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tDevelopers of arti�
ial agents 
ommonly as-sume that we 
an only spe
ify agent behav-ior via the expensive pro
ess of implement-ing new skills. This paper o�ers an alterna-tive expressed by the separation hypothesis:that behavioral di�eren
es among individu-als 
an be 
aptured as distin
t preferen
esover the same set of skills. We test this hy-pothesis in a simulated automotive domainby using reinfor
ement learning to indu
e ve-hi
le 
ontrol poli
ies, given a stru
tured setof driving skills that 
ontains options and auser-supplied reward fun
tion. We show thatqualitatively distin
t reward fun
tions pro-du
e agents with qualitatively distin
t behav-ior over the same set of skills. This leads to anew development metaphor that we 
all `pro-gramming by reward'.1. Motivation and Ba
kgroundIn many domains, humans exhibit 
omplex physi-
al behaviors that let them a

omplish sophisti
atedtasks. Resear
hers have explored two main approa
hesto learning su
h behaviors, ea
h asso
iated with adi�erent 
lass of representational formalisms. Oneparadigm en
odes 
ontrol knowledge as rules or similarstru
tures (e.g., Laird & Rosenbloom, 1990; Sammut,1996) that state 
onditions under whi
h to exe
ute a
-tions. An alternative framework instead spe
i�es somefun
tion that maps state-a
tion pairs onto a numeri
utility (e.g., Watkins & Dayan, 1992), whi
h is thenused to sele
t among a
tions.Both approa
hes have repeatedly demonstrated theirability to learn useful 
ontrol poli
ies a
ross a broadrange of domains, yet ea
h lends itself to expressingdi�erent aspe
ts of intelligent behavior. This idea isbest illustrated by work on game playing, where devel-

opers use rules or other logi
al 
onstraints to spe
ifywhi
h moves are legal but invoke numeri
 evaluationfun
tions to sele
t among them. We 
laim that a sim-ilar division of labor will prove useful in developingpoli
ies for rea
tive 
ontrol, in
luding learning su
hpoli
ies from agent experien
e.We formalize this intuition by stating the separationhypothesis :We 
an e�e
tively 
onstru
t physi
al agentsby en
oding legal behavior in a set of logi
alskills and separately spe
ifying a set of prefer-en
es over those skills 
ast as value fun
tions.This framework seems espe
ially appropriate when onedesires a number of distin
t agents that exhibit a greatvariety of behaviors in the same domain. Further-more, we 
laim that su
h agents 
an automati
allylearn these behaviors from feedba
k signals, meaningthe developer only needs to implement these rewardsignals given a base of shared skills. This approa
hto agent design { whi
h we 
all programming by re-ward { should prove useful in 
onstru
ting syntheti
agents for intera
tive entertainment, personalized ser-vi
es, and many other tasks.In the following pages, we report one instan
e of thisgeneral framework, whi
h we have 
ast in an ar
hi-te
ture for physi
al agents 
alled I
arus. We beginby des
ribing the ar
hite
ture's logi
al formalism foren
oding hierar
hi
al skills, taking examples from thetask of driving an automobile. We then turn to thevalue fun
tions that I
arus uses to sele
t among ap-pli
able skills and its algorithm for using delayed re-wards to update these fun
tions. After this, we presentexperimental studies designed to test our hypothesisthat providing su
h a system with di�erent rewards
an produ
e distin
tive yet viable poli
ies. Finally, weexamine some other approa
hes to learning 
omplexskills and suggest dire
tions for additional resear
h onthis topi
.
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tFigure 1. The stru
ture of I
arus plans.2. The I
arus LanguageI
arus is a language for spe
ifying the behavior ofarti�
ial agents that learn. Its stru
ture is dually mo-tivated by the desire to build pra
ti
al agent appli
a-tions and the desire to support poli
y learning in a
omputationally eÆ
ient way. We responded to thesegoals by supplying I
arus with powerful representa-tions that map 
leanly into the Markov De
ision Pro-
ess model, whi
h provides a 
on
eptual framework fordeveloping learning algorithms. In parti
ular, we 
astI
arus as a rea
tive 
omputing language.2.1 A Rea
tive FormalismRea
tive languages are tools for spe
ifying highly 
on-tingent agent behavior. They supply a representationfor expressing plans, together with an interpreter forevaluating plans that employs a repetitive sense-think-a
t loop. This repetition provides adaptive response;it lets an agent retrieve a relevant a
tion even if theworld 
hanges from one interpreter 
y
le to the next.I
arus is an extremely rea
tive language, as its in-terpreter's view of the world 
an 
hange from onere
ognizable state to any other in exa
tly one timestep. The ar
hite
ture shares the logi
al orientation ofteleorea
tive trees (Nilsson, 1994) and universal plans(S
hoppers, 1987), but adds vo
abulary for express-ing hierar
hi
al intent, as well as tools for problem de-
omposition found in more general-purpose languages.For example, it supports fun
tion 
alls, Prolog-like pa-rameter passing, pattern mat
hing on fa
ts, optionalparameters, and re
ursion.An I
arus program 
ontains up to three elements: anobje
tive, a set of requirements, and a set of alternatemeans, as illustrated in Figure 1. Ea
h of these 
an beinstantiated by further I
arus plans, 
reating a log-i
al hierar
hy that terminates with 
alls to primitivea
tions or sensors. I
arus evaluates these �elds ina situation-dependent order, beginning with the :ob-je
tive �eld. If the obje
tive is already true in theworld, evaluation su

