
Learning Conceptual Predicates for

Teleoreactive Logic Programs

Nan Li, David J. Stracuzzi, and Pat Langley

School of Computing and Informatics, Arizona State University
Tempe, Arizona 85281 USA

{nan.li.3|david.stracuzzi|langley}@asu.edu

Abstract. Teleoreactive logic programs provide a formalism for describ-
ing conceptual and skill knowledge that is organized hierarchically. How-
ever, manual construction of the conceptual clauses is tedious and often
requires expert knowledge. In this paper, we present an approach to
defining new conceptual predicates from successfully solved problems.
We provide experimental results that demonstrate these concepts im-
prove the usefulness of skills learned from the same solutions.

Appearing in the Proceedings of the Late-Breaking Papers Track of the Eighteenth

International Conference on Inductive Logic Programming, September 10-12, Prague,
Czech Republic. Copyright 2008 by the authors.

1 Introduction

Teleoreactive logic programs encode both declarative and procedural knowledge
into hierarchical first-order knowledge bases [1] using a syntax similar to the
first-order Horn clauses in Prolog. The term “teleoreactive” [2] refers to the
formalism’s support for reactive execution of the goal-oriented skills over time.
Teleoreactive logic programs are often created manually using expert knowledge,
but this approach is both tedious and time-consuming.

There has been a growing body of work on learning teleoreactive logic pro-
grams, hierarchical task networks, and related structures [1, 3]. An important
subtask involves acquiring the preconditions for the learned procedural clauses.
These determine when specific clauses apply, and therefore guide the system to
select procedures that take it toward the goal. In this paper, we report an ap-
proach to defining new predicates that encode these preconditions in ways that
improve the behavior of learned skills over that of previous methods.

2 A Review of Teleoreactive Logic Programs

Teleoreactive logic programs incorporate ideas from traditional logic program-
ming, but differ in that they carry out action over time. The formalism combines
techniques from goal-driven and reactive control, and it incorporates constraints
that make learning of hierarchical structures tractable. In this section, we briefly
review the basic assumptions and operational procedures that Langley and Choi
[1] introduced in their early work on this topic.

Programs in this framework distinguish conceptual and procedural knowl-
edge. The conceptual knowledge base comprises a hierarchy of first-order Horn

Table 1. Sample conceptual clauses from freecell solitaire.

;; cards ?c1 and ?c2 are of different color, rank of ?c2 is one larger than ?c1
((stackable ?c1 ?c2)

:percepts ((card ?c1 color ?co1 val ?v1)
(card ?c2 color ?co2 val ?v2))

:tests ((not (equal ?co1 ?co2))
(= ?v2 (+ 1 ?v1))))

;; card ?c may be placed onto card ?dc, and ?cb is the card below ?c
((movable ?c ?dc ?cb)

:percepts ((card ?c) (card ?dc) (card ?cb))
:relations ((clear ?c) (clear ?dc)

(moved-onto ?c ?cb) (stackable ?c ?dc)))

clauses with negation that provide a vocabulary to describe the agent’s envi-
ronment. Each conceptual clause consists of a head, which states its predicate
and arguments, and a body that describes the conditions under which the pred-
icate is true, as Table 1 demonstrates. Procedural knowledge, stated as a set of
skill clauses, is similar to hierarchical strips operators [4]. Each skill clause has a
head that refers to the skill’s goal, a start condition that must be satisfied before
it can execute, an action or subgoal field that describes how to achieve the goal,
and an effects field that describes the situation after successful execution. The
predicate in a clause head may appear in a subgoal, so the framework support
recursive programs. Table 2 shows sample skill clauses from the freecell domain.
Notice how predicates such as movable refer to the concepts defined in Table 1.

Teleoreactive logic programs perform two primary operations during each
execution cycle. First, the interpreter carries out bottom-up inference to deter-
mine a belief state based on the agent’s percepts and conceptual knowledge.
Second, the interpreter retrieves the first unsatisfied top-level goal and attempts
to find an applicable path through the skill hierarchy. Such a path starts from

Table 2. Sample skill clauses from freecell solitaire.

;; Clear card ?cb by moving the card ?c on top of it to card ?dc
((clear ?cb ?c ?dc)

:percepts ((card ?c) (card ?dc) (card ?cb))
:start ((movable ?c ?dc ?cb))
:actions ((*sendtocol ?c ?dc))
:effects ((clear ?cb) (moved-onto ?c ?dc) (clear ?c)))

;; Move card ?c on to card ?dc
((moved-onto ?c ?dc)

:percepts ((card ?c) (card ?dc) (card ?cb))
:start ((precondition-moved-onto s8 ?c ?dc))
:subgoals ((movable ?c ?dc ?cb)

(clear ?cb ?c ?dc))
:effects ((effect-moved-onto s8 ?c ?dc))

the agent’s goal, which is an instance of a known concept, and descends through
the hierarchy such that the preconditions of each skill clause match and the
bindings of each subgoal unify with those of its parent.

