A Value-Driven Architecture for Intelligent Behavior

Pat Langley, Daniel Shapiro,

Meg Aycinena, and Michael Siliski
Computational Learning Laboratory
Center for the Study of Language and Information
Stanford University, Stanford, CA 94305 USA

Abstract

In this paper, we describe ICARUS, an inte-
grated architecture for intelligent agents that
diverges from earlier efforts. The framework
supports long-term memories for concepts and
skills, and it includes mechanisms for recogniz-
ing concepts, calculating internal reward, nom-
inating and selecting skills, executing them in
a reactive manner, repairing skills’ conditions
when they fail, and abandoning skills when
they promise poor returns. We illustrate these
processes with examples from the domain of
highway driving, and we relate ICARUS’ as-
sumptions to principles of architectural design
and to previous research in this important area.

1. Introduction and Background

Research on agent architectures pursues a central goal of
artificial intelligence and cognitive science: the creation
and understanding of synthetic agents that support the
same capabilities as humans. Such architectures aim for
breadth of coverage across many domains, and they of-
fer an account of intelligence at the systems level, rather
than focusing on component methods designed for spe-
cialized tasks. They run counter to the increasing frag-
mentation of these fields, in that they provide integrated
frameworks for producing complex behavior in a general,
domain-independent manner.

An agent architecture — sometimes called a cognitive
architecture specifies the infrastructure for an intel-
ligent system that remains constant across different do-
mains and knowledge bases. This infrastructure includes
a commitment to formalisms for representing knowledge,
memories for storing this domain content, processes that
utilize the knowledge, and learning mechanisms to ac-
quire or revise it. An agent architecture can interpret
different knowledge bases, just as a computer architec-
ture can run different programs.

In this paper, we report on the latest version of
IcARUS, an agent architecture that extends our previ-
ous work in this area (Shapiro & Langley, 1999, 2002;
Shapiro et al., 2001). We begin by describing five de-

sign principles that have guided our development of the
architecture. After this, we describe ICARUS’ long-term
and short-term memories, including their formalisms for
encoding knowledge. Next we examine the framework’s
mechanisms for operating on these memory structures,
focusing on performance rather than learning, which we
have discussed in earlier papers. In closing, we con-
sider the intellectual influences on ICARUS and outline
our plans for extending its capabilities.

2. Design Principles for ICARUS

The past 30 years have seen extensive research on archi-
tectures for intelligent agents and considerable progress
in this area. However, we believe that existing archi-
tectures downplay important facets of intelligent behav-
ior that deserve increased attention. Qur research on
IcARUS attempts to respond to these needs and has been
guided by a number of design principles:

1. Primacy of categorization over problem solving. Be-
cause most architectures focused initially on multi-
step problem solving and planning, they emphasize
the generation of solutions to problems or the execu-
tion of actions. However, categorization is a central
aspect of intelligent behavior that, in humans, takes
place rapidly and unconsciously. This suggests that
categorization should occur at a more basic level of
the architecture, with problem solving and execution
relying on it, rather than the reverse.

2. Primacy of execution over problem solving. The early
focus on problem solving and planning, which involve
mental operations, led to alternative frameworks that
instead emphasized reactive execution of physical be-
haviors. Humans can both generate plans and act
on them, but the inability of most animals to form
abstract plans suggests that execution is more basic,
with problem solving building on this capacity.

3. Internal origins of tasks and intentions. Many archi-
tectures for intelligent agents assume that top-level
tasks and goals are provided by the programmer,
whereas most reactive frameworks lack even this task-
ability. Humans can respond to external requests, but
they can also operate autonomously, generating their
own tasks and intentions. This suggests the need for

PAGE 2

architectural mechanisms that support autonomous
generation and abandonment of high-level tasks.

4. Value-driven nature of behavior. Initial designs for
most agent architectures relied almost entirely on
symbolic processing, using numbers for strength or re-
cency in only limited ways. Research on reinforcement
learning incorporates notions of expected and received
reward, but does not link them to cognitive structures
like concepts or plans. However, affect plays a central
role in human experience and behavior, which indi-
cates the need for a more value-driven approach to
cognition, perception, and action.

5. Internal origins of agent reward. Methods for rein-
forcement learning emphasize the role of reward in
shaping behavior, but they invariably assume this re-
ward comes from the external environment. However,
reward in humans and animals is influenced by their
perceptions of the world and their cognitive struc-
tures. This suggests that we recast the calculation
of reward as a process internal to the agent, which in
turn requires architectural support.

Taken together, these constraints have led to an archi-
tecture that, although it incorporates many ideas from
earlier research, differs from them in important respects.
We attempt to highlight these differences as we describe
IcARUS in the sections that follow.

3. Memories and Representations

An integrated architecture should make some commit-
ment to its representation of knowledge and the memo-
ries in which that knowledge resides. In this section we
describe ICARUS’ memories for long-term knowledge and
short-term beliefs, along with the general forms taken by
their contents.

3.1 Long-Term Conceptual Memory

IcARUS incorporates a long-term memory for concepts
that encodes its knowledge of familiar situations. This
includes descriptions of categories for isolated objects,
like cars and trucks, but also physical relations among
objects, such as one vehicle being ahead and to the right
of another. These concepts provide ICARUS’ vocabulary
for describing its experience of the world.