eeds and nothing further needs

Table 1. The top level of an I
arus freeway-driving plan.Drive ( ):obje
tive[ *not* (Emergen
y-brake( ))*not* (Avoid-trouble-ahead( ))Get-to-target-speed( )*not* (Avoid-trouble-behind( ))Cruise( ) ℄to be done. If it is false, the interpreter examines the:requires �eld to determine if the pre
onditions for a
-tion have been met. If so, evaluation progresses to the:means �eld, whi
h 
ontains alternate methods (prim-itive a
tions or subplans) for a

omplishing the obje
-tive. The :means �eld is the lo
us of all value-based
hoi
e, sin
e the obje
tives and requirements 
ontainno options. To support this 
hoi
e, the interpreter as-so
iates a value estimate with ea
h plan and learns tosele
t the plan with the largest expe
ted reward.The ar
hite
ture also supports several unusual fea-tures. It allows the exe
ution of a pro
ess to be a goaland it embeds a sequen
e primitive within a rea
tiveinterpreter (where rea
tion within a sequential planis more 
ommon). Moreover, it supports 
ontrol overplan expansion; I
arus 
an 
ommit to a subplan be-fore investigating it, or it 
an investigate subplans and
hoose among the a
tions returned. Shapiro (2001)provides a more 
omplete des
ription of the language.2.2 An I
arus Plan for DrivingTable 1 presents an ex
erpt from an I
arus plan forfreeway driving. The top-level routine, Drive, 
on-tains an ordered set of obje
tives implemented as fur-ther subplans. The �rst 
lause de�nes a rea
tion toan impending 
ollision. The se
ond spe
i�es a planfor rea
ting to trouble ahead, de�ned as a 
ar trav-eling slower than the agent in the agent's own lane.This subplan 
ontains options, as shown in Table 2.Here the agent 
an move one lane to the left, moveright, slow down, or 
ruise without 
hanging speed orlane. The third 
lause de�nes a goal-driven subplan(not shown) for bringing the agent to its target speed.The fourth de�nes options for rea
ting to a faster 
arbehind; it lets the agent move over or ignore the ve-hi
le and 
ruise. The �nal 
lause leads the agent toCruise in its 
urrent lane and at its 
urrent speed.I
arus pro
esses the Drive program repetitively,starting with its �rst 
lause on every exe
ution 
y
le.It performs a depth-�rst, left to right walk of the 
all-ing tree, using a three-valued semanti
s in whi
h everystatement in the language evaluates to True, False, oran a
tion. `True' means the statement was true inthe world, `False' means the plan did not apply, and



