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tIn this paper, we des
ribe I
arus, an inte-grated ar
hite
ture for intelligent agents thatdiverges from earlier e�orts. The frameworksupports long-term memories for 
on
epts andskills, and it in
ludes me
hanisms for re
ogniz-ing 
on
epts, 
al
ulating internal reward, nom-inating and sele
ting skills, exe
uting them ina rea
tive manner, repairing skills' 
onditionswhen they fail, and abandoning skills whenthey promise poor returns. We illustrate thesepro
esses with examples from the domain ofhighway driving, and we relate I
arus' as-sumptions to prin
iples of ar
hite
tural designand to previous resear
h in this important area.1. Introdu
tion and Ba
kgroundResear
h on agent ar
hite
tures pursues a 
entral goal ofarti�
ial intelligen
e and 
ognitive s
ien
e: the 
reationand understanding of syntheti
 agents that support thesame 
apabilities as humans. Su
h ar
hite
tures aim forbreadth of 
overage a
ross many domains, and they of-fer an a

ount of intelligen
e at the systems level, ratherthan fo
using on 
omponent methods designed for spe-
ialized tasks. They run 
ounter to the in
reasing frag-mentation of these �elds, in that they provide integratedframeworks for produ
ing 
omplex behavior in a general,domain-independent manner.An agent ar
hite
ture { sometimes 
alled a 
ognitivear
hite
ture { spe
i�es the infrastru
ture for an intel-ligent system that remains 
onstant a
ross di�erent do-mains and knowledge bases. This infrastru
ture in
ludesa 
ommitment to formalisms for representing knowledge,memories for storing this domain 
ontent, pro
esses thatutilize the knowledge, and learning me
hanisms to a
-quire or revise it. An agent ar
hite
ture 
an interpretdi�erent knowledge bases, just as a 
omputer ar
hite
-ture 
an run di�erent programs.In this paper, we report on the latest version ofI
arus, an agent ar
hite
ture that extends our previ-ous work in this area (Shapiro & Langley, 1999, 2002;Shapiro et al., 2001). We begin by des
ribing �ve de-

sign prin
iples that have guided our development of thear
hite
ture. After this, we des
ribe I
arus' long-termand short-term memories, in
luding their formalisms foren
oding knowledge. Next we examine the framework'sme
hanisms for operating on these memory stru
tures,fo
using on performan
e rather than learning, whi
h wehave dis
ussed in earlier papers. In 
losing, we 
on-sider the intelle
tual in
uen
es on I
arus and outlineour plans for extending its 
apabilities.2. Design Prin
iples for I
arusThe past 30 years have seen extensive resear
h on ar
hi-te
tures for intelligent agents and 
onsiderable progressin this area. However, we believe that existing ar
hi-te
tures downplay important fa
ets of intelligent behav-ior that deserve in
reased attention. Our resear
h onI
arus attempts to respond to these needs and has beenguided by a number of design prin
iples:1. Prima
y of 
ategorization over problem solving . Be-
ause most ar
hite
tures fo
used initially on multi-step problem solving and planning, they emphasizethe generation of solutions to problems or the exe
u-tion of a
tions. However, 
ategorization is a 
entralaspe
t of intelligent behavior that, in humans, takespla
e rapidly and un
ons
iously. This suggests that
ategorization should o

ur at a more basi
 level ofthe ar
hite
ture, with problem solving and exe
utionrelying on it, rather than the reverse.2. Prima
y of exe
ution over problem solving . The earlyfo
us on problem solving and planning, whi
h involvemental operations, led to alternative frameworks thatinstead emphasized rea
tive exe
ution of physi
al be-haviors. Humans 
an both generate plans and a
ton them, but the inability of most animals to formabstra
t plans suggests that exe
ution is more basi
,with problem solving building on this 
apa
ity.3. Internal origins of tasks and intentions . Many ar
hi-te
tures for intelligent agents assume that top-leveltasks and goals are provided by the programmer,whereas most rea
tive frameworks la
k even this task-ability. Humans 
an respond to external requests, butthey 
an also operate autonomously, generating theirown tasks and intentions. This suggests the need for
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ture for Intelligent Behaviorar
hite
tural me
hanisms that support autonomousgeneration and abandonment of high-level tasks.4. Value-driven nature of behavior . Initial designs formost agent ar
hite
tures relied almost entirely onsymboli
 pro
essing, using numbers for strength or re-
en
y in only limited ways. Resear
h on reinfor
ementlearning in
orporates notions of expe
ted and re
eivedreward, but does not link them to 
ognitive stru
tureslike 
on
epts or plans. However, a�e
t plays a 
entralrole in human experien
e and behavior, whi
h indi-
ates the need for a more value-driven approa
h to
ognition, per
eption, and a
tion.5. Internal origins of agent reward . Methods for rein-for
ement learning emphasize the role of reward inshaping behavior, but they invariably assume this re-ward 
omes from the external environment. However,reward in humans and animals is in
uen
ed by theirper
eptions of the world and their 
ognitive stru
-tures. This suggests that we re
ast the 
al
ulationof reward as a pro
ess internal to the agent, whi
h inturn requires ar
hite
tural support.Taken together, these 
onstraints have led to an ar
hi-te
ture that, although it in
orporates many ideas fromearlier resear
h, di�ers from them in important respe
ts.We attempt to highlight these di�eren
es as we des
ribeI
arus in the se
tions that follow.3. Memories and RepresentationsAn integrated ar
hite
ture should make some 
ommit-ment to its representation of knowledge and the memo-ries in whi
h that knowledge resides. In this se
tion wedes
ribe I
arus' memories for long-term knowledge andshort-term beliefs, along with the general forms taken bytheir 
ontents.3.1 Long-Term Con
eptual MemoryI
arus in
orporates a long-term memory for 
on
eptsthat en
odes its knowledge of familiar situations. Thisin
ludes des
riptions of 
ategories for isolated obje
ts,like 
ars and tru
ks, but also physi
al relations amongobje
ts, su
h as one vehi
le being ahead and to the rightof another. These 
on
epts provide I
arus' vo
abularyfor des
ribing its experien
e of the world.Ea
h 
on
ept has a name and zero or more arguments,and I
arus supports two distin
t kinds of 
on
epts.Boolean 
on
epts are either true or false, and 
orrespondto the traditional notion of a logi
al 
ategory. For in-stan
e, long-term memory might in
lude a Boolean 
on-
ept that 
overs situations in whi
h there are 
ars nextto the driver in both adja
ent lanes. In 
ontrast, numeri