Each concept has a name and zero or more arguments,
and ICARUS supports two distinct kinds of concepts.
Boolean concepts are either true or false, and correspond
to the traditional notion of a logical category. For in-
stance, long-term memory might include a Boolean con-
cept that covers situations in which there are cars next
to the driver in both adjacent lanes. In contrast, numeric
concepts take on quantitative values that correspond to
attributes of objects or situations. Thus, a knowledge
base might include a numeric concept that refers to the
average distance to cars ahead of and behind the driver.

The architecture supports both primitive and non-
primitive concepts of both types. Primitive concepts
correspond to the output of sensors that can directly
perceive various aspects of the external environment.

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

Table 1 refers to two primitive Boolean concepts from
the driving domain, car and lane, and four primitive
numeric concepts: #xdistance, #yfront, #yback, and
#speed. Nonprimitive Booleans are defined as conjunc-
tions of other Boolean concepts, numeric concepts, and
logical predicates like >, as illustrated by ahead-of and
coming-from-behind. Similarly, numeric concepts like
#distance-ahead are defined in terms of other numeric
concepts, plus optional Boolean concepts and logical
predicates. A numeric concept definition also includes
an arithmetic function to compute its associated quan-
tity from numeric constituents.

Taken together, these definitions implicitly organize
IcARUS categories into a conceptual hierarchy. This
hierarchy is similar in spirit to those in earlier mod-
els of memory like EpaM (Feigenbaum, 1963), UNIMEM

(Lebowitz, 1987), and CoBWEB (Fisher, 1987), as well
as frameworks like description logics (Nardi & Brach-
man, 2002). The actual form is a lattice, with primitive
concepts occurring at the top, concepts defined in terms
of them immediately below, and more complex concepts
at lower levels. Structurally, this lattice bears a close
resemblance to the Rete networks (Forgy, 1982) used for
matching in production-system architectures, an analogy
to which we will return later.

Each Boolean concept also has an associated function
that specifies the reward the agent receives when that
concept is true and that provides an analogy for utility in
humans, in that it motivates all agent choices within the
architecture. The function is described by two fields, one
(:reward) referring to the numeric concepts that influ-
ence the reward and another (:weights) that indicates
the weight on each numeric concept. The architecture
assumes these are combined in a linear fashion to com-
pute the reward obtained when that concept is true.

3.2 Long-Term Skill Memory

To complement its conceptual memory, ICARUS incorpo-
rates a long-term skill memory that encodes knowledge
about ways to act and achieve goals. This contains speci-
fications for skills that are applicable in certain situations
and that produce desired effects. Skills provide ICARUS
with a repertoire of behaviors that let it influence the
environmental situations in which it finds itself.

Each skill has a name, zero or more arguments, and six
fields. The :objective field specifies a conjunction of
known concepts that, taken together, encode the desired
situation the skill is intended to achieve. Each skill also
includes a :start field, again cast as a conjunction of
known concepts, which specifies the situation that must
hold to initiate the skill, and a :requires field, which
must hold throughout the skill’s execution. For example,
Table 2 shows the skill pass, which has the objective of
getting ?carl ahead of ?car2 and in the same lane, can
start only if ?car1 is behind 7car?2 in the same lane, and
it also requires that ?car2 remain in this lane during the
passing activity.

In addition, each IcARUS skill includes another field
that specifies how to decompose that skill into subskills.

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

An :ordered field indicates the order in which the agent
should consider these component skills. For example,
pass directs the agent to consider speed-and-change,
overtake, and change-lanes, in that sequence, and to
select an action reactively from the first subskill that
applies. In contrast, an :unordered field identifies a
choice among subskills. For instance, the table’s decom-
position for speed-and-change involves the subskills
speed-up-faster-than and change-lanes, from which
the system picks the best, regardless of order.

More accurately, [CARUS specifies one or more ways to
decompose each skill in this manner, much as a Prolog
program can include more than one Horn clause with
the same head. Different decompositions of a given
skill must have the same name, number of arguments,
and objective. However, they can differ in their com-
ponents and in their requirements. For example, the
skill change-lanes has two such decompositions, one
for moving to the left and another to the right.

In a primitive skill, the :ordered field specifies a sin-
gle opaque action. For the driving domain, such actions
might correspond to turning the wheel or changing pres-
sure on the pedal by a given amount. Thus, a primitive
skill plays the same role as a STRIPS operator in a tra-
ditional planning system, with the :start field serving
as the preconditions and the :objective field specifying
the effects of execution.

Each skill decomposition also includes an expected
value function that takes a form similar to the rewards
associated with concepts. This encodes the discounted
reward that the agent expects to receive if it executes
the skill with this decomposition. As with concept re-
wards, this function is specified in two parts, a :value
field that indicates the numeric concepts involved and
a :weights field that states the weights on quantities
returned by these concepts. The expected reward for a
skill decomposition is a linear function of the numeric
descriptors matched by that skill. For example, the
value for pass might depend on the numeric concepts
#distance-ahead and #speed of another car, which can
vary from moment to moment.

3.3 Short-Term Memories

IcArUS’ long-term memories encode stable knowledge
that changes only slowly in response to its accumulated
experience. However, to generate behavior, the architec-
ture requires short-term stores that change more rapidly.
These should make contact with long-term concepts and
skills, but they must also represent temporary beliefs
about the agent’s environment and desires.