Table 2. An I
arus plan with alternate subplans.Avoid-trouble-ahead ( ):requires[ bind(?
, 
ar-ahead-
enter( ))velo
ity( ) > velo
ity(?
)bind(?tti, time-to-impa
t( ))bind(?rd, distan
e-ahead( ))bind(?rt, target-speed( ) � velo
ity( ))bind(?art, abs(?rt)) ℄:means[ safe-
ruise(?tti, ?rd, ?art)safe-to-slow-down(?tti, ?rd, ?rt)move-right(?art)move-left(?art) ℄a returned a
tion identi�es 
ode for 
ontrolling a
tu-ators that addresses the obje
tives of the plan. Sin
ea :means 
lause 
an produ
e multiple a
tions, the in-terpreter sele
ts and returns the best one. It passesthe a
tion returned from Drive to an external exe
u-tion system, whi
h applies it in the world. Thus, thepurpose of an I
arus program is to �nd a
tion.This repetitive evaluation pro
ess lets the system re-turn an a
tion from an entirely di�erent portion ofDrive on ea
h su

essive iteration. For example, theagent might slam on the brakes on 
y
le 1, but 
hangelanes on 
y
le 2 to avoid the (still) slower 
ar in front,after the �rst 
lause returns True. Assuming the newlane is 
lear (the �rst two 
lauses return True), theagent might speed up in servi
e of Get-to-target-speedon 
y
les 3 to 5, and then sele
t the �fth 
lause, Cruise,until some other obsta
le appears.Whenever a plan o�ers a 
hoi
e (e.g., in the :means�eld of Avoid-trouble-ahead), the agent needs amethod for sele
ting the right option to pursue.I
arus provides this 
apability by asso
iating a valueestimate with ea
h plan. This number represents theexpe
ted future dis
ounted reward stream for 
hoos-ing a primitive a
tion or subplan on the 
urrent exe-
ution 
y
le and following the poli
y (being learned)thereafter. I
arus 
omputes this value using a linearfun
tion of 
urrent observations. For example, Avoid-trouble-ahead binds several parameters solely for thepurpose of value estimation; the data are not requiredto exe
ute any of the routines in its :means �eld.This approa
h lets a plan's value depend upon its 
on-text. For example, the future of `de
elerate' is verydi�erent if the 
ar in front is 
lose or far. However,we should not for
e I
arus programmers to spe
-ify all of the information required to estimate valuewhen writing individual fun
tions, so the system inher-its 
ontext-setting parameters down the 
alling tree.Thus, Avoid-trouble-ahead measures the distan
e tothe 
ar in front, and I
arus passes that parameter to
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BrakeAvoid troubleDriveState, a
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Figure 2. A 
omparison of SARSA and SHARSHA.the de
elerate a
tion several levels deeper in the 
all-ing tree. The programmer writes 
ode in the usualfashion, without 
on
ern for these impli
it data.2.3 The SHARSHA AlgorithmSHARSHA is a reinfor
ement learning method matedto I
arus plans. It is a model-free, on-line te
hniquethat updates its 
ontrol poli
y by exploring a single,unbounded traje
tory of states and a
tions. SHARSHA(for State Hierar
hy, A
tion, Reward, State Hierar-
hy, A
tion) adds hierar
hi
al intent to the well-knownSARSA algorithm (for State, A
tion, Reward, State,A
tion).SARSA operates on state-a
tion pairs, learning an es-timate for the value of taking a given a
tion in a givenstate by sampling its future traje
tory. SARSA repeatsfour steps: (1) sele
t and apply an a
tion in the 
ur-rent state; (2) measure the in-period reward; (3) ob-serve the subsequent state and 
ommit to an a
tion inthat state; and (4) update the estimate for the startingstate-a
tion pair, using its 
urrent value, the 
urrentreward, and the estimate asso
iated with the destina-tion pair. In other words, SARSA bootstraps; it up-dates value estimates with other estimates, groundingthe pro
ess in a real reward signal. Singh et al. (2000)have shown that SARSA 
onverges to the optimal pol-i
y and 
orre
t values for the future dis
ounted rewardstream under a 
ommon set of Markov assumptions.SHARSHA adapts SARSA to plans with a hierar
hi
almodel of intent. In parti
ular, it operates on sta
ks ofstate-a
tion pairs, where ea
h pair 
orresponds to anI
arus fun
tion (en
oding a 
ourse of a
tion), as de-pi
ted in Figure 2. For example, at time 1 the I
arusagent a