on
epts take on quantitative values that 
orrespond toattributes of obje
ts or situations. Thus, a knowledgebase might in
lude a numeri
 
on
ept that refers to theaverage distan
e to 
ars ahead of and behind the driver.The ar
hite
ture supports both primitive and non-primitive 
on
epts of both types. Primitive 
on
epts
orrespond to the output of sensors that 
an dire
tlyper
eive various aspe
ts of the external environment.

Table 1 refers to two primitive Boolean 
on
epts fromthe driving domain, 
ar and lane, and four primitivenumeri
 
on
epts: #xdistan
e, #yfront, #yba
k, and#speed. Nonprimitive Booleans are de�ned as 
onjun
-tions of other Boolean 
on
epts, numeri
 
on
epts, andlogi
al predi
ates like >, as illustrated by ahead-of and
oming-from-behind. Similarly, numeri
 
on
epts like#distan
e-ahead are de�ned in terms of other numeri

on
epts, plus optional Boolean 
on
epts and logi
alpredi
ates. A numeri
 
on
ept de�nition also in
ludesan arithmeti
 fun
tion to 
ompute its asso
iated quan-tity from numeri
 
onstituents.Taken together, these de�nitions impli
itly organizeI
arus 
ategories into a 
on
eptual hierar
hy. Thishierar
hy is similar in spirit to those in earlier mod-els of memory like Epam (Feigenbaum, 1963), Unimem(Lebowitz, 1987), and Cobweb (Fisher, 1987), as wellas frameworks like des
ription logi
s (Nardi & Bra
h-man, 2002). The a
tual form is a latti
e, with primitive
on
epts o

urring at the top, 
on
epts de�ned in termsof them immediately below, and more 
omplex 
on
eptsat lower levels. Stru
turally, this latti
e bears a 
loseresemblan
e to the Rete networks (Forgy, 1982) used format
hing in produ
tion-system ar
hite
tures, an analogyto whi
h we will return later.Ea
h Boolean 
on
ept also has an asso
iated fun
tionthat spe
i�es the reward the agent re
eives when that
on
ept is true and that provides an analogy for utility inhumans, in that it motivates all agent 
hoi
es within thear
hite
ture. The fun
tion is des
ribed by two �elds, one(:reward) referring to the numeri
 
on
epts that in
u-en
e the reward and another (:weights) that indi
atesthe weight on ea
h numeri
 
on
ept. The ar
hite
tureassumes these are 
ombined in a linear fashion to 
om-pute the reward obtained when that 
on
ept is true.3.2 Long-Term Skill MemoryTo 
omplement its 
on
eptual memory, I
arus in
orpo-rates a long-term skill memory that en
odes knowledgeabout ways to a
t and a
hieve goals. This 
ontains spe
i-�
ations for skills that are appli
able in 
ertain situationsand that produ
e desired e�e
ts. Skills provide I
aruswith a repertoire of behaviors that let it in
uen
e theenvironmental situations in whi
h it �nds itself.Ea
h skill has a name, zero or more arguments, and six�elds. The :obje
tive �eld spe
i�es a 
onjun
tion ofknown 
on
epts that, taken together, en
ode the desiredsituation the skill is intended to a
hieve. Ea
h skill alsoin
ludes a :start �eld, again 
ast as a 
onjun
tion ofknown 
on
epts, whi
h spe
i�es the situation that musthold to initiate the skill, and a :requires �eld, whi
hmust hold throughout the skill's exe
ution. For example,Table 2 shows the skill pass, whi
h has the obje
tive ofgetting ?
ar1 ahead of ?
ar2 and in the same lane, 
anstart only if ?
ar1 is behind ?
ar2 in the same lane, andit also requires that ?
ar2 remain in this lane during thepassing a
tivity.In addition, ea
h I
arus skill in
ludes another �eldthat spe
i�es how to de
ompose that skill into subskills.
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ture for Intelligent Behavior Page 3An :ordered �eld indi
ates the order in whi
h the agentshould 
onsider these 
omponent skills. For example,pass dire
ts the agent to 
onsider speed-and-
hange,overtake, and 
hange-lanes, in that sequen
e, and tosele
t an a
tion rea
tively from the �rst subskill thatapplies. In 
ontrast, an :unordered �eld identi�es a
hoi
e among subskills. For instan
e, the table's de
om-position for speed-and-
hange involves the subskillsspeed-up-faster-than and 
hange-lanes, from whi
hthe system pi
ks the best, regardless of order.More a