One such memory is ICARUS’ perceptual buffer, which
contains instances of primitive Boolean and numeric con-
cepts that correspond to the output of sensors. For ex-
ample, this short-lived memory might contain the literal
(#speed car-007 20.3), which specifies the speed of
car-007 as perceived on the current time step. This
literal is an instance of the primitive #speed concept
because it refers to specific parameters rather than to
generalized variables.

PAGE 3

In contrast, ICARUS’ short-term conceptual memory
contains instances of concepts that are defined in long-
term concept memory. These literals encode specific be-
liefs about the environment that the agent can infer from
those present in its perceptual buffer. For instance, this
memory might contain the instance (faster-than self
car-007), which depends on the #speed instance men-
tioned above. In addition, each instance of a Boolean
concept includes a numeric reward computed from the
reward function associated with that concept and the
literals matched in its :reward field.

Finally, ICARUS includes a short-term skill memory
that contains instances of skills the agent intends to ex-
ecute. Each of these literals specifies the skill’s name
and its concrete arguments. For example, this memory
might contain the skill instance (pass self car-007
lane-a), which denotes that the driver has an explicit
intention to execute the pass skill with these arguments
when possible. In addition, each skill instance includes
the expected discounted reward if executed, which is
computed from the expected reward function associated
with that skill and literals matched in its :value field.
The agent uses this number to make choices among skills
and among alternatives within skills.

4. Interpreting and Utilizing Knowledge

Like most architectures for intelligent agents, ICARUS
operates in distinct cycles. Every cycle, the system up-
dates its perceptual buffer, determines which concepts
are matched, and calculates reward based on these con-
cepts. The architecture then selects a skill and executes
it, producing changes in the environment that influence
decisions on the next cycle. In this section, we discuss
each of these processes in turn.

4.1 Categorization and Belief Update

On each cycle, ICARUS refreshes the contents of its per-
ceptual buffer by applying preattentive sensors to every
object within a given distance of the agent. This pro-
duces a set of primitive concept instances which are de-
posited into the short-term store and which are then sent
to the top nodes of the lattice for conceptual long-term
memory. Each instance of a primitive concept is stored
with the long-term node for that concept, along with the
bindings of variables for that instance.

When the categorization module stores a new instance
I at the node for concept C, it accesses each defined con-
cept D that includes C' in its definition, then checks to
see whether the addition of I makes any new instances
of D possible. To this end, it accesses the instances of all
other concepts that appear in D’s definition and consid-
ers whether their variables bind consistently with those
for I. If so, then the module adds a new instance to the
D node for each such consistent binding and recursively
ships each one to the nodes for concepts that include D
in their definitions.

A similar process occurs when perceptual updating re-
moves a Boolean concept instance from the perceptual
buffer or changes the quantity associated with a numeric

PAGE 4

instance. Whenever a primitive instance is removed, the
module deletes the instances of all defined concepts to
which that literal contributes and recursively removes
instances of all concepts that depend on it indirectly.
Changes to a numeric concept instance can lead to ei-
ther removal or addition of Boolean concepts in which
it occurs, depending on whether the change makes pred-
icates like (< ?distance 20) true or false. In general,
the categorization module plays the same role for ICARUS
as a truth maintenance module in some logical inference
systems (e.g., Doyle, 1979).

Earlier we mentioned that the concept lattice is simi-
lar in form to the Rete networks that are used in many
production-system architectures. The concept recog-
nition process just described uses effectively the same
mechanism to support efficient matching. The main dif-
ference is that every node in the hierarchy corresponds
to a concept that has some meaning to the agent, rather
than simply existing to support the match process.
A typical Rete network utilizes binary trees, whereas
Icarus instead has N-ary trees, with the branching fac-
tor determined by the number of literals mentioned in
each concept definition.

4.2 Calculation of Reward

As we noted earlier, Boolean concepts in long-term mem-
ory have associated reward functions, which are com-
bined into a global utility metric that informs ICARUS’
decisions. To determine this quantity, the architec-
ture considers every instance of a Boolean concept in
short-term memory and computes the dot product of its
numeric attribute values and their associated weights.
For example, suppose the concept ahead-of in Table 1
has two numeric concepts in its :reward field that
match the instances (#distance-ahead self car-006
20) and (#speed 7car-006 25). If we suppose fur-
ther that this Boolean concept specifies the parame-
ters 4.7 and 1.6 in its :weights field, then the reward
contributed by the concept instance (ahead-of self
car-006) would be 4.7 x 20 + 1.6 x 25 = 134.

After calculating the reward for each matched Boolean
instance, ICARUS sums their contributions to produce
the overall reward for the current cycle. This corre-
sponds to the reward provided in traditional approaches
to reinforcement learning, but our framework does not
view it as coming from outside the agent. Rather, re-
ward is an internal response to what the agent perceives
in its environment, so that if a concept is unmatched,
for whatever reason, it has no impact. This opens the
way for selective attention to influence the reward signal,
though we have not implemented this idea in our current
IcARUS agents.

In principle, every matched Boolean concept can con-
tribute to the agent’s overall reward. However, because
an ICARUS programmer may not want to specify reward
functions for every concept in long-term memory, the ar-
chitecture assumes zero as the default reward when none
is given. Thus, only a few concepts may influence the cal-
culation in practice. Also, note that distinct instances

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

of the same concept make separate contributions to the
overall reward. For example, if a driver dislikes being
close to other cars, then the reward (which can be neg-
ative) will decrease linearly with the number of nearby
cars. One can imagine other combination schemes that
produce different effects, but simple summation seems a
reasonable starting point.