If no applicable skill path exists, a problem solver decomposes the goal by
chaining backward using domain knowledge. The problem solver only back-
chains over concept definitions and primitive skills, which refer to executable
actions rather than subgoals. To chain off of a skill, the interpreter retrieves
a skill that contains the current goal in its effect and attempts to achieve the
preconditions for that skill. Similarly, when chaining off a concept, the system
uses its definition to decompose the current goal into multiple subgoals.

Whenever the problem solver achieves a goal or subgoal, it constructs a new
skill clause. The head of the skill is a generalized version of the goal that replaces
constants with variables. If chaining off a skill achieved the goal, the new skill’s
subgoals are the precondition concept from the chained skill, plus the subgoals
of the chained skill in order of execution. The precondition of the new skill is
the precondition of the skill that achieved the first subgoal. If chaining off a
concept achieved the goal, the new skill’s subgoals are the subconcepts that
were unsatisfied at the start of problem solving.

When the system encounters a similar situation in the future, its interpreter
will test whether the new skill clause appears in an applicable path through
the skill hierarchy, in which case it will execute that path. Experimental stud-
ies suggested that this approach to learning hierarchical skills rapidly replaced
problem solving, which often required extensive backtracking, with reactive ex-
ecution, which often led directly to the goal.

3 Learning and Using Conceptual Predicates

Langley and Choi’s [1] skill-learning method produced encouraging results, but
analysis suggested it has two drawbacks. First, skill clauses produced from solu-
tions obtained via chaining off of concepts tend to have overly general precon-
ditions because they ignore the preconditions of skill clauses that achieve the
subgoals. Second, skill clauses constructed for goals achieved via skill chaining
tend to have overly specific preconditions, since they consider only the particular
primitive skills used to achieve the first subgoal and ignore other skill clauses
that may achieve that subgoal.

We have addressed these issues by developing an extended approach which
defines new conceptual predicates that better reflect a learned skill clause’s ap-
plicability. Preconditions and effects define abstractions of the world before and
after the skill executes. We can expand the system’s knowledge about the world
by constructing new predicates that encode these abstractions effectively.

The new approach introduces two kinds of terms: specialized predicates and
generalized predicates. Each specialized precondition/effect is associated with
a skill clause and describes the situations in which that skill applies/produces.
The system uses specialized preconditions during execution to determine which
skill to apply next. A generalized precondition/effect is associated with a goal

and encodes a disjunction over the specialized preconditions/effects from all skill
clauses that achieve the goal. Our approach uses generalized preconditions and
effects during learning to determine the specialized precondition and effect for a
new skill that admits all possible uses of that skill, as detailed below.

The input to our method is a skill clause, built by the skill learner, which
contains a goal and a list of subgoals. If the system achieved the goal by chaining
off a concept, it first retrieves the generalized preconditions and effects associ-
ated with the subgoals. It then uses macro-operator composition [5] to compute
the preconditions and effects by combining the generalized preconditions and ef-
fects of the subgoals. Finally, the system introduces new precondition and effect
predicates using these two combined terms as their definitions. Similarly, if the
system achieved the goal by chaining off a skill, the specialized precondition of
the new skill is the generalized precondition of the first subgoal, S1. Similarly,
the specialized effect of the learned skill clause is the effect of the original skill.

Irrespective of whether the problem solver used concept or skill chaining to
achieve the goal, the algorithm updates the generalized predicates corresponding
to the new specialized predicates by adding the precondition/effect predicates
as disjunctive terms. This informs the interpreter that the given goal can be
achieved in a new situation and lets it apply learned skill clauses to goals under
circumstances in which it would otherwise have ignored them.

4 Experimental Evaluation

Our key claim is that expanding the representation of teleoreactive logic pro-
grams by defining new conceptual predicates improves the ability of learned
skills to achieve goals and reduces their reliance on problem solving. To test
this claim, we carried out an experiment that compared the new approach with
the one that Langley and Choi [1] reported and with Mooney’s [5] method for
learning a non-hierarchical macro-operators. The latter determines precondi-
tions using an analytic techniques similar to the one we described for computing
specialized preconditions, but without introducing new predicates. We used the
same inference, execution, and problem-solving modules in each case.

We presented each system with 100 randomly selected problems from the
freecell domain [6]. For each problem, a system first tried to achieve the goal
by executing its existing skills. If this failed, it called on the problem solver
and learned new skill clauses, using one of the above three methods, whenever
this achieved a goal or subgoal. We measured system behavior as the number
of top-level goals achieved by execution without resorting to problem solving.
Other metrics such as CPU time are secondary to our objectives. We provided
the systems with initial knowledge bases (40 conceptual clauses and 13 primitive
skills) sufficient to solve problems by execution that were one step away from
the goal. We tested the system on problems with 8, 16 and 24 cards.