urately, I
arus spe
i�es one or more ways tode
ompose ea
h skill in this manner, mu
h as a Prologprogram 
an in
lude more than one Horn 
lause withthe same head. Di�erent de
ompositions of a givenskill must have the same name, number of arguments,and obje
tive. However, they 
an di�er in their 
om-ponents and in their requirements. For example, theskill 
hange-lanes has two su
h de
ompositions, onefor moving to the left and another to the right.In a primitive skill, the :ordered �eld spe
i�es a sin-gle opaque a
tion. For the driving domain, su
h a
tionsmight 
orrespond to turning the wheel or 
hanging pres-sure on the pedal by a given amount. Thus, a primitiveskill plays the same role as a Strips operator in a tra-ditional planning system, with the :start �eld servingas the pre
onditions and the :obje
tive �eld spe
ifyingthe e�e
ts of exe
ution.Ea
h skill de
omposition also in
ludes an expe
tedvalue fun
tion that takes a form similar to the rewardsasso
iated with 
on
epts. This en
odes the dis
ountedreward that the agent expe
ts to re
eive if it exe
utesthe skill with this de
omposition. As with 
on
ept re-wards, this fun
tion is spe
i�ed in two parts, a :value�eld that indi
ates the numeri
 
on
epts involved anda :weights �eld that states the weights on quantitiesreturned by these 
on
epts. The expe
ted reward for askill de
omposition is a linear fun
tion of the numeri
des
riptors mat
hed by that skill. For example, thevalue for pass might depend on the numeri
 
on
epts#distan
e-ahead and #speed of another 
ar, whi
h 
anvary from moment to moment.3.3 Short-Term MemoriesI
arus' long-term memories en
ode stable knowledgethat 
hanges only slowly in response to its a

umulatedexperien
e. However, to generate behavior, the ar
hite
-ture requires short-term stores that 
hange more rapidly.These should make 
onta
t with long-term 
on
epts andskills, but they must also represent temporary beliefsabout the agent's environment and desires.One su
h memory is I
arus' per
eptual bu�er , whi
h
ontains instan
es of primitive Boolean and numeri
 
on-
epts that 
orrespond to the output of sensors. For ex-ample, this short-lived memory might 
ontain the literal(#speed 
ar-007 20.3), whi
h spe
i�es the speed of
ar-007 as per
eived on the 
urrent time step. Thisliteral is an instan
e of the primitive #speed 
on
eptbe
ause it refers to spe
i�
 parameters rather than togeneralized variables.

In 
ontrast, I
arus' short-term 
on
eptual memory
ontains instan
es of 
on
epts that are de�ned in long-term 
on
ept memory. These literals en
ode spe
i�
 be-liefs about the environment that the agent 
an infer fromthose present in its per
eptual bu�er. For instan
e, thismemory might 
ontain the instan
e (faster-than self
ar-007), whi
h depends on the #speed instan
e men-tioned above. In addition, ea
h instan
e of a Boolean
on
ept in
ludes a numeri
 reward 
omputed from thereward fun
tion asso
iated with that 
on
ept and theliterals mat
hed in its :reward �eld.Finally, I
arus in
ludes a short-term skill memorythat 
ontains instan
es of skills the agent intends to ex-e
ute. Ea
h of these literals spe
i�es the skill's nameand its 
on
rete arguments. For example, this memorymight 
ontain the skill instan
e (pass self 
ar-007lane-a), whi
h denotes that the driver has an expli
itintention to exe
ute the pass skill with these argumentswhen possible. In addition, ea
h skill instan
e in
ludesthe expe
ted dis
ounted reward if exe
uted, whi
h is
omputed from the expe
ted reward fun
tion asso
iatedwith that skill and literals mat
hed in its :value �eld.The agent uses this number to make 
hoi
es among skillsand among alternatives within skills.4. Interpreting and Utilizing KnowledgeLike most ar
hite
tures for intelligent agents, I
arusoperates in distin
t 
y
les. Every 
y
le, the system up-dates its per
eptual bu�er, determines whi
h 
on
eptsare mat
hed, and 
al
ulates reward based on these 
on-
epts. The ar
hite
ture then sele
ts a skill and exe
utesit, produ
ing 
hanges in the environment that in
uen
ede
isions on the next 
y
le. In this se
tion, we dis
ussea
h of these pro
esses in turn.4.1 Categorization and Belief UpdateOn ea
h 
y
le, I
arus refreshes the 
ontents of its per-
eptual bu�er by applying preattentive sensors to everyobje
t within a given distan
e of the agent. This pro-du
es a set of primitive 
on
ept instan
es whi
h are de-posited into the short-term store and whi
h are then sentto the top nodes of the latti
e for 
on
eptual long-termmemory. Ea
h instan
e of a primitive 
on
ept is storedwith the long-term node for that 
on
ept, along with thebindings of variables for that instan
e.When the 
ategorization module stores a new instan
eI at the node for 
on
ept C, it a

esses ea
h de�ned 
on-
ept D that in
ludes C in its de�nition, then 
he
ks tosee whether the addition of I makes any new instan
esof D possible. To this end, it a

esses the instan
es of allother 
on
epts that appear in D's de�nition and 
onsid-ers whether their variables bind 
onsistently with thosefor I . If so, then the module adds a new instan
e to theD node for ea
h su
h 
onsistent binding and re
ursivelyships ea
h one to the nodes for 
on
epts that in
lude Din their de�nitions.A similar pro
ess o

urs when per
eptual updating re-moves a Boolean 
on
ept instan
e from the per
eptualbu�er or 
hanges the quantity asso
iated with a numeri
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hite
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e. Whenever a primitive instan
e is removed, themodule deletes the instan
es of all de�ned 
on
epts towhi
h that literal 
ontributes and re
ursively removesinstan
es of all 
on
epts that depend on it indire
tly.Changes to a numeri
 
on
ept instan
e 
an lead to ei-ther removal or addition of Boolean 
on
epts in whi
hit o