4.3 Nomination and Selection of Skills

Recall that IcARUS includes a short-term skill memory
that contains a set of skill instances the agent consid-
ers worth executing. Most architectures for intelligent
behavior assume the agent is given some top-level goals
to pursue, but this does not explain their source. In
contrast, ICARUS includes a mechanism for nominating
skills that should be added to short-term skill memory
and thus considered for execution.

On each cycle, the nomination process accesses all
skills in long-term memory that refer to concepts ap-
pearing in short-term memory. More precisely, for each
short-term concept instance, the module finds every skill
that includes the analogous concept in its own :start
or :requires fields. Moreover, it considers different in-
stances of each such skill, based on the variables matched
during retrieval. This strategy produces skill instances
that are potentially relevant to the current situation in
short-term memory.

The nomination process selects at most one of these
skills to add to short-term skill memory, which it does on
the basis of value calculations. In particular, the system
computes the expected reward for executing each skill in
the current situation, identifies the most promising one,
and compares its estimate against the expected reward
for skills already in short-term memory. To aid this de-
cision, the architecture maintains a running discounted
average R4 of the overall reward it has received on past
cycles. If the expected reward for the highest-scoring
skill instance is higher than R4, then the nomination
process adds the instance to short-term skill memory.
Otherwise, there is no reason to expect it will produce
better results than currently exist, so it adds nothing to
the set of active intentions.

Once it has completed the nomination process, [CARUS
selects which skill to execute on the current cycle. To
this end, it computes the expected value for each skill in-
stance in the active set, again basing this calculation on
the value function stored with each skill and the instanti-
ated numeric concepts against which that skill matches.
On each cycle, the architecture simply selects the skill in-
stance that scores the highest on this criterion, whether
it has just been added or has been active for some time.
This decision involves deep evaluation of the skill, includ-
ing examination of actions suggested by its subskills, to
which we will turn shortly.

Taken together, the nomination and selection pro-
cesses correspond roughly to the conflict-resolution stage
in production-system architectures like OPS (Forgy,
1982) and ACT-R (Anderson, 1993). Both introduce
a sequential bottleneck which focuses cognitive atten-

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

tion on one knowledge structure that seems most ap-
propriate for the current situation. However, ICARUS
adapts this idea to skills that may have complex in-
ternal structures, rather than to smaller, independent
condition-action rules.

4.4 Execution of Skills

Once ICARUS has selected a skill instance to apply on the
current cycle, it invokes an execution module on that in-
stance. An attempt to execute a skill instance returns
either True, False, or a primitive action, which is then
applied in the environment. Because a skill may be de-
fined in terms of other skills, this process is recursive,
with a skill returning the same result as its selected sub-
skill produces.

An executed skill instance returns True if its instanti-
ated :objective field matches the current state of con-
ceptual short-term memory. If this happens at the top
level, the system takes no action, since it is already in
the desired situation. However, neither does it remove
the instance from short-term skill memory, since its pur-
pose may involve a maintenance activity (e.g., staying
far enough from the car ahead) that may require a re-
sponse in the future.

On the other hand, an executed skill returns False if its
requirements do not match the current state of concep-
tual short-term memory. Recall that a skill’s definition
may include multiple decompositions, and all of their
:requires fields must fail to match for this to occur. In
this case, ICARUS invokes the repair module discussed in
the next section in an attempt to alter the environment
so the skill’s requirements are met.

If one or more skill decompositions has satisfied re-
quirements, then the system must select which one to
execute. This process differs from nomination, which ex-
amines only the expected value function associated with
the nominated skills. Instead, the module recursively
considers all ways to execute the selected skill instance,
expanding each subskill in turn until reaching the lowest
level. The system calculates the expected value of each
primitive skill instance that has an unmatched objective
and matched requirements, and it returns the instanti-
ated action associated with the highest-scoring skill.

However, the architecture treats a skill expansion dif-
ferently depending on whether its components are an
:unordered set or an :ordered list. If they are un-
ordered, the module considers each of the subskills and
selects the one that yields the highest scoring action.
If they are ordered, it instead treats the list as a reac-
tive program that considers each subskill in turn. If the
first one does not apply, then the enclosing skill fails as
a whole. If it produces an action, the system returns
that action for possible execution. However, if the first
subskill returns true, this means its objective has been
met in the world, so the system considers the second sub-
skill, and so forth. The process continues in this manner,
terminating either in success, failure, or by selecting an
action that furthers the skill’s objective.

PAGE 5

4.5 Repair of Skill Conditions

As just noted, ICARUS can decide to execute a skill in-
stance with unsatisfied requirements, in that the concept
instances needed to match those requirements are not
present in conceptual short-term memory. In this case,
the architecture invokes a repair module that attempts
to change the environment into a state that meets these
requirements. This process involves two steps, one that
selects an unmatched concept to repair and another that
selects a skill which, if executed, should ultimately pro-
duce a situation that satisfies the missing concept.