elerates to rea
h its target speed in order todrive, while at time 2 it brakes in order to avoid troubleas part of the same driving skill. Our method employsthe SARSA inner loop with slight modi�
ations: whereSARSA observes the 
urrent state, we observe the 
all-ing hierar
hy, and where SARSA updates the 
urrentstate, we update the estimates for ea
h fun
tion inthe 
alling sta
k. The se
ond di�eren
e is that SHAR-SHA's update operator inputs the 
urrent estimate,



the reward signal, and the estimate asso
iated withthe primitive a
tion on the next 
y
le. This primitive
arries the best estimate be
ause it utilizes the moreinformed pi
ture of world state built while evaluatingthe I
arus program.Our implementation of SHARSHA in
ludes several ad-ditional features. It employs eligibility lists to speedlearning, it normalizes sensor values at run time (sin
ethe update rule 
an otherwise diverge), it supportsmultiple exploration poli
ies, and it employs linear ap-proximations for value fun
tions in pla
e of tabularforms. SHARSHA learns the 
oeÆ
ients of these lin-ear mappings from delayed reward. We have provenSHARSHA's 
onvergen
e properties under a 
ommonset of Markov assumptions (Shapiro, 2001).3. An Experiment with Programmingby RewardNow that we have reviewed the I
arus ar
hite
ture,we 
an utilize it to experimentally evaluate the separa-tion hypothesis. Here we fo
us on the task of freewaydriving, in whi
h human drivers exhibit 
onsiderablevariation. Again, we hold that one 
an e�e
tively 
ap-ture this variability in syntheti
 agents by de
ompos-ing behavior into logi
al skills, whi
h are shared a
rossagents, and value-
oded preferen
es, in whi
h they dif-fer. Moreover, su
h agents 
an learn these value fun
-tions from delayed reward, using their shared skills asba
kground knowledge.We evaluate the separation hypothesis in our test do-main by 
ondu
ting experiments with programming byreward. We start with an intuitively reasonable and
onstrained set of skills for the domain (thus distin-guishing our approa
h from traditional reinfor
ementlearning). Next, we de�ne a set of distin
t reward fun
-tions and use them as the target of learning. If thisprodu
es diverse behavior over the same skill set, wehave support for the hypothesis. However, if we mustpermute the skills to alter behavior, the hypothesis ispartially dis
on�rmed. The ideal result in the drivingdomain would be to show 
overage over 
ommon drivertypes, in
luding the ability to mimi
 extreme observedbehaviors like aggressive driving. The remainder of these
tion reports on experiments of this form that uti-lize the I
arus skills outlined in Tables 1 and 2 to
onstrain behavior.3.1 The Driving EnvironmentWe used a freeway driving domain to 
ondu
t empir-i
al tests. This environment 
onsists of a simulator(written in C) together with an agent program (writ-