urs, depending on whether the 
hange makes pred-i
ates like (< ?distan
e 20) true or false. In general,the 
ategorization module plays the same role for I
arusas a truth maintenan
e module in some logi
al inferen
esystems (e.g., Doyle, 1979).Earlier we mentioned that the 
on
ept latti
e is simi-lar in form to the Rete networks that are used in manyprodu
tion-system ar
hite
tures. The 
on
ept re
og-nition pro
ess just des
ribed uses e�e
tively the sameme
hanism to support eÆ
ient mat
hing. The main dif-feren
e is that every node in the hierar
hy 
orrespondsto a 
on
ept that has some meaning to the agent, ratherthan simply existing to support the mat
h pro
ess.A typi
al Rete network utilizes binary trees, whereasI
arus instead has N-ary trees, with the bran
hing fa
-tor determined by the number of literals mentioned inea
h 
on
ept de�nition.4.2 Cal
ulation of RewardAs we noted earlier, Boolean 
on
epts in long-termmem-ory have asso
iated reward fun
tions, whi
h are 
om-bined into a global utility metri
 that informs I
arus'de
isions. To determine this quantity, the ar
hite
-ture 
onsiders every instan
e of a Boolean 
on
ept inshort-term memory and 
omputes the dot produ
t of itsnumeri
 attribute values and their asso
iated weights.For example, suppose the 
on
ept ahead-of in Table 1has two numeri
 
on
epts in its :reward �eld thatmat
h the instan
es (#distan
e-ahead self 
ar-00620) and (#speed ?
ar-006 25). If we suppose fur-ther that this Boolean 
on
ept spe
i�es the parame-ters 4.7 and 1.6 in its :weights �eld, then the reward
ontributed by the 
on
ept instan
e (ahead-of self
ar-006) would be 4:7� 20 + 1:6� 25 = 134.After 
al
ulating the reward for ea
h mat
hed Booleaninstan
e, I
arus sums their 
ontributions to produ
ethe overall reward for the 
urrent 
y
le. This 
orre-sponds to the reward provided in traditional approa
hesto reinfor
ement learning, but our framework does notview it as 
oming from outside the agent. Rather, re-ward is an internal response to what the agent per
eivesin its environment, so that if a 
on
ept is unmat
hed,for whatever reason, it has no impa
t. This opens theway for sele
tive attention to in
uen
e the reward signal,though we have not implemented this idea in our 
urrentI
arus agents.In prin
iple, every mat
hed Boolean 
on
ept 
an 
on-tribute to the agent's overall reward. However, be
ausean I
arus programmer may not want to spe
ify rewardfun
tions for every 
on
ept in long-term memory, the ar-
hite
ture assumes zero as the default reward when noneis given. Thus, only a few 
on
epts may in
uen
e the 
al-
ulation in pra
ti
e. Also, note that distin
t instan
es

of the same 
on
ept make separate 
ontributions to theoverall reward. For example, if a driver dislikes being
lose to other 
ars, then the reward (whi
h 
an be neg-ative) will de
rease linearly with the number of nearby
ars. One 
an imagine other 
ombination s
hemes thatprodu
e di�erent e�e
ts, but simple summation seems areasonable starting point.4.3 Nomination and Sele
tion of SkillsRe
all that I
arus in
ludes a short-term skill memorythat 
ontains a set of skill instan
es the agent 
onsid-ers worth exe
uting. Most ar
hite
tures for intelligentbehavior assume the agent is given some top-level goalsto pursue, but this does not explain their sour
e. In
ontrast, I
arus in
ludes a me
hanism for nominatingskills that should be added to short-term skill memoryand thus 
onsidered for exe
ution.On ea
h 
y
le, the nomination pro
ess a

esses allskills in long-term memory that refer to 
on
epts ap-pearing in short-term memory. More pre
isely, for ea
hshort-term 
on
ept instan
e, the module �nds every skillthat in
ludes the analogous 
on
ept in its own :startor :requires �elds. Moreover, it 
onsiders di�erent in-stan
es of ea
h su
h skill, based on the variables mat
hedduring retrieval. This strategy produ
es skill instan
esthat are potentially relevant to the 
urrent situation inshort-term memory.The nomination pro
ess sele
ts at most one of theseskills to add to short-term skill memory, whi
h it does onthe basis of value 
al
ulations. In parti
ular, the system
omputes the expe
ted reward for exe
uting ea
h skill inthe 
urrent situation, identi�es the most promising one,and 
ompares its estimate against the expe
ted rewardfor skills already in short-term memory. To aid this de-
ision, the ar
hite
ture maintains a running dis
ountedaverage RA of the overall reward it has re
eived on past
y
les. If the expe
ted reward for the highest-s
oringskill instan
e is higher than RA, then the nominationpro
ess adds the instan
e to short-term skill memory.Otherwise, there is no reason to expe
t it will produ
ebetter results than 
urrently exist, so it adds nothing tothe set of a
tive intentions.On
e it has 
ompleted the nomination pro
ess, I
arussele
ts whi
h skill to exe
ute on the 
urrent 
y
le. Tothis end, it 
omputes the expe
ted value for ea
h skill in-stan
e in the a
tive set, again basing this 
al
ulation onthe value fun
tion stored with ea
h skill and the instanti-ated numeri
 
