
A Value-Driven Arhiteture for Intelligent BehaviorPat Langley, Daniel Shapiro,Meg Ayinena, and Mihael SiliskiComputational Learning LaboratoryCenter for the Study of Language and InformationStanford University, Stanford, CA 94305 USAAbstratIn this paper, we desribe Iarus, an inte-grated arhiteture for intelligent agents thatdiverges from earlier e�orts. The frameworksupports long-term memories for onepts andskills, and it inludes mehanisms for reogniz-ing onepts, alulating internal reward, nom-inating and seleting skills, exeuting them ina reative manner, repairing skills' onditionswhen they fail, and abandoning skills whenthey promise poor returns. We illustrate theseproesses with examples from the domain ofhighway driving, and we relate Iarus' as-sumptions to priniples of arhitetural designand to previous researh in this important area.1. Introdution and BakgroundResearh on agent arhitetures pursues a entral goal ofarti�ial intelligene and ognitive siene: the reationand understanding of syntheti agents that support thesame apabilities as humans. Suh arhitetures aim forbreadth of overage aross many domains, and they of-fer an aount of intelligene at the systems level, ratherthan fousing on omponent methods designed for spe-ialized tasks. They run ounter to the inreasing frag-mentation of these �elds, in that they provide integratedframeworks for produing omplex behavior in a general,domain-independent manner.An agent arhiteture { sometimes alled a ognitivearhiteture { spei�es the infrastruture for an intel-ligent system that remains onstant aross di�erent do-mains and knowledge bases. This infrastruture inludesa ommitment to formalisms for representing knowledge,memories for storing this domain ontent, proesses thatutilize the knowledge, and learning mehanisms to a-quire or revise it. An agent arhiteture an interpretdi�erent knowledge bases, just as a omputer arhite-ture an run di�erent programs.In this paper, we report on the latest version ofIarus, an agent arhiteture that extends our previ-ous work in this area (Shapiro & Langley, 1999, 2002;Shapiro et al., 2001). We begin by desribing �ve de-

sign priniples that have guided our development of thearhiteture. After this, we desribe Iarus' long-termand short-term memories, inluding their formalisms forenoding knowledge. Next we examine the framework'smehanisms for operating on these memory strutures,fousing on performane rather than learning, whih wehave disussed in earlier papers. In losing, we on-sider the intelletual inuenes on Iarus and outlineour plans for extending its apabilities.2. Design Priniples for IarusThe past 30 years have seen extensive researh on arhi-tetures for intelligent agents and onsiderable progressin this area. However, we believe that existing arhi-tetures downplay important faets of intelligent behav-ior that deserve inreased attention. Our researh onIarus attempts to respond to these needs and has beenguided by a number of design priniples:1. Primay of ategorization over problem solving . Be-ause most arhitetures foused initially on multi-step problem solving and planning, they emphasizethe generation of solutions to problems or the exeu-tion of ations. However, ategorization is a entralaspet of intelligent behavior that, in humans, takesplae rapidly and unonsiously. This suggests thatategorization should our at a more basi level ofthe arhiteture, with problem solving and exeutionrelying on it, rather than the reverse.2. Primay of exeution over problem solving . The earlyfous on problem solving and planning, whih involvemental operations, led to alternative frameworks thatinstead emphasized reative exeution of physial be-haviors. Humans an both generate plans and aton them, but the inability of most animals to formabstrat plans suggests that exeution is more basi,with problem solving building on this apaity.3. Internal origins of tasks and intentions . Many arhi-tetures for intelligent agents assume that top-leveltasks and goals are provided by the programmer,whereas most reative frameworks lak even this task-ability. Humans an respond to external requests, butthey an also operate autonomously, generating theirown tasks and intentions. This suggests the need for



Page 2 An Arhiteture for Intelligent Behaviorarhitetural mehanisms that support autonomousgeneration and abandonment of high-level tasks.4. Value-driven nature of behavior . Initial designs formost agent arhitetures relied almost entirely onsymboli proessing, using numbers for strength or re-eny in only limited ways. Researh on reinforementlearning inorporates notions of expeted and reeivedreward, but does not link them to ognitive strutureslike onepts or plans. However, a�et plays a entralrole in human experiene and behavior, whih indi-ates the need for a more value-driven approah toognition, pereption, and ation.5. Internal origins of agent reward . Methods for rein-forement learning emphasize the role of reward inshaping behavior, but they invariably assume this re-ward omes from the external environment. However,reward in humans and animals is inuened by theirpereptions of the world and their ognitive stru-tures. This suggests that we reast the alulationof reward as a proess internal to the agent, whih inturn requires arhitetural support.Taken together, these onstraints have led to an arhi-teture that, although it inorporates many ideas fromearlier researh, di�ers from them in important respets.We attempt to highlight these di�erenes as we desribeIarus in the setions that follow.3. Memories and RepresentationsAn integrated arhiteture should make some ommit-ment to its representation of knowledge and the memo-ries in whih that knowledge resides. In this setion wedesribe Iarus' memories for long-term knowledge andshort-term beliefs, along with the general forms taken bytheir ontents.3.1 Long-Term Coneptual MemoryIarus inorporates a long-term memory for oneptsthat enodes its knowledge of familiar situations. Thisinludes desriptions of ategories for isolated objets,like ars and truks, but also physial relations amongobjets, suh as one vehile being ahead and to the rightof another. These onepts provide Iarus' voabularyfor desribing its experiene of the world.Eah onept has a name and zero or more arguments,and Iarus supports two distint kinds of onepts.Boolean onepts are either true or false, and orrespondto the traditional notion of a logial ategory. For in-stane, long-term memory might inlude a Boolean on-ept that overs situations in whih there are ars nextto the driver in both adjaent lanes. In ontrast, numerionepts take on quantitative values that orrespond toattributes of objets or situations. Thus, a knowledgebase might inlude a numeri onept that refers to theaverage distane to ars ahead of and behind the driver.The arhiteture supports both primitive and non-primitive onepts of both types. Primitive oneptsorrespond to the output of sensors that an diretlypereive various aspets of the external environment.