ten in I
arus) that pilots one of several hundred sim-ulated 
ars. The 
ars live on an endless loop freewaythat 
ontains three lanes, but no entran
es or exits.Ea
h 
ar has a target velo
ity drawn from a normaldistribution with � = 60 mph and � = 8 mph. Withthe ex
eption of the one `smart' 
ar that is 
apable oflearning, every vehi
le in the simulation determines itsmaneuvers by one of two �xed situation-a
tion maps:all of them will 
hange lanes to maintain their tar-get speed, but roughly half will also move over to leta faster 
ar pass. The I
arus program 
ontrollingthe smart 
ar 
an sense its own target speed (�xed at62 mph), the presen
e and relative velo
ity of six sur-rounding 
ars, the distan
e to the 
ar ahead 
enter andbehind 
enter, and whether it 
an 
hange lanes to theleft or right without hitting another vehi
le. There aresix primitive a
tions: speed up by two mph, slow downby two, 
ruise at 
urrent speed, 
hange lane to the left,
hange lane to the right, and emergen
y brake.3.2 Agent-held Reward Fun
tionsIn order to test the model of programming by reward,we de�ned a set of qualitatively di�erent reward fun
-tions. All of them are linear in their feature values,and Table 3 asso
iates their features with mnemoni
names. The airport driver is motivated solely by thedesire to rea
h the airport on time; it be
omes lesshappy as its velo
ity deviates from target speed. Thesafe driver wants to avoid 
ollisions; its reward fun
-tion penalizes small times to impa
t with 
ars in frontand 
ars behind. The shorter the time to impa
t, thelarger the penalty, with times greater than 100 se
-onds having no reward. The gold�sh driver has animaginary �shbowl as luggage, and does not want ma-neuvers to upend the �sh. Alternatively, we 
an viewthe gold�sh driver as a bit queasy; its reward fun
tionpenalizes all forms of maneuver. The re
kless teenageris out for thrills; it garners reward for near misses and
ares about maintaining its 
ruising speed. The 
rowdlover and the 
rowd hater desire the expe
ted things;their reward in
reases (or de
reases) with the num-ber of surrounding 
ars. I
arus 
al
ulates the rewardon
e every exe
ution 
y
le, and the learning systemseeks to a
quire the greatest reward stream over time.3.3 A Pro�le of Learned BehaviorWe used ea
h of the above reward fun
tions to developagent personalities by employing them as the targetof poli
y learning. We 
ondu
ted ten 32,000-iterationtraining runs for ea
h driver and averaged results overthe �nal 20,000 iterations of ea
h run. In all 
ases, weinitialized the driver's velo
ity to a random numberbetween zero and its target speed (62 mph), and all of