When determining which concept instance to repair,
IcARUS considers all the ways in which the current skill
has failed, including concepts mentioned in the :start
and :requires fields within its subskills, then selects
the one that, if corrected, would produce the highest
expected reward. When determining how to remedy
this omission, the repair module accesses every skill
that refers to the failed requirement in its :objective
field. For instance, suppose a driving agent has de-
cided to execute the skill (overtake self car-007),
but that its requirement (in-different-lane self
car-007) does not hold. If the agent is currently in
the middle lane (lane-b), then it could repair the prob-
lem by executing either (change-lanes self lane-a)
or (change-lanes self lane-c), which correspond to
passing on the left or right, respectively.

As this example illustrates, the repair process may
need to choose among alternative skill instances that
address a given requirement. To this end, ICARUS uses
the same mechanism as for nomination, which involves
computing the expected value for each candidate skill
instance and selecting the repair skill R with the highest
score. This selection takes an extra cycle, so attempted
execution of R must wait until the next time step. If
R in turn has failed requirements, ICARUS repeats the
process, selecting another skill that should correct this
problem. In summary, skill repair is a cognitive activity
that occurs at a higher level than skill execution, which
we assume is automatized.

The backward-chaining repair process is closely re-
lated to techniques for generating subgoals in means-
ends analysis (Newell, Shaw, & Simon, 1960) and plan-
ning systems. Moreover, the focus on repair is similar to
ideas for impasse-driven problem solving in Soar (Laird,
Newell, & Rosenbloom, 1987) and SIERRA (VanLehn,
1990). The key difference is that ICARUS invokes its re-
pair process with respect to physical skills rather than
mental reasoning. Thus, this architectural feature re-
mains consistent with the principle that execution has
primacy over problem solving, despite its resemblance
to traditional planning methods.

4.6 Abandonment of Skills

Another common assumption in agent architectures is
that, once an agent decides to pursue some goal, it
continues indefinitely. However, humans often decide
to abandon their goal-directed activities when they do
not produce the expected results, and we maintain that

PAGE 6

IcarUs should also include this facility. We want the
system to exhibit persistence with respect to nominated
tasks, but it should give up on them when they seem un-
achievable or unlikely to generate the reward executed
originally. For example, if the agent begins passing an-
other car which then speeds up substantially, it may be
reasonable to abandon the attempt.

To produce such behavior, ICARUS relies on the dis-
counted average of past rewards that we described for
the nomination process. On each cycle, the architecture
updates this running average and compares it to the ex-
pected reward computed for each skill instance present
in the short-term skill memory. If the expected value of
executing a skill is substantially lower than the average
reward (currently 20 percent of this amount), then the
system removes the instance from short-term memory.

Because ICARUS uses the same average reward here as
for nomination, it is unlikely the system will abandon a
skill just after it has been nominated. Typically, some
time will pass before a skill’s expected value drops sig-
nificantly from its level when the architecture first added
it to short-term memory. This leads ICARUS to exhibit a
certain persistence, though not the uncritical kind rep-
resented by more traditional goal-driven systems.

5. Intellectual Precursors

Despite its novel features, ICARUS draws on many ideas
that have a long history in artificial intelligence and cog-
nitive science. The most important intellectual influence
comes from the cognitive architecture movement, which
aims to develop integrated frameworks that support gen-
eral intelligent behavior. Since Newell’s (1973) call for
more systems-level research in these fields, a number of
research groups have developed a variety of such archi-
tectures, two of the best known being Soar (Laird et al.,
1987) and ACT-R (Anderson, 1993). Other efforts at in-
tegration have focused on architectures for robotic con-
trol (e.g., Bonasso et al., 1997), many of which combine
methods for planning and execution. ICARUS incorpo-
rates concepts from both traditions in a framework that
supports physical agents with cognitive abilities.

Many cognitive architectures have been cast as produc-
tion systems (Neches, Langley, & Klahr, 1987), which
encode long-term knowledge as a set of condition-action
rules that match against and modify the contents of
short-term memory. Our design for ICARUS incorporates
central ideas from this framework, including a reliance
on pattern matching, with skill fields being compared to
short-term memory and the conceptual hierarchy utiliz-
ing a Rete network to support bottom-up recognition.
This latter process is also closely related to methods for
truth maintenance (e.g., Doyle, 1979), which often store
justifications for beliefs so they can be removed when the
environment, changes.

IcARuUs also borrows from a distinct tradition of reac-
tive control (e.g., Schoppers, 1987; Nilsson, 1994), which
emphasizes sensor-driven execution to changing situa-
tions in uncertain environments. Similar concerns dom-
inate research on reinforcement learning, from which we

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

have adapted methods for estimating value functions
from delayed reward (e.g., Watkins & Dayan, 1992).
This paradigm has focused mainly on stimulus-response
systems that associate value functions with situation-
action pairs. Sun et al. (2001) incorporate reinforce-
ment learning in their CLARION architecture, and some
researchers (e.g., Parr & Russell, 1998) have examined
variants that take advantage of hierarchical background
knowledge, but our work is the first to embed hierarchi-
cal reinforcement learning in an agent architecture. A
related influence comes from decision theory (Howard,
1968), which addresses value-driven decision making in
uncertain circumstances. ICARUS relies centrally on the
decision-theoretic notion of alternative actions that pro-
duce outcomes with different expected values.