Table 1 refers to two primitive Boolean onepts fromthe driving domain, ar and lane, and four primitivenumeri onepts: #xdistane, #yfront, #ybak, and#speed. Nonprimitive Booleans are de�ned as onjun-tions of other Boolean onepts, numeri onepts, andlogial prediates like >, as illustrated by ahead-of andoming-from-behind. Similarly, numeri onepts like#distane-ahead are de�ned in terms of other numerionepts, plus optional Boolean onepts and logialprediates. A numeri onept de�nition also inludesan arithmeti funtion to ompute its assoiated quan-tity from numeri onstituents.Taken together, these de�nitions impliitly organizeIarus ategories into a oneptual hierarhy. Thishierarhy is similar in spirit to those in earlier mod-els of memory like Epam (Feigenbaum, 1963), Unimem(Lebowitz, 1987), and Cobweb (Fisher, 1987), as wellas frameworks like desription logis (Nardi & Brah-man, 2002). The atual form is a lattie, with primitiveonepts ourring at the top, onepts de�ned in termsof them immediately below, and more omplex oneptsat lower levels. Struturally, this lattie bears a loseresemblane to the Rete networks (Forgy, 1982) used formathing in prodution-system arhitetures, an analogyto whih we will return later.Eah Boolean onept also has an assoiated funtionthat spei�es the reward the agent reeives when thatonept is true and that provides an analogy for utility inhumans, in that it motivates all agent hoies within thearhiteture. The funtion is desribed by two �elds, one(:reward) referring to the numeri onepts that inu-ene the reward and another (:weights) that indiatesthe weight on eah numeri onept. The arhitetureassumes these are ombined in a linear fashion to om-pute the reward obtained when that onept is true.3.2 Long-Term Skill MemoryTo omplement its oneptual memory, Iarus inorpo-rates a long-term skill memory that enodes knowledgeabout ways to at and ahieve goals. This ontains spei-�ations for skills that are appliable in ertain situationsand that produe desired e�ets. Skills provide Iaruswith a repertoire of behaviors that let it inuene theenvironmental situations in whih it �nds itself.Eah skill has a name, zero or more arguments, and six�elds. The :objetive �eld spei�es a onjuntion ofknown onepts that, taken together, enode the desiredsituation the skill is intended to ahieve. Eah skill alsoinludes a :start �eld, again ast as a onjuntion ofknown onepts, whih spei�es the situation that musthold to initiate the skill, and a :requires �eld, whihmust hold throughout the skill's exeution. For example,Table 2 shows the skill pass, whih has the objetive ofgetting ?ar1 ahead of ?ar2 and in the same lane, anstart only if ?ar1 is behind ?ar2 in the same lane, andit also requires that ?ar2 remain in this lane during thepassing ativity.In addition, eah Iarus skill inludes another �eldthat spei�es how to deompose that skill into subskills.



