation-based learning: A sur-
vey of programs and perspectives. ACM Computing

Surveys, 21 , 163–221.

Ilghami, O., Nau, D. S., Muñoz-Avila, H., & Aha, D.
W. (2002). CaMeL: Learning method preconditions
for HTN planning. Proceedings of the Sixth Interna-

tional Conference on AI Planning and Scheduling (pp.
131–14). Toulouse, France.

Kaelbling, L. P., Littman, L. M., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal of

Artificial Intelligence Research, 4 , 237–285.

Könik, T., & Laird, J. (2004). Learning goal hier-
archies from structured observations and expert an-
notations. Proceedings of the Fourteenth International

Conference on Inductive Logic Programming (pp. 198–
215). Porto, Portugal: Springer.

Langley, P., & Choi, D. (2006) Learning recursive con-
trol programs from problem solving. Journal of Ma-

chine Learning Research, 7 , 493–518.

Lau, T. A., Domingos, P., & Weld, D. S. (2003).
Learning programs from traces using version space al-
gebra. Proceedings of the Second International Con-

ference on Knowledge Capture (pp. 36–43). Sanibel
Island, FL: ACM Press.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. I.
(1985). LEAP: A learning apprentice for VLSI design.
Proceedings of the Ninth International Joint Confer-

ence on Artificial Intelligence (pp. 573–580). Los An-
geles, CA: Morgan Kaufmann.

Mooney, R. J. (1990). A general explanation-based

learning mechanism and its application to narrative

understanding. San Mateo, CA: Morgan Kaufmann.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J.
(1999). Evolutionary algorithms for reinforcement
learning. Journal of Artificial Intelligence Research,
11 , 241–276.

Sammut, C. (1996). Automatic construction of reac-
tive control systems using symbolic machine learning.
Knowledge Engineering Review , 11 , 27–42.

Segre, A. (1987). A learning apprentice system for
mechanical assembly. Proceedings of the Third IEEE

Conference on AI for Applications (pp. 112–117).

Tecuci, G. (1998). Building intelligent agents: An

apprenticeship multistrategy learning theory, method-

ology, tool and case studies. London: Academic Press.

Urbancic, T., & Bratko, I. (1994). Reconstructing
human skill with machine learning. Proceedings of

the Eleventh European Conference on Artificial Intel-

ligence (pp. 498–502). Amsterdam: John Wiley.

Wilkins, D. E., & desJardins, M. (2001). A call for
knowledge-based planning. AI Magazine, 22 , 99–115.

Zimmerman, T., & Kambhampati, S. (2003). Learn-
ing-assisted automated planning: Looking back, tak-
ing stock, going forward. AI Magazine, 24 , 73–96.