Finally, the agent architecture we have described in
the previous pages retains many ideas from earlier ver-
sions of ICARUS. Langley et al. (1989, 1991) report early
designs for the architecture, which even then focused on
reactive agents for physical environments. Early editions
of ICARUS also included distinct but connected long-term
memories for concepts and plans, a module for executing
complex motor skills, and a method for generating new
tasks. A more recent version (Langley, 1997) emphasized
selective attention during skill execution. The third in-
carnation introduced reactive execution of hierarchically
organized skills (Shapiro & Langley, 1999) and methods
for learning from delayed reward (Shapiro et al., 2001).
The current ICARUS incorporates ideas from each of its
predecessors in a unified way. This includes our algo-
rithm for estimating the linear value functions associated
with hierarchical skills (Shapiro & Langley, 2002), which
operates with the new skill representation and the inter-
nal reward signal that comes from matched concepts.

6. Directions for Future Research

Although the latest version of ICARUS constitutes a sig-
nificant advance over its predecessors, the architecture
still lacks many capabilities that we would expect in
a general intelligent agent. One such omission relates
to our framework’s emphasis on execution over problem
solving and planning, which are important in their own
rights. The backward-chaining mechanism for skill re-
pair incorporates one key idea from work in this area,
but planning also involves projecting the effects of future
activities on the environment. For example, an ICARUS
agent should be able to imagine the experience of driving
along different routes. The framework should also sup-
port mental execution of skills for nonreactive tasks like
multi-column subtraction, where cognitive processing is
sufficient to achieve the objective.

Another limitation of the current architecture is its re-
striction to executing one skill on each time step. Future
versions should support the execution of skills in paral-
lel, but place resource constraints on this ability. This
will require an expanded formalism for skills that spec-
ifies the resources they consume on each cycle. We will
also need to generalize ICARUS’ current method for skill
selection to take expected resource consumption into ac-

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

count. We envision a decision-theoretic treatment that
trades costs against benefits, similar to that in ACT-R
but incorporating multiple resource dimensions. An im-
portant special case involves perceiving the environment,
which currently happens automatically through preat-
tentive processes. A more realistic scheme would handle
some perception through explicit sensing actions that re-
quire resources and thus must be invoked selectively.

Our description of ICARUS has emphasized the hierar-
chical nature of long-term skill memory, but, as it stands,
the architecture offers no account of this hierarchy’s ac-
quisition. We have made some progress toward inducing
hierarchical skills from behavior traces (Ichise, Shapiro,
& Langley, 2002), but we should also develop methods
that construct them from the agent’s own execution ef-
forts. One promising idea involves caching the results of
each successful skill repair into a new higher-level skill
that includes the repaired and repairing skills as compo-
nents. This approach is similar in spirit to methods for
chunking in Soar (Laird et al., 1987), knowledge compo-
sition in early versions of ACT (Anderson, 1983), and
macro-operator formation (e.g., Iba, 1989). However,
previous work along these lines has focused on struc-
tures that invoke actions in a fixed order, whereas cached
IcARrus skills would retain their reactive nature.

As noted earlier, ICARUS incorporates ideas from re-
inforcement learning to revise the value functions asso-
ciated with executed skills based on discounted reward.
The architecture diverges from traditional treatments by
embedding reward calculations within the agent, rather
than in the environment. This raises intriguing questions
about the origin of such rewards, which decision theory
has not addressed, and suggests the radical notion that
the reward functions associated with Boolean concepts
might themselves be modified. In this scenario, the agent
might start with only a few innate reinforcers, whereas
most concepts have neutral affect. Over time, many of
these concepts would become learned reinforcers, capa-
ble of rewarding behavior even when the innate concepts
are unmatched. We envision a learning mechanism sim-
ilar to the one that revises expected value functions, but
applied to concepts that occur in executed skills, rather
than to the skills themselves.

As we have seen, the current ICARUS can recognize
familiar situations with its conceptual hierarchy, but fu-
ture versions should also recognize and interpret the be-
havior of other agents using its skill hierarchy. For ex-
ample, when another car comes up quickly from behind
and changes lanes, it should infer that the other agent is
passing. To this end, we should incorporate ideas from
the literature on plan understanding, which addresses
similar problems. However, because the agent must infer
what skills another agent is using before they have been
completed, we cannot rely on the deductive matching
scheme used for concept recognition. Rather, we will re-
quire something closer to abduction (e.g., Ng & Mooney,
1992), which uses general knowledge to explain a limited
number of observations in a more flexible manner.

PAGE 7

Finally, like most other agent architectures, ICARUS
lacks any episodic memory to store its own previous ex-
perience. Knowledge about concept instances that were
once true and skills that it once executed would support
important abilities, such as answering questions about
past events. Upon reflection, episodic memory seems
closely related to short-term memory, in that it deals
with specific instances of general concepts and skills.
We might encode such memories as variants on short-
term literals that include time markers to indicate when
they entered and left the short-term stores. Such traces
should also include average statistics about the rewards
generated by concept instances and those achieved when
executing instantiated skills. The mechanisms responsi-
ble for retrieval from episodic memory, and the status
of retrieved traces once they are deposited in short-term
memory, remain open issues for future research.

7. Concluding Remarks

In this paper, we have described ICARUS, a novel ar-
chitecture for intelligent physical agents. Our approach
embodies five design principles that categorization has
primacy over problem solving and execution, execution
has primacy over problem solving, top-level intentions
originate within the agent, intelligent behavior is inher-
ently value driven, and reward is calculated internally
rather than originating in the environment. These ideas
distinguish our theoretical framework from most earlier
architectures for cognition.