An Arhiteture for Intelligent Behavior Page 3An :ordered �eld indiates the order in whih the agentshould onsider these omponent skills. For example,pass direts the agent to onsider speed-and-hange,overtake, and hange-lanes, in that sequene, and toselet an ation reatively from the �rst subskill thatapplies. In ontrast, an :unordered �eld identi�es ahoie among subskills. For instane, the table's deom-position for speed-and-hange involves the subskillsspeed-up-faster-than and hange-lanes, from whihthe system piks the best, regardless of order.More aurately, Iarus spei�es one or more ways todeompose eah skill in this manner, muh as a Prologprogram an inlude more than one Horn lause withthe same head. Di�erent deompositions of a givenskill must have the same name, number of arguments,and objetive. However, they an di�er in their om-ponents and in their requirements. For example, theskill hange-lanes has two suh deompositions, onefor moving to the left and another to the right.In a primitive skill, the :ordered �eld spei�es a sin-gle opaque ation. For the driving domain, suh ationsmight orrespond to turning the wheel or hanging pres-sure on the pedal by a given amount. Thus, a primitiveskill plays the same role as a Strips operator in a tra-ditional planning system, with the :start �eld servingas the preonditions and the :objetive �eld speifyingthe e�ets of exeution.Eah skill deomposition also inludes an expetedvalue funtion that takes a form similar to the rewardsassoiated with onepts. This enodes the disountedreward that the agent expets to reeive if it exeutesthe skill with this deomposition. As with onept re-wards, this funtion is spei�ed in two parts, a :value�eld that indiates the numeri onepts involved anda :weights �eld that states the weights on quantitiesreturned by these onepts. The expeted reward for askill deomposition is a linear funtion of the numeridesriptors mathed by that skill. For example, thevalue for pass might depend on the numeri onepts#distane-ahead and #speed of another ar, whih anvary from moment to moment.3.3 Short-Term MemoriesIarus' long-term memories enode stable knowledgethat hanges only slowly in response to its aumulatedexperiene. However, to generate behavior, the arhite-ture requires short-term stores that hange more rapidly.These should make ontat with long-term onepts andskills, but they must also represent temporary beliefsabout the agent's environment and desires.One suh memory is Iarus' pereptual bu�er , whihontains instanes of primitive Boolean and numeri on-epts that orrespond to the output of sensors. For ex-ample, this short-lived memory might ontain the literal(#speed ar-007 20.3), whih spei�es the speed ofar-007 as pereived on the urrent time step. Thisliteral is an instane of the primitive #speed oneptbeause it refers to spei� parameters rather than togeneralized variables.

In ontrast, Iarus' short-term oneptual memoryontains instanes of onepts that are de�ned in long-term onept memory. These literals enode spei� be-liefs about the environment that the agent an infer fromthose present in its pereptual bu�er. For instane, thismemory might ontain the instane (faster-than selfar-007), whih depends on the #speed instane men-tioned above. In addition, eah instane of a Booleanonept inludes a numeri reward omputed from thereward funtion assoiated with that onept and theliterals mathed in its :reward �eld.Finally, Iarus inludes a short-term skill memorythat ontains instanes of skills the agent intends to ex-eute. Eah of these literals spei�es the skill's nameand its onrete arguments. For example, this memorymight ontain the skill instane (pass self ar-007lane-a), whih denotes that the driver has an expliitintention to exeute the pass skill with these argumentswhen possible. In addition, eah skill instane inludesthe expeted disounted reward if exeuted, whih isomputed from the expeted reward funtion assoiatedwith that skill and literals mathed in its :value �eld.The agent uses this number to make hoies among skillsand among alternatives within skills.4. Interpreting and Utilizing KnowledgeLike most arhitetures for intelligent agents, Iarusoperates in distint yles. Every yle, the system up-dates its pereptual bu�er, determines whih oneptsare mathed, and alulates reward based on these on-epts. The arhiteture then selets a skill and exeutesit, produing hanges in the environment that inuenedeisions on the next yle. In this setion, we disusseah of these proesses in turn.4.1 Categorization and Belief UpdateOn eah yle, Iarus refreshes the ontents of its per-eptual bu�er by applying preattentive sensors to everyobjet within a given distane of the agent. This pro-dues a set of primitive onept instanes whih are de-posited into the short-term store and whih are then sentto the top nodes of the lattie for oneptual long-termmemory. Eah instane of a primitive onept is storedwith the long-term node for that onept, along with thebindings of variables for that instane.When the ategorization module stores a new instaneI at the node for onept C, it aesses eah de�ned on-ept D that inludes C in its de�nition, then heks tosee whether the addition of I makes any new instanesof D possible. To this end, it aesses the instanes of allother onepts that appear in D's de�nition and onsid-ers whether their variables bind onsistently with thosefor I . If so, then the module adds a new instane to theD node for eah suh onsistent binding and reursivelyships eah one to the nodes for onepts that inlude Din their de�nitions.A similar proess ours when pereptual updating re-moves a Boolean onept instane from the pereptualbu�er or hanges the quantity assoiated with a numeri