on
epts against whi
h that skill mat
hes.On ea
h 
y
le, the ar
hite
ture simply sele
ts the skill in-stan
e that s
ores the highest on this 
riterion, whetherit has just been added or has been a
tive for some time.This de
ision involves deep evaluation of the skill, in
lud-ing examination of a
tions suggested by its subskills, towhi
h we will turn shortly.Taken together, the nomination and sele
tion pro-
esses 
orrespond roughly to the 
on
i
t-resolution stagein produ
tion-system ar
hite
tures like OPS (Forgy,1982) and ACT-R (Anderson, 1993). Both introdu
ea sequential bottlene
k whi
h fo
uses 
ognitive atten-
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ture that seems most ap-propriate for the 
urrent situation. However, I
arusadapts this idea to skills that may have 
omplex in-ternal stru
tures, rather than to smaller, independent
ondition-a
tion rules.4.4 Exe
ution of SkillsOn
e I
arus has sele
ted a skill instan
e to apply on the
urrent 
y
le, it invokes an exe
ution module on that in-stan
e. An attempt to exe
ute a skill instan
e returnseither True, False, or a primitive a
tion, whi
h is thenapplied in the environment. Be
ause a skill may be de-�ned in terms of other skills, this pro
ess is re
ursive,with a skill returning the same result as its sele
ted sub-skill produ
es.An exe
uted skill instan
e returns True if its instanti-ated :obje
tive �eld mat
hes the 
urrent state of 
on-
eptual short-term memory. If this happens at the toplevel, the system takes no a
tion, sin
e it is already inthe desired situation. However, neither does it removethe instan
e from short-term skill memory, sin
e its pur-pose may involve a maintenan
e a
tivity (e.g., stayingfar enough from the 
ar ahead) that may require a re-sponse in the future.On the other hand, an exe
uted skill returns False if itsrequirements do not mat
h the 
urrent state of 
on
ep-tual short-term memory. Re
all that a skill's de�nitionmay in
lude multiple de
ompositions, and all of their:requires �elds must fail to mat
h for this to o

ur. Inthis 
ase, I
arus invokes the repair module dis
ussed inthe next se
tion in an attempt to alter the environmentso the skill's requirements are met.If one or more skill de
ompositions has satis�ed re-quirements, then the system must sele
t whi
h one toexe
ute. This pro
ess di�ers from nomination, whi
h ex-amines only the expe
ted value fun
tion asso
iated withthe nominated skills. Instead, the module re
ursively
onsiders all ways to exe
ute the sele
ted skill instan
e,expanding ea
h subskill in turn until rea
hing the lowestlevel. The system 
al
ulates the expe
ted value of ea
hprimitive skill instan
e that has an unmat
hed obje
tiveand mat
hed requirements, and it returns the instanti-ated a
tion asso
iated with the highest-s
oring skill.However, the ar
hite
ture treats a skill expansion dif-ferently depending on whether its 
omponents are an:unordered set or an :ordered list. If they are un-ordered, the module 
onsiders ea
h of the subskills andsele
ts the one that yields the highest s
oring a
tion.If they are ordered, it instead treats the list as a rea
-tive program that 
onsiders ea
h subskill in turn. If the�rst one does not apply, then the en
losing skill fails asa whole. If it produ
es an a
tion, the system returnsthat a
tion for possible exe
ution. However, if the �rstsubskill returns true, this means its obje
tive has beenmet in the world, so the system 
onsiders the se
ond sub-skill, and so forth. The pro
ess 
ontinues in this manner,terminating either in su

ess, failure, or by sele
ting ana
tion that furthers the skill's obje
tive.

4.5 Repair of Skill ConditionsAs just noted, I
arus 
an de
ide to exe
ute a skill in-stan
e with unsatis�ed requirements, in that the 
on
eptinstan
es needed to mat
h those requirements are notpresent in 
on
eptual short-term memory. In this 
ase,the ar
hite
ture invokes a repair module that attemptsto 
hange the environment into a state that meets theserequirements. This pro
ess involves two steps, one thatsele
ts an unmat
hed 
on
ept to repair and another thatsele
ts a skill whi
h, if exe
uted, should ultimately pro-du
e a situation that satis�es the missing 
on
ept.When determining whi
h 
on
ept instan
e to repair,I
arus 
onsiders all the ways in whi
h the 
urrent skillhas failed, in
luding 
on
epts mentioned in the :startand :requires �elds within its subskills, then sele
tsthe one that, if 
orre
ted, would produ
e the highestexpe
ted reward. When determining how to remedythis omission, the repair module a

esses every skillthat refers to the failed requirement in its :obje
tive�eld. For instan
e, suppose a driving agent has de-
ided to exe
ute the skill (overtake self 
ar-007),but that its requirement (in-different-lane self
ar-007) does not hold. If the agent is 
urrently inthe middle lane (lane-b), then it 
ould repair the prob-lem by exe
uting either (
hange-lanes self lane-a)or (
hange-lanes self lane-
), whi
h 
orrespond topassing on the left or right, respe
tively.As this example illustrates, the repair pro
ess mayneed to 
hoose among alternative skill instan
es thataddress a given requirement. To this end, I
arus usesthe same me
hanism as for nomination, whi
h involves
omputing the expe
ted value for ea
h 
andidate skillinstan
e and sele
ting the repair skill R with the highests
ore. This sele
tion takes an extra 
y
le, so attemptedexe
ution of R must wait until the next time step. IfR in turn has failed requirements, I
arus repeats thepro
ess, sele
ting another skill that should 
orre
t thisproblem. In summary, skill repair is a 
ognitive a
tivitythat o