Table 3. Agent-held reward fun
tions in terms of impa
ttime ahead (a) and behind (b), deviation from target speed(t), slowing down (d), speeding up (u), 
hanging lanes (l),and nearby 
ars (
).airport safe gold�sh re
kless 
rowd 
rowddriver driver driver teenager lover hater(a) + �(b) + �(t) � �(d) �(u) �(l) �(
) + �its value-estimation fun
tions to zero. Figure 3 fo
useson behavioral measures, using the safe driver's s
oreas the unit quantity. We analyze the maximum andminimum values in ea
h 
ategory.The �rst measure is the absolute value of the agent'sdi�eren
e from its target speed. The fa
t that the air-port driver has the lowest s
ore is not surprising, sin
eits reward fun
tion dire
tly penalizes nonzero values.However, the safe driver shows the highest di�eren
efrom target speed. It is not motivated (positively ornegatively) by this quantity, but apparently it readilyadjusts its velo
ity to avoid potential 
ollisions (i.e.,short times to impa
t).The safe driver also shows the largest following dis-tan
e. This makes intuitive sense, sin
e safe driversknow that tailgating produ
es potential 
ollisions. (Ifthe 
ar in front slows down, the safe driver inheritsa signi�
ant penalty.) In 
ontrast, the gold�sh driverhas the shortest following distan
e, by a small mar-gin. We explain this observation by a 
ruise 
ontrole�e
t: drivers who resist velo
ity 
hanges will tend to
reep up on the 
ar in front. Both the airport andgold�sh drivers 
ontain this bias, but note that noneof the agents assign dire
t value to following distan
ein their reward fun
tions.The airport driver displays the highest number of lane
hanges. This makes sense be
ause it must maneuverto maintain its target speed. The gold�sh driver showsthe fewest, as it is 
entrally motivated not to makesu
h 
hanges. The speed 
hange results are similar:the airport driver is dire
tly biased against deviatingfrom target speed, while the safe driver freely adjustsits speed to avoid potential impa
ts.Finally, the gold�sh driver performs the fewest 
uto�a
tions, de�ned as a lane 
hange in front of a fastervehi
le, as it is motivated to avoid all maneuvers. In
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Figure 3. Learned behaviors in low-density traÆ
.
ontrast, the re
kless driver a
tively seeks near 
olli-sions, as they 
ontribute positive terms to its reward.Note that the driving program prevents the re
klessteenager from simply 
olliding with the 
ar in front; itsopportunity to learn is 
on�ned to an allowable realm.Said di�erently, the agent's skills ensure reasonable be-havior. Its reward fun
tion is irrelevant whenever thebehavior is determined, and relevant only when 
hoi
eis allowed. This design frees us to 
onstru
t rewardfun
tions in an un
onstrained way.3.4 Learned Lane Preferen
esFigure 4 illustrates an emergent property of program-ming by reward. We plot the agent's o

upan
y inthe di�erent freeway lanes, and note that the 
rowdlover evolves a slight preferen
e for the middle lane,while the 
rowd hater generates a strong preferen
efor the right hand lane. These preferen
es were neveren
oded in the reward fun
tions, although the resultsmake sense. A 
ar in the 
enter lane 
an en
ounterup to six adja
ent vehi
les (good for a 
rowd lover),while one in the right or left lane 
an have at mostfour neighbors. It seems 
lear that the 
rowd haterwill avoid the 
enter lane, but not why it prefers theright lane to the left. The �xed 
ontrol poli
ies of theother 
ars do a
t to sort vehi
les into lanes by speed.Perhaps there is a smaller di�eren
e between the aver-age speed in the right and 
enter lanes than betweenleft and 
enter. If so, the 
rowd hater will en
ounterfewer 
ars per unit time if it gravitates to the right.3.5 Driver Behavior A
ross Two DomainsIt is 
lear that we 
an generate distin
t behavior viaprogramming by reward, but we would also like toknow if that behavior is in some sense robust to en-vironmental 
hange. We investigated this question by
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Figure 4. Lane preferen
es learned by two di�erent drivers.training the same agents in a high-density vs. a low-density traÆ
 s
enario. Figure 5 provides the results.Here, we take the performan
e of the safe driver inlow-density traÆ
 as the unit quantity, so that we 
an
ompare behavior both within and a
ross domains.Our �rst observation is that the absolute magnitudesof the metri
s di�er as we move between s
enarios. Itis generally harder to maintain target speed in high-density traÆ
; following distan
es shrink, it be
omesmore diÆ
ult to 
hange lanes, and agents must ad-just their speed more often in order to respond toother traÆ
. These 
hanges are largely for
ed uponthe agents by in
reased traÆ
 density.A more striking observation is that the behavioralpro�les are beautifully preserved a
ross domains. Al-though the number of instan
es of any given behavior
hanges, the shapes of the 
urves are virtually identi-
al in low and high-density traÆ
. There are only twoshifts in relative order, for the maximum number oflane 
hanges and minimum number of speed 
hanges.This 
onstan
y of behavior provides eviden
e that pro-gramming by reward shapes agent behavior in a pre-di
table way, and that it 
an be used in a developmentmodel where agents are trained in a test domain anddeployed in an appli
ation environment.3.6 Sear
hing the Spa
e of Reward Fun
tionsNow that we have examined the relation between areward fun
tion and the behavior it generates, it isworth asking the inverse question. Can we generate aspe
i�
, prede�ned behavior via programming by re-ward? We pursued this question by attempting to du-pli
ate (in a qualitative sense) the behavior of a 
ol-league who is a parti
ularly aggressive driver. We didthis by sear
hing a
ross the spa
e of possible rewardfun
tions, seeking to minimize the agent's following
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Figure 5. Learned behavior in two driving domains.distan
e while simultaneously maximizing the numberof 
uto� maneuvers. This was an informal pro
ess,where we hand tuned the 
oeÆ
ients of a linear rewardfun
tion that measured time to impa
t ahead/behind,distan
e ahead/behind, 
uto� events, own speed, andthe relative speed of 
ars in adja
ent lanes.The results were both positive and negative. On thepositive side, we su