Figure 1 displays the cumulative number of goals achieved without problem
solving by the three systems. Macro-operator learning fares the worst, while our
predicate creation method learns more rapidly than Langley and Choi’s tech-

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

(a) (b) (c)

Fig. 1. Cumulative number of goals achieved for the freecell solitaire domain on prob-
lems involving (a) eight cards, (b) 16 cards, and (c) 24 cards.

nique on tasks with 16 and 24 cards. Analysis of individual runs shows that
the older approach often acquires overly general preconditions, which leads the
system to execute skills that do not achieve the goal. The concept learner mit-
igates this drawback by learning more specific preconditions. Conversely, the
macro-operator method collects too many relations among cards, which leads to
overly specific preconditions that keep the interpreter from executing relevant
skills. We conclude that, on average, the new mechanism creates more appropri-
ate preconditions for skill clauses that reduce the chance of selecting irrelevant
learned skills and increase the chance of selecting relevant ones.

5 Concluding Remarks

In this paper, we reviewed teleoreactive logic programs, along with an initial ap-
proach to learning them from problem solutions. We also identified some draw-
backs with this scheme and described an extension for defining new conceptual
predicates to produce more appropriate preconditions on learned skill clauses.
An experiment demonstrated that the new mechanism learned more rapidly than
either the initial technique, which formed overly general conditions, or a method
based on macro-operators formation, which formed overly specific ones.

Our predicate creation algorithm has superficial similarities to work on pred-
icate invention [7], but our approach is analytic while the latter was driven by
empirical regularities. More closely related is research on representation change
in problem solving and game playing [8, 9], which also relied on goal-driven ana-
lytical learning. However, our approach differs from these efforts by supporting
incremental learning that is interleaved with problem solving, by acquiring recur-
sive precondition concepts that aid generalization, and by working jointly with a
method for constructing hierarchical skills that support reactive execution. Also
relevant is recent work on learning hierarchical methods from problem solutions
and action models [10–12], which shares many features but does not construct
new conceptual predicates that extend the representation language.

The main claim of this paper is that the analytic creation of new concep-
tual predicates produces more appropriate preconditions for learned skill clauses,

which in turn let a teleoreactive interpreter achieve more goals through execu-
tion, without the need for problem solving. However, the results we have re-
ported remain preliminary and suggest several avenues for additional research.
For example, we should replicate out experimental studies in other domains,
both to demonstrate generality and better understand the quality of the learned
preconditions. We must also combine the predicate learner with an evaluation
mechanism that lets the system determine which of the new concepts are useful.
Finally, we should augment the framework to acquire skills for achieving these
invented concepts, thus closing the loop on conceptual and procedural learning.

6 Acknowledgements

The authors would like to thank Dongkyu Choi and Tolga Konik for helpful
discussions and suggestions concerning this work. This material is based on re-
search sponsored by ONR under grant N00014-08-1-0069 and by DARPA under
agreement FA8750-05-2-0283.

References

1. Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In:
Preceedings of the Twenty-First National Conference on Artificial Intelligence,
Boston, AAAI Press (2006)

2. Nilsson, N.: Teleoreactive programs for agent control. Journal of Artificial Intelli-
gence Research 1 (1994) 139–158

3. Ilghami, O., Nau, D.S., Muñoz Avila, H., Aha, D.W.: Camel: Learning method pre-
conditions for HTN planning. In: Proceedings of the Sixth International Conference
on AI Planning and Scheduling, Toulouse, France, AAAI Press (2002) 131–141

4. Fikes, R., Nilsson, N.: Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2 (1971) 189–208

5. Mooney, R.J.: A General Explanation-Based Learning Mechanism and its Appli-
cation to Narrative Understanding. Morgan Kaufmann, San Mateo, CA (1990)

6. Bacchus, F.: AIPS ’00 planning competition. AI Magazine 22 (2001) 47–56
7. Muggleton, S.: Predicate invention and utility. Journal of Experimental and The-

oretical Artificial Intelligence 6(1) (1994) 121–130
8. Utgoff, P.E.: Shift of Bias for Inductive Concept Learning. PhD thesis, Department

of Computer Science, Rutgers University, New Brunswick, NJ (1984)
9. Fawcett, T.: Knowledge-based feature discovery for evaluation functions. Compu-

tational Intelligence 12(1) (1996)
10. Reddy, C., Tadepalli, P.: Learning goal decomposition rules using exercises. In

Fisher, D., ed.: Proceedings of the Fourteenth International Conference on Machine
Learning, Nashville, TN, Morgan Kaufmann (1997)

11. Nejati, N., Langley, P., Konik, T.: Learning hierarchical task networks by observa-
tion. In: Proceedings of the 23nd International Conference on Machine Learning,
Pittsburgh, PA, ACM (2006)

12. Hogg, C., Muñoz-Avila, H., Kuter, U.: HTN-MAKER: Learning HTNs with min-
imal additional knowledge engineering required. In: Proceedings of the Twenty-
Third Conference on Artificial Intelligence, Chicago, AAAI Press (2008)