IcARUs includes a long-term memory for concepts,
which are defined as logical conjunctions of other con-
cepts, and another memory for skills, which are defined
in terms of concepts and component skills. The concept
hierarchy supports a recognition process, which deposits
concept instances in short-term memory, and reward cal-
culation, which associates an affective score with each
instance. The architecture also includes distinct mod-
ules for nominating, selecting, executing, repairing, and
abandoning skill instances, each of which draws on the
expected value functions associated with the generalized
versions of those skills in long-term memory.

Despite the recent extensions we have described,
IcARUS remains an immature architecture relative to
frameworks like Soar and ACT-R. However, we believe
that its value-driven approach to intelligent behavior,
along with its other distinctive features, will support
functionalities that are difficult to achieve in these more
traditional approaches. We hope to demonstrate these
abilities in our future work on ICARUS agents for driving
and other physical domains.

Acknowledgements

This research was funded in part by Grant NCC-2-1220
from NASA Ames Research Center through the Intelli-
gent Systems Program. We thank Stephanie Sage and
David Nicholas for extended discussions that led to many
of the ideas in this paper.

PAGE 8

References

Anderson, J. R. (1983). The architecture of cognition.
Cambridge, MA: Harvard University Press.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Lawrence Erlbaum.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D.,
Miller, D., & Slack, M. (1997). Experiences with an
architecture for intelligent, reactive agents. Journal
of Experimental and Theoretical Artificial Intelligence,
9, 237-256.

Doyle, J. (1979). A truth maintenance system. Artificial
Intelligence, 12, 231-272.

Feigenbaum, E. A. (1963). The simulation of verbal
learning behavior. In E. A. Feigenbaum & J. Feldman
(Eds.), Computers and thought. New York: McGraw-
Hill.

Fisher, D. H. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139-172.

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artifi-
cial Intelligence, 19, 17-37.

Howard, R. A. (1968). The foundations of decision anal-
ysis. IEEE Transactions on Systems, Science, and
Cybernetics, 4, 211-219.

Iba, G. A. (1989). A heuristic approach to the discovery
of macro-operators. Machine Learning, 3, 285-317.
Ichise, R., Shapiro, D. G., & Langley, P. (2002). Learn-
ing hierarchical skills from observation. Proceedings of
the Fifth International Conference on Discovery Sci-

ence (pp. 247 258). Lubeck, Germany: Springer.

Kaelbling, L. P. (1993). Hierarchical learning in stochas-
tic domains: Preliminary results. Proceedings of the
Tenth International Conference on Machine Learning
(pp. 167 173). Amherst, MA.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Artifi-
cial Intelligence, 33, 1 64.

Langley, P. (1997). Learning to sense selectively in
physical domains. Proceedings of the First Interna-
tional Conference on Autonomous Agents (pp. 217
226). Marina del Rey, CA: ACM Press.

Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F.,
& Thompson, K. (1991). A design for the ICARUS
architecture. SIGART Bulletin, 2, 104-109.

Langley, P., Thompson, K., Iba, W. F., Gennari, J., &
Allen, J. A. (1989). An integrated cognitive architec-
ture for autonomous agents (Technical Report 89-28).
Irvine: University of California, Department of Infor-
mation & Computer Science.

Lebowitz, M. (1987). Experiments with incremental con-
cept formation: UNIMEM. Machine Learning, 2, 103
138.

Minton, S. N. (1990). Quantitative results concerning
the utility of explanation-based learning. Artificial In-
telligence, 42, 363-391.

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

Nardi, D., & Brachman, R. J. (2002). An introduction
to description logics. In F. Baader et al. (Eds.), De-
scription logic handbook. Cambridge: Cambridge Uni-
versity Press.

Neches, R., Langley, P.; & Klahr, D. (1987). Learning,
development, and production systems. In D. Klahr,
P. Langley, & R. Neches (Eds.), Production system
models of learning and development. Cambridge, MA:
MIT Press.

Newell, A. (1973). You can’t play 20 questions with na-
ture and win: Projective comments on the papers of
this symposium. In W. G. Chase (Ed.), Visual infor-
mation processing New York: Academic Press.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report
on a general problem-solving program for a computer.
Information Processing: Proceedings of the Interna-
tional Conference on Information Processing (pp. 256
264). UNESCO House, Paris.

Ng, H. T., & Mooney, R. J. (1992). Abductive plan
recognition and diagnosis: A comprehensive empirical
investigation. Proceedings of the Third International
Conference on Principles of Knowledge Representa-
tion and Reasoning (pp. 499 508). San Mateo, CA:
Morgan Kaufmann.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research,
1, 139-158.

Parr, R., & Russell, S. (1998). Reinforcement learn-
ing with hierarchies of machines. Advances in Neural
Information Processing Systems 10 (pp. 1043-1049).
Cambridge, MA: MIT Press.

Schoppers, M. (1987). Universal plans for reactive
robots in unpredictable environments. Proceedings of
the Tenth International Joint Conference on Artificial
Intelligence (pp. 1039 1046). Milan, Italy: Morgan
Kaufmann.

Shapiro, D., & Langley, P. (1999). Controlling physi-
cal agents through reactive logic programming. Pro-
ceedings of the Third International Conference on Au-
tonomous Agents (pp. 386 387). Seattle: ACM Press.