eeded in generating a ten-fold in-
rease in the number of 
uto� maneuvers performed bythe `road rage driver' relative to the re
kless teenager,as shown in Figure 6. However, we 
ould do so only byintrodu
ing a slight modi�
ation to the shared drivingskill; we gave both drivers the option to 
hange lanesin the absen
e of a slower 
ar in front or a faster 
arbehind. The original skill la
ked the 
exibility to sup-port the desired (extremist) behavior.This experiment also generated an interesting strategi
lesson for programming by reward. We dis
overed thatit was far more su

essful to penalize the road ragedriver as it was being passed by other 
ars, rather thanto reward the agent when it 
ut o� other vehi
les. Thereason is that it there are more opportunities to learnfrom persistent 
onditions than momentary events.4. Related Work on Control LearningEarlier we 
ontrasted our framework for 
ontrol learn-ing with other approa
hes, but the previous work onthis topi
 and its di�eren
es from our own deserves amore detailed dis
ussion. Here we 
onsider four dis-tin
t paradigms for learning 
ontrol poli
ies from ex-perien
e that have appeared in the literature.
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Figure 6. Using a reward fun
tion to generate road rage.One body of resear
h fo
uses on ar
hite
tures for in-telligent agents, with two well-known examples be-ing Soar (Laird & Rosenbloom, 1990) and Prodigy(Minton, 1990). These systems represent knowledgeabout legal a
tions as produ
tion rules or logi
al op-erators, whi
h they utilize during problem solving andexe
ution. Be
ause this knowledge predi
ts the e�e
tsof operators, they 
an learn from the results of problemsolving, rather than relying, as does I
arus, on feed-ba
k from the environment. Both ar
hite
tures learnpreferen
es over a
tions, states, and goals, but theyen
ode these as logi
al rules, in 
ontrast with I
arus'use of utility fun
tions. The ACT-R ar
hite
ture (An-derson, 1993) asso
iates strengths with learned pro-du
tion rules based on their su

ess in a
hieving goals,but these spe
ify a s
alar value rather than a numeri
fun
tion of environmental features.An alternative framework learns 
ontrol poli
ies fromobservations of another agent's behavior by transform-ing tra
es into supervised training 
ases. Su
h behav-ioral 
loning typi
ally generates knowledge in the formof de
ision trees or logi
al rules (e.g., Sammut, 1996;Urban
i
 & Bratko, 1994), though other en
odings arepossible (Anderson, Draper, & Peterson, 2000). Un-like I
arus, these systems typi
ally a
quire 
ontrolknowledge from s
rat
h, but one 
ould utilize high-level plans to parse a behavioral tra
e and thus 
on-strain the 
loning pro
ess. More broadly, the separa-tion hypothesis suggests that behavioral 
loning 
anpro
eed in two steps, where the �rst learns the stru
-ture of shared skills from observations, and the se
ondlearns numeri
 value fun
tions that 
hara
terize indi-vidual behavior. Some work on adaptive interfa
es 
anindu
e su
h fun
tions from user 
hoi
es.A larger body of resear
h emphasizes learning poli
iesfrom delayed external rewards. Within this frame-work, some methods represent 
ontrol knowledge aslogi
al rules that state the 
onditions under whi
h par-