Page 4 An Arhiteture for Intelligent Behaviorinstane. Whenever a primitive instane is removed, themodule deletes the instanes of all de�ned onepts towhih that literal ontributes and reursively removesinstanes of all onepts that depend on it indiretly.Changes to a numeri onept instane an lead to ei-ther removal or addition of Boolean onepts in whihit ours, depending on whether the hange makes pred-iates like (< ?distane 20) true or false. In general,the ategorization module plays the same role for Iarusas a truth maintenane module in some logial inferenesystems (e.g., Doyle, 1979).Earlier we mentioned that the onept lattie is simi-lar in form to the Rete networks that are used in manyprodution-system arhitetures. The onept reog-nition proess just desribed uses e�etively the samemehanism to support eÆient mathing. The main dif-ferene is that every node in the hierarhy orrespondsto a onept that has some meaning to the agent, ratherthan simply existing to support the math proess.A typial Rete network utilizes binary trees, whereasIarus instead has N-ary trees, with the branhing fa-tor determined by the number of literals mentioned ineah onept de�nition.4.2 Calulation of RewardAs we noted earlier, Boolean onepts in long-termmem-ory have assoiated reward funtions, whih are om-bined into a global utility metri that informs Iarus'deisions. To determine this quantity, the arhite-ture onsiders every instane of a Boolean onept inshort-term memory and omputes the dot produt of itsnumeri attribute values and their assoiated weights.For example, suppose the onept ahead-of in Table 1has two numeri onepts in its :reward �eld thatmath the instanes (#distane-ahead self ar-00620) and (#speed ?ar-006 25). If we suppose fur-ther that this Boolean onept spei�es the parame-ters 4.7 and 1.6 in its :weights �eld, then the rewardontributed by the onept instane (ahead-of selfar-006) would be 4:7� 20 + 1:6� 25 = 134.After alulating the reward for eah mathed Booleaninstane, Iarus sums their ontributions to produethe overall reward for the urrent yle. This orre-sponds to the reward provided in traditional approahesto reinforement learning, but our framework does notview it as oming from outside the agent. Rather, re-ward is an internal response to what the agent pereivesin its environment, so that if a onept is unmathed,for whatever reason, it has no impat. This opens theway for seletive attention to inuene the reward signal,though we have not implemented this idea in our urrentIarus agents.In priniple, every mathed Boolean onept an on-tribute to the agent's overall reward. However, beausean Iarus programmer may not want to speify rewardfuntions for every onept in long-term memory, the ar-hiteture assumes zero as the default reward when noneis given. Thus, only a few onepts may inuene the al-ulation in pratie. Also, note that distint instanes

of the same onept make separate ontributions to theoverall reward. For example, if a driver dislikes beinglose to other ars, then the reward (whih an be neg-ative) will derease linearly with the number of nearbyars. One an imagine other ombination shemes thatprodue di�erent e�ets, but simple summation seems areasonable starting point.4.3 Nomination and Seletion of SkillsReall that Iarus inludes a short-term skill memorythat ontains a set of skill instanes the agent onsid-ers worth exeuting. Most arhitetures for intelligentbehavior assume the agent is given some top-level goalsto pursue, but this does not explain their soure. Inontrast, Iarus inludes a mehanism for nominatingskills that should be added to short-term skill memoryand thus onsidered for exeution.On eah yle, the nomination proess aesses allskills in long-term memory that refer to onepts ap-pearing in short-term memory. More preisely, for eahshort-term onept instane, the module �nds every skillthat inludes the analogous onept in its own :startor :requires �elds. Moreover, it onsiders di�erent in-stanes of eah suh skill, based on the variables mathedduring retrieval. This strategy produes skill instanesthat are potentially relevant to the urrent situation inshort-term memory.The nomination proess selets at most one of theseskills to add to short-term skill memory, whih it does onthe basis of value alulations. In partiular, the systemomputes the expeted reward for exeuting eah skill inthe urrent situation, identi�es the most promising one,and ompares its estimate against the expeted rewardfor skills already in short-term memory. To aid this de-ision, the arhiteture maintains a running disountedaverage RA of the overall reward it has reeived on pastyles. If the expeted reward for the highest-soringskill instane is higher than RA, then the nominationproess adds the instane to short-term skill memory.Otherwise, there is no reason to expet it will produebetter results than urrently exist, so it adds nothing tothe set of ative intentions.One it has ompleted the nomination proess, Iarusselets whih skill to exeute on the urrent yle. Tothis end, it omputes the expeted value for eah skill in-stane in the ative set, again basing this alulation onthe value funtion stored with eah skill and the instanti-ated numeri onepts against whih that skill mathes.On eah yle, the arhiteture simply selets the skill in-stane that sores the highest on this riterion, whetherit has just been added or has been ative for some time.This deision involves deep evaluation of the skill, inlud-ing examination of ations suggested by its subskills, towhih we will turn shortly.Taken together, the nomination and seletion pro-esses orrespond roughly to the onit-resolution stagein prodution-system arhitetures like OPS (Forgy,1982) and ACT-R (Anderson, 1993). Both introduea sequential bottlenek whih fouses ognitive atten-