urs at a higher level than skill exe
ution, whi
hwe assume is automatized.The ba
kward-
haining repair pro
ess is 
losely re-lated to te
hniques for generating subgoals in means-ends analysis (Newell, Shaw, & Simon, 1960) and plan-ning systems. Moreover, the fo
us on repair is similar toideas for impasse-driven problem solving in Soar (Laird,Newell, & Rosenbloom, 1987) and Sierra (VanLehn,1990). The key di�eren
e is that I
arus invokes its re-pair pro
ess with respe
t to physi
al skills rather thanmental reasoning. Thus, this ar
hite
tural feature re-mains 
onsistent with the prin
iple that exe
ution hasprima
y over problem solving, despite its resemblan
eto traditional planning methods.4.6 Abandonment of SkillsAnother 
ommon assumption in agent ar
hite
tures isthat, on
e an agent de
ides to pursue some goal, it
ontinues inde�nitely. However, humans often de
ideto abandon their goal-dire
ted a
tivities when they donot produ
e the expe
ted results, and we maintain that
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hite
ture for Intelligent BehaviorI
arus should also in
lude this fa
ility. We want thesystem to exhibit persisten
e with respe
t to nominatedtasks, but it should give up on them when they seem un-a
hievable or unlikely to generate the reward exe
utedoriginally. For example, if the agent begins passing an-other 
ar whi
h then speeds up substantially, it may bereasonable to abandon the attempt.To produ
e su
h behavior, I
arus relies on the dis-
ounted average of past rewards that we des
ribed forthe nomination pro
ess. On ea
h 
y
le, the ar
hite
tureupdates this running average and 
ompares it to the ex-pe
ted reward 
omputed for ea
h skill instan
e presentin the short-term skill memory. If the expe
ted value ofexe
uting a skill is substantially lower than the averagereward (
urrently 20 per
ent of this amount), then thesystem removes the instan
e from short-term memory.Be
ause I
arus uses the same average reward here asfor nomination, it is unlikely the system will abandon askill just after it has been nominated. Typi
ally, sometime will pass before a skill's expe
ted value drops sig-ni�
antly from its level when the ar
hite
ture �rst addedit to short-term memory. This leads I
arus to exhibit a
ertain persisten
e, though not the un
riti
al kind rep-resented by more traditional goal-driven systems.5. Intelle
tual Pre
ursorsDespite its novel features, I
arus draws on many ideasthat have a long history in arti�
ial intelligen
e and 
og-nitive s
ien
e. The most important intelle
tual in
uen
e
omes from the 
ognitive ar
hite
ture movement, whi
haims to develop integrated frameworks that support gen-eral intelligent behavior. Sin
e Newell's (1973) 
all formore systems-level resear
h in these �elds, a number ofresear
h groups have developed a variety of su
h ar
hi-te
tures, two of the best known being Soar (Laird et al.,1987) and ACT-R (Anderson, 1993). Other e�orts at in-tegration have fo
used on ar
hite
tures for roboti
 
on-trol (e.g., Bonasso et al., 1997), many of whi
h 
ombinemethods for planning and exe
ution. I
arus in
orpo-rates 
on
epts from both traditions in a framework thatsupports physi
al agents with 
ognitive abilities.Many 
ognitive ar
hite
tures have been 
ast as produ
-tion systems (Ne
hes, Langley, & Klahr, 1987), whi
hen
ode long-term knowledge as a set of 
ondition-a
tionrules that mat
h against and modify the 
ontents ofshort-term memory. Our design for I
arus in
orporates
entral ideas from this framework, in
luding a relian
eon pattern mat
hing, with skill �elds being 
ompared toshort-term memory and the 
on
eptual hierar
hy utiliz-ing a Rete network to support bottom-up re
ognition.This latter pro
ess is also 
losely related to methods fortruth maintenan
e (e.g., Doyle, 1979), whi
h often storejusti�
ations for beliefs so they 
an be removed when theenvironment 
hanges.I
arus also borrows from a distin
t tradition of rea
-tive 
ontrol (e.g., S
hoppers, 1987; Nilsson, 1994), whi
hemphasizes sensor-driven exe
ution to 
hanging situa-tions in un
ertain environments. Similar 
on
erns dom-inate resear
h on reinfor
ement learning, from whi
h we

have adapted methods for estimating value fun
tionsfrom delayed reward (e.g., Watkins & Dayan, 1992).This paradigm has fo
used mainly on stimulus-responsesystems that asso
iate value fun
tions with situation-a
tion pairs. Sun et al. (2001) in
orporate reinfor
e-ment learning in their Clarion ar
hite
ture, and someresear
hers (e.g., Parr & Russell, 1998) have examinedvariants that take advantage of hierar
hi
al ba
kgroundknowledge, but our work is the �rst to embed hierar
hi-
al reinfor
ement learning in an agent ar
hite
ture. Arelated in
uen
e 
omes from de
ision theory (Howard,1968), whi
h addresses value-driven de
ision making inun
ertain 
ir
umstan
es. I
arus relies 
entrally on thede
ision-theoreti
 notion of alternative a
tions that pro-du
e out
omes with di�erent expe
ted values.Finally, the agent ar
hite
ture we have des
ribed inthe previous pages retains many ideas from earlier ver-sions of I
arus. Langley et al. (1989, 1991) report earlydesigns for the ar
hite
ture, whi
h even then fo
used onrea
tive agents for physi
al environments. Early editionsof I
arus also in
luded distin
t but 
onne
ted long-termmemories for 
on
epts and plans, a module for exe
uting
omplex motor skills, and a method for generating newtasks. A more re
ent version (Langley, 1997) emphasizedsele
tive attention during skill exe
ution. The third in-
arnation introdu
ed rea
tive exe
ution of hierar
hi
allyorganized skills (Shapiro & Langley, 1999) and methodsfor learning from delayed reward (Shapiro et al., 2001).The 
urrent I
arus in
orporates ideas from ea
h of itsprede
essors in a uni�ed way. This in
ludes our algo-rithm for estimating the linear value fun
tions asso
iatedwith hierar
hi
al skills (Shapiro & Langley, 2002), whi
hoperates with the new skill representation and the inter-nal reward signal that 
omes from mat
hed 
on
epts.6. Dire
tions for Future Resear
hAlthough the latest version of I
arus 
onstitutes a sig-ni�
ant advan
e over its prede
essors, the ar
hite
turestill la
ks many 
apabilities that we would expe
t ina general intelligent agent. One su
h omission relatesto our framework's emphasis on exe
ution over problemsolving and planning, whi
h are important in their ownrights. The ba
kward-
haining me
hanism for skill re-pair in
orporates one key idea from work in this area,but planning also involves proje
ting the e�e
ts of futurea
tivities on the environment. For example, an I
arusagent should be able to imagine the experien
e of drivingalong di�erent routes. The framework should also sup-port mental exe
ution of skills for nonrea
tive tasks likemulti-
olumn subtra
tion, where 
ognitive pro
essing issuÆ
ient to a
hieve the obje
tive.Another limitation of the 
urrent ar
hite
ture is its re-stri
tion to exe
uting one skill on ea
h time step. Futureversions should support the exe
ution of skills in paral-lel, but pla
e resour
e 
onstraints on this ability. Thiswill require an expanded formalism for skills that spe
-i�es the resour
es they 
onsume on ea
h 
y
le. We willalso need to generalize I
arus' 
urrent method for skillsele
tion to take expe
ted resour
e 
onsumption into a
-
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ount. We envision a de
ision-theoreti
 treatment thattrades 
osts against bene�ts, similar to that in ACT-Rbut in
orporating multiple resour
e dimensions. An im-portant spe
ial 
ase involves per
eiving the environment,whi
h 
urrently happens automati
ally through preat-tentive pro
esses. A more realisti
 s
heme would handlesome per
eption through expli
it sensing a
tions that re-quire resour
es and thus must be invoked sele
tively.Our des
ription of I
arus has emphasized the hierar-
hi
al nature of long-term skill memory, but, as it stands,the ar
hite
ture o�ers no a