ti
ular a
tions are desirable (e.g., Grefenstette, Ram-sey, & S
hultz, 1990). Others a
hieve the same ef-fe
t with di�erent formalisms like multilayer neuralnetworks (e.g., Moriarty & Langley, 1998). In thisparadigm, learning involves a sear
h through the spa
eof poli
ies, using geneti
 or other methods, guided bythe rewards that alternative 
andidates re
eive fromthe environment. The sear
h pro
ess typi
ally startsfrom s
rat
h, but, 
learly, it 
ould be aided by start-ing from skills that spe
ify legal a
tions. However, thisframework does not lend itself to a division betweenlegal skills and preferen
es stated as utility fun
tions.An alternative approa
h to learning from delayed re-wards en
odes poli
ies as utility fun
tions, an idea thatplays a 
entral role in I
arus. These fun
tions aretypi
ally stored in a table that asso
iates an estimatedvalue with ea
h state-a
tion pair, but some work in-stead uses approximations. This mapping is learnedthrough methods like Q learning (Watkins & Dayan,1992), whi
h update the estimated value of a state-a
tion pair based on the dis
ounted reward that it pro-du
es. Most resear
h on estimating value fun
tions inthis manner emphasizes learning from s
rat
h, thoughsome work on hierar
hi
al reinfor
ement learning (e.g.,Andre & Russell, 2000; Dietteri
h, 2000; Parr & Rus-sell, 1998; Sutton et al., 1998) provides the learnerwith ba
kground knowledge. Our approa
h �ts 
om-fortably within this framework, but the notion of pro-gramming by reward distinguishes it from these e�orts.In summary, our approa
h to representing, using andlearning 
ontrol poli
ies has many 
ommon featureswith other work on this topi
. However, I
arus dif-fers from previous systems in its 
lear separation of
ontrol knowledge into logi
al skills and numeri
 util-ity fun
tions, whi
h we 
laim supports 
onsiderablevariety in agent behavior while keeping it within do-main 
onstraints. This division in turn lets us programagents by reward to exhibit quite di�erent behaviors.5. Con
lusionsOur experiments have shown that we 
an produ
equalitatively distin
t agents via programming by re-ward. That is, we 
an 
onstru
t one set of skills, de�neindividual agents by en
oding suitable reward fun
-tions, and train those agents by letting them learnfrom experien
e. The reward fun
tions are easy to
onstru
t and their 
ontent is un
onstrained.The experimental results provide eviden
e in supportof the separation hypothesis in the 
ontext of our traf-�
 domain. If it holds more generally, then skillsand value-en
oded preferen
es may be de
oupled suÆ-
iently to enable programming by reward in pra
ti
al



appli
ations. If so, then we 
an 
reate entire familiesof agents in these domains without writing new skills.This is important be
ause skill development is time
onsuming and diÆ
ult work.Although this paper emphasized the use of rewardfun
tions in a programming metaphor, we also de-signed a reward fun
tion to a

omplish a spe
i�
 ob-je
tive. This required some sear
h, but more dire
tmethods are possible. In parti
ular, we have shownelsewhere (Shapiro, 2001) that one 
an always alignan agent's reward fun
tion with human utility, su
hthat the agent will do the best job possible for thatperson as a byprodu
t of learning to maximize its ownreward. This is an open area for future resear
h.In summary, the I
arus ar
hite
ture and the method-ology of programming by reward appear to provide aneÆ
ient means of en
oding a diverse range of desiredbehaviors. The approa
h merits an in-depth examina-tion in a variety of domains, in
luding 
onversationalagents, 
hara
ters in 
omputer games, and householdrobots whose personalities are tailored to their owners.A
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