An Arhiteture for Intelligent Behavior Page 5tion on one knowledge struture that seems most ap-propriate for the urrent situation. However, Iarusadapts this idea to skills that may have omplex in-ternal strutures, rather than to smaller, independentondition-ation rules.4.4 Exeution of SkillsOne Iarus has seleted a skill instane to apply on theurrent yle, it invokes an exeution module on that in-stane. An attempt to exeute a skill instane returnseither True, False, or a primitive ation, whih is thenapplied in the environment. Beause a skill may be de-�ned in terms of other skills, this proess is reursive,with a skill returning the same result as its seleted sub-skill produes.An exeuted skill instane returns True if its instanti-ated :objetive �eld mathes the urrent state of on-eptual short-term memory. If this happens at the toplevel, the system takes no ation, sine it is already inthe desired situation. However, neither does it removethe instane from short-term skill memory, sine its pur-pose may involve a maintenane ativity (e.g., stayingfar enough from the ar ahead) that may require a re-sponse in the future.On the other hand, an exeuted skill returns False if itsrequirements do not math the urrent state of onep-tual short-term memory. Reall that a skill's de�nitionmay inlude multiple deompositions, and all of their:requires �elds must fail to math for this to our. Inthis ase, Iarus invokes the repair module disussed inthe next setion in an attempt to alter the environmentso the skill's requirements are met.If one or more skill deompositions has satis�ed re-quirements, then the system must selet whih one toexeute. This proess di�ers from nomination, whih ex-amines only the expeted value funtion assoiated withthe nominated skills. Instead, the module reursivelyonsiders all ways to exeute the seleted skill instane,expanding eah subskill in turn until reahing the lowestlevel. The system alulates the expeted value of eahprimitive skill instane that has an unmathed objetiveand mathed requirements, and it returns the instanti-ated ation assoiated with the highest-soring skill.However, the arhiteture treats a skill expansion dif-ferently depending on whether its omponents are an:unordered set or an :ordered list. If they are un-ordered, the module onsiders eah of the subskills andselets the one that yields the highest soring ation.If they are ordered, it instead treats the list as a rea-tive program that onsiders eah subskill in turn. If the�rst one does not apply, then the enlosing skill fails asa whole. If it produes an ation, the system returnsthat ation for possible exeution. However, if the �rstsubskill returns true, this means its objetive has beenmet in the world, so the system onsiders the seond sub-skill, and so forth. The proess ontinues in this manner,terminating either in suess, failure, or by seleting anation that furthers the skill's objetive.

4.5 Repair of Skill ConditionsAs just noted, Iarus an deide to exeute a skill in-stane with unsatis�ed requirements, in that the oneptinstanes needed to math those requirements are notpresent in oneptual short-term memory. In this ase,the arhiteture invokes a repair module that attemptsto hange the environment into a state that meets theserequirements. This proess involves two steps, one thatselets an unmathed onept to repair and another thatselets a skill whih, if exeuted, should ultimately pro-due a situation that satis�es the missing onept.When determining whih onept instane to repair,Iarus onsiders all the ways in whih the urrent skillhas failed, inluding onepts mentioned in the :startand :requires �elds within its subskills, then seletsthe one that, if orreted, would produe the highestexpeted reward. When determining how to remedythis omission, the repair module aesses every skillthat refers to the failed requirement in its :objetive�eld. For instane, suppose a driving agent has de-ided to exeute the skill (overtake self ar-007),but that its requirement (in-different-lane selfar-007) does not hold. If the agent is urrently inthe middle lane (lane-b), then it ould repair the prob-lem by exeuting either (hange-lanes self lane-a)or (hange-lanes self lane-), whih orrespond topassing on the left or right, respetively.As this example illustrates, the repair proess mayneed to hoose among alternative skill instanes thataddress a given requirement. To this end, Iarus usesthe same mehanism as for nomination, whih involvesomputing the expeted value for eah andidate skillinstane and seleting the repair skill R with the highestsore. This seletion takes an extra yle, so attemptedexeution of R must wait until the next time step. IfR in turn has failed requirements, Iarus repeats theproess, seleting another skill that should orret thisproblem. In summary, skill repair is a ognitive ativitythat ours at a higher level than skill exeution, whihwe assume is automatized.The bakward-haining repair proess is losely re-lated to tehniques for generating subgoals in means-ends analysis (Newell, Shaw, & Simon, 1960) and plan-ning systems. Moreover, the fous on repair is similar toideas for impasse-driven problem solving in Soar (Laird,Newell, & Rosenbloom, 1987) and Sierra (VanLehn,1990). The key di�erene is that Iarus invokes its re-pair proess with respet to physial skills rather thanmental reasoning. Thus, this arhitetural feature re-mains onsistent with the priniple that exeution hasprimay over problem solving, despite its resemblaneto traditional planning methods.4.6 Abandonment of SkillsAnother ommon assumption in agent arhitetures isthat, one an agent deides to pursue some goal, itontinues inde�nitely. However, humans often deideto abandon their goal-direted ativities when they donot produe the expeted results, and we maintain that