ount of this hierar
hy's a
-quisition. We have made some progress toward indu
inghierar
hi
al skills from behavior tra
es (I
hise, Shapiro,& Langley, 2002), but we should also develop methodsthat 
onstru
t them from the agent's own exe
ution ef-forts. One promising idea involves 
a
hing the results ofea
h su

essful skill repair into a new higher-level skillthat in
ludes the repaired and repairing skills as 
ompo-nents. This approa
h is similar in spirit to methods for
hunking in Soar (Laird et al., 1987), knowledge 
ompo-sition in early versions of ACT (Anderson, 1983), andma
ro-operator formation (e.g., Iba, 1989). However,previous work along these lines has fo
used on stru
-tures that invoke a
tions in a �xed order, whereas 
a
hedI
arus skills would retain their rea
tive nature.As noted earlier, I
arus in
orporates ideas from re-infor
ement learning to revise the value fun
tions asso-
iated with exe
uted skills based on dis
ounted reward.The ar
hite
ture diverges from traditional treatments byembedding reward 
al
ulations within the agent, ratherthan in the environment. This raises intriguing questionsabout the origin of su
h rewards, whi
h de
ision theoryhas not addressed, and suggests the radi
al notion thatthe reward fun
tions asso
iated with Boolean 
on
eptsmight themselves be modi�ed. In this s
enario, the agentmight start with only a few innate reinfor
ers, whereasmost 
on
epts have neutral a�e
t. Over time, many ofthese 
on
epts would be
ome learned reinfor
ers, 
apa-ble of rewarding behavior even when the innate 
on
eptsare unmat
hed. We envision a learning me
hanism sim-ilar to the one that revises expe
ted value fun
tions, butapplied to 
on
epts that o

ur in exe
uted skills, ratherthan to the skills themselves.As we have seen, the 
urrent I
arus 
an re
ognizefamiliar situations with its 
on
eptual hierar
hy, but fu-ture versions should also re
ognize and interpret the be-havior of other agents using its skill hierar
hy. For ex-ample, when another 
ar 
omes up qui
kly from behindand 
hanges lanes, it should infer that the other agent ispassing. To this end, we should in
orporate ideas fromthe literature on plan understanding, whi
h addressessimilar problems. However, be
ause the agent must inferwhat skills another agent is using before they have been
ompleted, we 
annot rely on the dedu
tive mat
hings
heme used for 
on
ept re
ognition. Rather, we will re-quire something 
loser to abdu
tion (e.g., Ng & Mooney,1992), whi
h uses general knowledge to explain a limitednumber of observations in a more 
exible manner.

Finally, like most other agent ar
hite
tures, I
arusla
ks any episodi
 memory to store its own previous ex-perien
e. Knowledge about 
on
ept instan
es that wereon
e true and skills that it on
e exe
uted would supportimportant abilities, su
h as answering questions aboutpast events. Upon re
e
tion, episodi
 memory seems
losely related to short-term memory, in that it dealswith spe
i�
 instan
es of general 
on
epts and skills.We might en
ode su
h memories as variants on short-term literals that in
lude time markers to indi
ate whenthey entered and left the short-term stores. Su
h tra
esshould also in
lude average statisti
s about the rewardsgenerated by 
on
ept instan
es and those a
hieved whenexe
uting instantiated skills. The me
hanisms responsi-ble for retrieval from episodi
 memory, and the statusof retrieved tra
es on
e they are deposited in short-termmemory, remain open issues for future resear
h.7. Con
luding RemarksIn this paper, we have des
ribed I
arus, a novel ar-
hite
ture for intelligent physi
al agents. Our approa
hembodies �ve design prin
iples { that 
ategorization hasprima
y over problem solving and exe
ution, exe
utionhas prima
y over problem solving, top-level intentionsoriginate within the agent, intelligent behavior is inher-ently value driven, and reward is 
al
ulated internallyrather than originating in the environment. These ideasdistinguish our theoreti
al framework from most earlierar
hite
tures for 
ognition.I
arus in
ludes a long-term memory for 
on
epts,whi
h are de�ned as logi
al 
onjun
tions of other 
on-
epts, and another memory for skills, whi
h are de�nedin terms of 
on
epts and 
omponent skills. The 
on
epthierar
hy supports a re
ognition pro
ess, whi
h deposits
on
ept instan
es in short-term memory, and reward 
al-
ulation, whi
h asso
iates an a�e
tive s
ore with ea
hinstan
e. The ar
hite
ture also in
ludes distin
t mod-ules for nominating, sele
ting, exe
uting, repairing, andabandoning skill instan
es, ea
h of whi
h draws on theexpe
ted value fun
tions asso
iated with the generalizedversions of those skills in long-term memory.Despite the re
ent extensions we have des
ribed,I
arus remains an immature ar
hite
ture relative toframeworks like Soar and ACT-R. However, we believethat its value-driven approa
h to intelligent behavior,along with its other distin
tive features, will supportfun
tionalities that are diÆ
ult to a
hieve in these moretraditional approa
hes. We hope to demonstrate theseabilities in our future work on I
arus agents for drivingand other physi
al domains.A
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arus 
on
epts for the highway driving do-main, omitting the :reward and :weights �elds used to
ompute reward. Variables start with the symbol ? andnumeri
 