Shapiro, D., & Langley, P. (2002). Separating skills from
preference: Using learning to program by reward. Pro-
ceedings of the Nineteenth International Conference
on Machine Learning (pp. 570 577). Sydney: Mor-
gan Kaufmann.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learn-
ing in physical agents. Proceedings of the Fifth In-
ternational Conference on Autonomous Agents (pp.
254 261). Montreal: ACM Press.

Sun, R., Merrill, E., & Peterson, T. (2001). From im-
plicit skills to explicit knowledge: A bottom-up model
of skill learning. Cognitive Science, 25, 203—-244.

VanLehn, K. (1990). Mind bugs: The origins of proce-
dural misconceptions. Cambridge, MA: MIT Press.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279-292.

AN ARCHITECTURE FOR INTELLIGENT BEHAVIOR

Table 1: TcARUS concepts for the highway driving do-
main, omitting the :reward and :weights fields used to
compute reward. Variables start with the symbol ? and
numeric concepts are marked with the symbol #.

PAGE 9

Table 2: An IcARuUs skill for one car passing another
and the subskills it relies upon, omitting the :value and
:weights fields used to compute expected values.

(in-lane (7car 7lane)
(lane 7lane 7left-line ?7right-line) (car 7car)
(#xdistance 7car 7left-line 7dleft)
(#xdistance 7car ?right-line 7dright)
(< ?dleft 0) (> 7dright 0))

(ahead-of (7carl 7car2)
(car 7carl) (car ?car2)
(#yback 7carl 7?backl)
(#yfront 7car2 ?front2)
(> ?backl ?fromnt2))

(overlaps (7carl ?car2)
(car 7carl) (car 7car2) (#yfront 7carl ?frontl)
(#yback 7carl 7backl) (#yfront ?car2 7?front2)
(> ?frontl 7front2) (> ?front2 7backl))

(#distance-ahead (7carl ?car2 7diff)
(ahead-of 7carl 7car2)
(#yback 7carl 7backl)
(#yfront 7car2 7front2)
(*bind ?diff (- ?backl ?front2)))

(faster-than (?carl 7car2)
(#speed 7carl 7sl) (#speed 7car2 7s2)
(> ?s1 (+ ?s2 5)))

(in-same-lane (?carl 7car2)
(car 7carl) (car 7car2)
(in-lane ?carl 7lane)
(in-lane 7car2 7lane))

(in-different-lane (7carl ?car2)
(car 7carl) (car 7car2)
(in-lane ?carl 7lane)

(not (in-lane 7car2 7lane)))

(overlaps-and-adjacent (?carl ?car2)
(car 7carl) (car 7car?2)
(in-lane ?carl ?lanel)
(in-lane 7car2 7lane?2)
(adjacent ?lanel ?lane2)
(overlaps ?7carl 7car2))

(coming-from-behind (7carl 7car2)
(car 7carl) (car 7car2)
(in-lane 7carl 7lanel)
(in-lane ?car2 7lane2)
(adjacent ?7lanel 7lane2)
(faster-than 7carl ?car2)
(ahead-of 7car2 7carl))

(adjacent (7lanel 7lane2)
(lane 7lanel 7shared-line 7right-line)
(lane 7lane2 ?left-line 7?shared-line))

(adjacent (7lanel 7lane2)
(lane 7lanel 7left-line ?shared-line)
(lane 7lane2 7shared-line 7right-line))

(clear-for (7lane 7car)
(lane 7lane 7left-line ?7right-line)
(not (overlaps-and-adjacent ?car 7other))
(not (coming-from-behind ?car 7other))
(not (coming-from-behind ?other ?car)))

(pass (Pcarl ?7car2 7lane)

:start (ahead-of 7car2 7carl)
(in-same-lane 7carl 7car2)
:objective (ahead-of ?carl ?car2)
(in-same-lane 7carl 7car2)
:requires (in-lane 7car2 ?7lane)
(adjacent ?7lane 7to)
:ordered (speed-and-change 7carl 7car2 ?lane ?7to)

(overtake 7carl 7car2 7lane)
(change-lanes 7carl 7to 7lane))

(speed-and-change (7carl 7car2 7from 7to)

:start (ahead-of 7car2 7carl)
(in-same-lane 7carl 7car2)
:objective (much-faster-than ?carl 7car2)
(in-different-lane 7carl 7car2)
:requires (in-lane 7car2 ?from)
(adjacent ?from 7to)
:unordered (speed-up-faster-than 7carl ?car2)

(change-lanes 7carl 7from 7to))

(speed-up-faster-than (?carl 7car2)

:start (faster-than 7car2 7carl)
:objective (faster-than ?carl 7car2)
:requires ()

:ordered (*accelerate))

(change-lanes (?car 7from 7to)

:start (in-lane ?car 7?from)

:objective (in-lane 7car 7to)

:requires (lane ?from ?shared-line 7right-line)
(lane 7to 7left-line ?shared-line)
(clear-for 7to ?car)

:ordered (*shift-left))

(change-lanes (?car 7from 7to)

:start (in-lane ?car 7from)

:objective (in-lane 7car 7to)

:requires (lane 7from 7left-line ?shared-line)
(lane 7to ?shared-line ?7right-line)
(clear-for ?to ?car)

:ordered ((xshift-right)))

(overtake (?7carl ?car2 7lane)
:start (behind 7carl 7car2)
(in-different-lane ?carl 7car2)

:objective (ahead-of 7carl 7car2)

:requires (in-lane 7car2 ?7lane)
(faster-than 7x 7y)
:ordered (*wait))