Page 6 An Arhiteture for Intelligent BehaviorIarus should also inlude this faility. We want thesystem to exhibit persistene with respet to nominatedtasks, but it should give up on them when they seem un-ahievable or unlikely to generate the reward exeutedoriginally. For example, if the agent begins passing an-other ar whih then speeds up substantially, it may bereasonable to abandon the attempt.To produe suh behavior, Iarus relies on the dis-ounted average of past rewards that we desribed forthe nomination proess. On eah yle, the arhitetureupdates this running average and ompares it to the ex-peted reward omputed for eah skill instane presentin the short-term skill memory. If the expeted value ofexeuting a skill is substantially lower than the averagereward (urrently 20 perent of this amount), then thesystem removes the instane from short-term memory.Beause Iarus uses the same average reward here asfor nomination, it is unlikely the system will abandon askill just after it has been nominated. Typially, sometime will pass before a skill's expeted value drops sig-ni�antly from its level when the arhiteture �rst addedit to short-term memory. This leads Iarus to exhibit aertain persistene, though not the unritial kind rep-resented by more traditional goal-driven systems.5. Intelletual PreursorsDespite its novel features, Iarus draws on many ideasthat have a long history in arti�ial intelligene and og-nitive siene. The most important intelletual inueneomes from the ognitive arhiteture movement, whihaims to develop integrated frameworks that support gen-eral intelligent behavior. Sine Newell's (1973) all formore systems-level researh in these �elds, a number ofresearh groups have developed a variety of suh arhi-tetures, two of the best known being Soar (Laird et al.,1987) and ACT-R (Anderson, 1993). Other e�orts at in-tegration have foused on arhitetures for roboti on-trol (e.g., Bonasso et al., 1997), many of whih ombinemethods for planning and exeution. Iarus inorpo-rates onepts from both traditions in a framework thatsupports physial agents with ognitive abilities.Many ognitive arhitetures have been ast as produ-tion systems (Nehes, Langley, & Klahr, 1987), whihenode long-term knowledge as a set of ondition-ationrules that math against and modify the ontents ofshort-term memory. Our design for Iarus inorporatesentral ideas from this framework, inluding a relianeon pattern mathing, with skill �elds being ompared toshort-term memory and the oneptual hierarhy utiliz-ing a Rete network to support bottom-up reognition.This latter proess is also losely related to methods fortruth maintenane (e.g., Doyle, 1979), whih often storejusti�ations for beliefs so they an be removed when theenvironment hanges.Iarus also borrows from a distint tradition of rea-tive ontrol (e.g., Shoppers, 1987; Nilsson, 1994), whihemphasizes sensor-driven exeution to hanging situa-tions in unertain environments. Similar onerns dom-inate researh on reinforement learning, from whih we

have adapted methods for estimating value funtionsfrom delayed reward (e.g., Watkins & Dayan, 1992).This paradigm has foused mainly on stimulus-responsesystems that assoiate value funtions with situation-ation pairs. Sun et al. (2001) inorporate reinfore-ment learning in their Clarion arhiteture, and someresearhers (e.g., Parr & Russell, 1998) have examinedvariants that take advantage of hierarhial bakgroundknowledge, but our work is the �rst to embed hierarhi-al reinforement learning in an agent arhiteture. Arelated inuene omes from deision theory (Howard,1968), whih addresses value-driven deision making inunertain irumstanes. Iarus relies entrally on thedeision-theoreti notion of alternative ations that pro-due outomes with di�erent expeted values.Finally, the agent arhiteture we have desribed inthe previous pages retains many ideas from earlier ver-sions of Iarus. Langley et al. (1989, 1991) report earlydesigns for the arhiteture, whih even then foused onreative agents for physial environments. Early editionsof Iarus also inluded distint but onneted long-termmemories for onepts and plans, a module for exeutingomplex motor skills, and a method for generating newtasks. A more reent version (Langley, 1997) emphasizedseletive attention during skill exeution. The third in-arnation introdued reative exeution of hierarhiallyorganized skills (Shapiro & Langley, 1999) and methodsfor learning from delayed reward (Shapiro et al., 2001).The urrent Iarus inorporates ideas from eah of itspredeessors in a uni�ed way. This inludes our algo-rithm for estimating the linear value funtions assoiatedwith hierarhial skills (Shapiro & Langley, 2002), whihoperates with the new skill representation and the inter-nal reward signal that omes from mathed onepts.6. Diretions for Future ResearhAlthough the latest version of Iarus onstitutes a sig-ni�ant advane over its predeessors, the arhiteturestill laks many apabilities that we would expet ina general intelligent agent. One suh omission relatesto our framework's emphasis on exeution over problemsolving and planning, whih are important in their ownrights. The bakward-haining mehanism for skill re-pair inorporates one key idea from work in this area,but planning also involves projeting the e�ets of futureativities on the environment. For example, an Iarusagent should be able to imagine the experiene of drivingalong di�erent routes. The framework should also sup-port mental exeution of skills for nonreative tasks likemulti-olumn subtration, where ognitive proessing issuÆient to ahieve the objetive.Another limitation of the urrent arhiteture is its re-strition to exeuting one skill on eah time step. Futureversions should support the exeution of skills in paral-lel, but plae resoure onstraints on this ability. Thiswill require an expanded formalism for skills that spe-i�es the resoures they onsume on eah yle. We willalso need to generalize Iarus' urrent method for skillseletion to take expeted resoure onsumption into a-