on
epts are marked with the symbol #.(in-lane (?
ar ?lane)(lane ?lane ?left-line ?right-line)(
ar ?
ar)(#xdistan
e ?
ar ?left-line ?dleft)(#xdistan
e ?
ar ?right-line ?dright)(< ?dleft 0) (> ?dright 0))(ahead-of (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(#yba
k ?
ar1 ?ba
k1)(#yfront ?
ar2 ?front2)(> ?ba
k1 ?front2))(overlaps (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(#yfront ?
ar1 ?front1)(#yba
k ?
ar1 ?ba
k1)(#yfront ?
ar2 ?front2)(> ?front1 ?front2)(> ?front2 ?ba
k1))(#distan
e-ahead (?
ar1 ?
ar2 ?diff)(ahead-of ?
ar1 ?
ar2)(#yba
k ?
ar1 ?ba
k1)(#yfront ?
ar2 ?front2)(*bind ?diff (- ?ba
k1 ?front2)))(faster-than (?
ar1 ?
ar2)(#speed ?
ar1 ?s1)(#speed ?
ar2 ?s2)(> ?s1 (+ ?s2 5)))(in-same-lane (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(in-lane ?
ar1 ?lane)(in-lane ?
ar2 ?lane))(in-different-lane (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(in-lane ?
ar1 ?lane)(not (in-lane ?
ar2 ?lane)))(overlaps-and-adja
ent (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(in-lane ?
ar1 ?lane1)(in-lane ?
ar2 ?lane2)(adja
ent ?lane1 ?lane2)(overlaps ?
ar1 ?
ar2))(
oming-from-behind (?
ar1 ?
ar2)(
ar ?
ar1)(
ar ?
ar2)(in-lane ?
ar1 ?lane1)(in-lane ?
ar2 ?lane2)(adja
ent ?lane1 ?lane2)(faster-than ?
ar1 ?
ar2)(ahead-of ?
ar2 ?
ar1))(adja
ent (?lane1 ?lane2)(lane ?lane1 ?shared-line ?right-line)(lane ?lane2 ?left-line ?shared-line))(adja
ent (?lane1 ?lane2)(lane ?lane1 ?left-line ?shared-line)(lane ?lane2 ?shared-line ?right-line))(
lear-for (?lane ?
ar)(lane ?lane ?left-line ?right-line)(not (overlaps-and-adja
ent ?
ar ?other))(not (
oming-from-behind ?
ar ?other))(not (
oming-from-behind ?other ?
ar)))

Table 2: An I
arus skill for one 
ar passing anotherand the subskills it relies upon, omitting the :value and:weights �elds used to 
ompute expe
ted values.(pass (?
ar1 ?
ar2 ?lane):start (ahead-of ?
ar2 ?
ar1)(in-same-lane ?
ar1 ?
ar2):obje
tive (ahead-of ?
ar1 ?
ar2)(in-same-lane ?
ar1 ?
ar2):requires (in-lane ?
ar2 ?lane)(adja
ent ?lane ?to):ordered (speed-and-
hange ?
ar1 ?
ar2 ?lane ?to)(overtake ?
ar1 ?
ar2 ?lane)(
hange-lanes ?
ar1 ?to ?lane))(speed-and-
hange (?
ar1 ?
ar2 ?from ?to):start (ahead-of ?
ar2 ?
ar1)(in-same-lane ?
ar1 ?
ar2):obje
tive (mu
h-faster-than ?
ar1 ?
ar2)(in-different-lane ?
ar1 ?
ar2):requires (in-lane ?
ar2 ?from)(adja
ent ?from ?to):unordered (speed-up-faster-than ?
ar1 ?
ar2)(
hange-lanes ?
ar1 ?from ?to))(speed-up-faster-than (?
ar1 ?
ar2):start (faster-than ?
ar2 ?
ar1):obje
tive (faster-than ?
ar1 ?
ar2):requires ( ):ordered (*a

elerate))(
hange-lanes (?
ar ?from ?to):start (in-lane ?
ar ?from):obje
tive (in-lane ?
ar ?to):requires (lane ?from ?shared-line ?right-line)(lane ?to ?left-line ?shared-line)(
lear-for ?to ?
ar):ordered (*shift-left))(
hange-lanes (?
ar ?from ?to):start (in-lane ?
ar ?from):obje
tive (in-lane ?
ar ?to):requires (lane ?from ?left-line ?shared-line)(lane ?to ?shared-line ?right-line)(
lear-for ?to ?
ar):ordered ((*shift-right)))(overtake (?
ar1 ?
ar2 ?lane):start (behind ?
ar1 ?
ar2)(in-different-lane ?
ar1 ?
ar2):obje
tive (ahead-of ?
ar1 ?
ar2):requires (in-lane ?
ar2 ?lane)(faster-than ?x ?y):ordered (*wait))