An Arhiteture for Intelligent Behavior Page 7ount. We envision a deision-theoreti treatment thattrades osts against bene�ts, similar to that in ACT-Rbut inorporating multiple resoure dimensions. An im-portant speial ase involves pereiving the environment,whih urrently happens automatially through preat-tentive proesses. A more realisti sheme would handlesome pereption through expliit sensing ations that re-quire resoures and thus must be invoked seletively.Our desription of Iarus has emphasized the hierar-hial nature of long-term skill memory, but, as it stands,the arhiteture o�ers no aount of this hierarhy's a-quisition. We have made some progress toward induinghierarhial skills from behavior traes (Ihise, Shapiro,& Langley, 2002), but we should also develop methodsthat onstrut them from the agent's own exeution ef-forts. One promising idea involves ahing the results ofeah suessful skill repair into a new higher-level skillthat inludes the repaired and repairing skills as ompo-nents. This approah is similar in spirit to methods forhunking in Soar (Laird et al., 1987), knowledge ompo-sition in early versions of ACT (Anderson, 1983), andmaro-operator formation (e.g., Iba, 1989). However,previous work along these lines has foused on stru-tures that invoke ations in a �xed order, whereas ahedIarus skills would retain their reative nature.As noted earlier, Iarus inorporates ideas from re-inforement learning to revise the value funtions asso-iated with exeuted skills based on disounted reward.The arhiteture diverges from traditional treatments byembedding reward alulations within the agent, ratherthan in the environment. This raises intriguing questionsabout the origin of suh rewards, whih deision theoryhas not addressed, and suggests the radial notion thatthe reward funtions assoiated with Boolean oneptsmight themselves be modi�ed. In this senario, the agentmight start with only a few innate reinforers, whereasmost onepts have neutral a�et. Over time, many ofthese onepts would beome learned reinforers, apa-ble of rewarding behavior even when the innate oneptsare unmathed. We envision a learning mehanism sim-ilar to the one that revises expeted value funtions, butapplied to onepts that our in exeuted skills, ratherthan to the skills themselves.As we have seen, the urrent Iarus an reognizefamiliar situations with its oneptual hierarhy, but fu-ture versions should also reognize and interpret the be-havior of other agents using its skill hierarhy. For ex-ample, when another ar omes up quikly from behindand hanges lanes, it should infer that the other agent ispassing. To this end, we should inorporate ideas fromthe literature on plan understanding, whih addressessimilar problems. However, beause the agent must inferwhat skills another agent is using before they have beenompleted, we annot rely on the dedutive mathingsheme used for onept reognition. Rather, we will re-quire something loser to abdution (e.g., Ng & Mooney,1992), whih uses general knowledge to explain a limitednumber of observations in a more exible manner.

Finally, like most other agent arhitetures, Iaruslaks any episodi memory to store its own previous ex-periene. Knowledge about onept instanes that wereone true and skills that it one exeuted would supportimportant abilities, suh as answering questions aboutpast events. Upon reetion, episodi memory seemslosely related to short-term memory, in that it dealswith spei� instanes of general onepts and skills.We might enode suh memories as variants on short-term literals that inlude time markers to indiate whenthey entered and left the short-term stores. Suh traesshould also inlude average statistis about the rewardsgenerated by onept instanes and those ahieved whenexeuting instantiated skills. The mehanisms responsi-ble for retrieval from episodi memory, and the statusof retrieved traes one they are deposited in short-termmemory, remain open issues for future researh.7. Conluding RemarksIn this paper, we have desribed Iarus, a novel ar-hiteture for intelligent physial agents. Our approahembodies �ve design priniples { that ategorization hasprimay over problem solving and exeution, exeutionhas primay over problem solving, top-level intentionsoriginate within the agent, intelligent behavior is inher-ently value driven, and reward is alulated internallyrather than originating in the environment. These ideasdistinguish our theoretial framework from most earlierarhitetures for ognition.Iarus inludes a long-term memory for onepts,whih are de�ned as logial onjuntions of other on-epts, and another memory for skills, whih are de�nedin terms of onepts and omponent skills. The onepthierarhy supports a reognition proess, whih depositsonept instanes in short-term memory, and reward al-ulation, whih assoiates an a�etive sore with eahinstane. The arhiteture also inludes distint mod-ules for nominating, seleting, exeuting, repairing, andabandoning skill instanes, eah of whih draws on theexpeted value funtions assoiated with the generalizedversions of those skills in long-term memory.Despite the reent extensions we have desribed,Iarus remains an immature arhiteture relative toframeworks like Soar and ACT-R. However, we believethat its value-driven approah to intelligent behavior,along with its other distintive features, will supportfuntionalities that are diÆult to ahieve in these moretraditional approahes. We hope to demonstrate theseabilities in our future work on Iarus agents for drivingand other physial domains.AknowledgementsThis researh was funded in part by Grant NCC-2-1220from NASA Ames Researh Center through the Intelli-gent Systems Program. We thank Stephanie Sage andDavid Niholas for extended disussions that led to manyof the ideas in this paper.
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An Arhiteture for Intelligent Behavior Page 9Table 1: Iarus onepts for the highway driving do-main, omitting the :reward and :weights �elds used toompute reward. Variables start with the symbol ? andnumeri onepts are marked with the symbol #.(in-lane (?ar ?lane)(lane ?lane ?left-line ?right-line)(ar ?ar)(#xdistane ?ar ?left-line ?dleft)(#xdistane ?ar ?right-line ?dright)(< ?dleft 0) (> ?dright 0))(ahead-of (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(#ybak ?ar1 ?bak1)(#yfront ?ar2 ?front2)(> ?bak1 ?front2))(overlaps (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(#yfront ?ar1 ?front1)(#ybak ?ar1 ?bak1)(#yfront ?ar2 ?front2)(> ?front1 ?front2)(> ?front2 ?bak1))(#distane-ahead (?ar1 ?ar2 ?diff)(ahead-of ?ar1 ?ar2)(#ybak ?ar1 ?bak1)(#yfront ?ar2 ?front2)(*bind ?diff (- ?bak1 ?front2)))(faster-than (?ar1 ?ar2)(#speed ?ar1 ?s1)(#speed ?ar2 ?s2)(> ?s1 (+ ?s2 5)))(in-same-lane (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(in-lane ?ar1 ?lane)(in-lane ?ar2 ?lane))(in-different-lane (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(in-lane ?ar1 ?lane)(not (in-lane ?ar2 ?lane)))(overlaps-and-adjaent (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(in-lane ?ar1 ?lane1)(in-lane ?ar2 ?lane2)(adjaent ?lane1 ?lane2)(overlaps ?ar1 ?ar2))(oming-from-behind (?ar1 ?ar2)(ar ?ar1)(ar ?ar2)(in-lane ?ar1 ?lane1)(in-lane ?ar2 ?lane2)(adjaent ?lane1 ?lane2)(faster-than ?ar1 ?ar2)(ahead-of ?ar2 ?ar1))(adjaent (?lane1 ?lane2)(lane ?lane1 ?shared-line ?right-line)(lane ?lane2 ?left-line ?shared-line))(adjaent (?lane1 ?lane2)(lane ?lane1 ?left-line ?shared-line)(lane ?lane2 ?shared-line ?right-line))(lear-for (?lane ?ar)(lane ?lane ?left-line ?right-line)(not (overlaps-and-adjaent ?ar ?other))(not (oming-from-behind ?ar ?other))(not (oming-from-behind ?other ?ar)))

Table 2: An Iarus skill for one ar passing anotherand the subskills it relies upon, omitting the :value and:weights �elds used to ompute expeted values.(pass (?ar1 ?ar2 ?lane):start (ahead-of ?ar2 ?ar1)(in-same-lane ?ar1 ?ar2):objetive (ahead-of ?ar1 ?ar2)(in-same-lane ?ar1 ?ar2):requires (in-lane ?ar2 ?lane)(adjaent ?lane ?to):ordered (speed-and-hange ?ar1 ?ar2 ?lane ?to)(overtake ?ar1 ?ar2 ?lane)(hange-lanes ?ar1 ?to ?lane))(speed-and-hange (?ar1 ?ar2 ?from ?to):start (ahead-of ?ar2 ?ar1)(in-same-lane ?ar1 ?ar2):objetive (muh-faster-than ?ar1 ?ar2)(in-different-lane ?ar1 ?ar2):requires (in-lane ?ar2 ?from)(adjaent ?from ?to):unordered (speed-up-faster-than ?ar1 ?ar2)(hange-lanes ?ar1 ?from ?to))(speed-up-faster-than (?ar1 ?ar2):start (faster-than ?ar2 ?ar1):objetive (faster-than ?ar1 ?ar2):requires ( ):ordered (*aelerate))(hange-lanes (?ar ?from ?to):start (in-lane ?ar ?from):objetive (in-lane ?ar ?to):requires (lane ?from ?shared-line ?right-line)(lane ?to ?left-line ?shared-line)(lear-for ?to ?ar):ordered (*shift-left))(hange-lanes (?ar ?from ?to):start (in-lane ?ar ?from):objetive (in-lane ?ar ?to):requires (lane ?from ?left-line ?shared-line)(lane ?to ?shared-line ?right-line)(lear-for ?to ?ar):ordered ((*shift-right)))(overtake (?ar1 ?ar2 ?lane):start (behind ?ar1 ?ar2)(in-different-lane ?ar1 ?ar2):objetive (ahead-of ?ar1 ?ar2):requires (in-lane ?ar2 ?lane)(faster-than ?x ?y):ordered (*wait))


