
Separating Skills from Preferene:Using Learning to Program by RewardDaniel Shapiro dgs�stanford.eduPat Langley langley�isle.orgInstitute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USAAbstratDevelopers of arti�ial agents ommonly as-sume that we an only speify agent behav-ior via the expensive proess of implement-ing new skills. This paper o�ers an alterna-tive expressed by the separation hypothesis:that behavioral di�erenes among individu-als an be aptured as distint preferenesover the same set of skills. We test this hy-pothesis in a simulated automotive domainby using reinforement learning to indue ve-hile ontrol poliies, given a strutured setof driving skills that ontains options and auser-supplied reward funtion. We show thatqualitatively distint reward funtions pro-due agents with qualitatively distint behav-ior over the same set of skills. This leads to anew development metaphor that we all `pro-gramming by reward'.1. Motivation and BakgroundIn many domains, humans exhibit omplex physi-al behaviors that let them aomplish sophistiatedtasks. Researhers have explored two main approahesto learning suh behaviors, eah assoiated with adi�erent lass of representational formalisms. Oneparadigm enodes ontrol knowledge as rules or similarstrutures (e.g., Laird & Rosenbloom, 1990; Sammut,1996) that state onditions under whih to exeute a-tions. An alternative framework instead spei�es somefuntion that maps state-ation pairs onto a numeriutility (e.g., Watkins & Dayan, 1992), whih is thenused to selet among ations.Both approahes have repeatedly demonstrated theirability to learn useful ontrol poliies aross a broadrange of domains, yet eah lends itself to expressingdi�erent aspets of intelligent behavior. This idea isbest illustrated by work on game playing, where devel-

opers use rules or other logial onstraints to speifywhih moves are legal but invoke numeri evaluationfuntions to selet among them. We laim that a sim-ilar division of labor will prove useful in developingpoliies for reative ontrol, inluding learning suhpoliies from agent experiene.We formalize this intuition by stating the separationhypothesis :We an e�etively onstrut physial agentsby enoding legal behavior in a set of logialskills and separately speifying a set of prefer-enes over those skills ast as value funtions.This framework seems espeially appropriate when onedesires a number of distint agents that exhibit a greatvariety of behaviors in the same domain. Further-more, we laim that suh agents an automatiallylearn these behaviors from feedbak signals, meaningthe developer only needs to implement these rewardsignals given a base of shared skills. This approahto agent design { whih we all programming by re-ward { should prove useful in onstruting synthetiagents for interative entertainment, personalized ser-vies, and many other tasks.In the following pages, we report one instane of thisgeneral framework, whih we have ast in an arhi-teture for physial agents alled Iarus. We beginby desribing the arhiteture's logial formalism forenoding hierarhial skills, taking examples from thetask of driving an automobile. We then turn to thevalue funtions that Iarus uses to selet among ap-pliable skills and its algorithm for using delayed re-wards to update these funtions. After this, we presentexperimental studies designed to test our hypothesisthat providing suh a system with di�erent rewardsan produe distintive yet viable poliies. Finally, weexamine some other approahes to learning omplexskills and suggest diretions for additional researh onthis topi.

Requirements
Objetives MeansMeans
'
&

$
%imm ()World����Sense=)(=AtFigure 1. The struture of Iarus plans.2. The Iarus LanguageIarus is a language for speifying the behavior ofarti�ial agents that learn. Its struture is dually mo-tivated by the desire to build pratial agent applia-tions and the desire to support poliy learning in aomputationally eÆient way. We responded to thesegoals by supplying Iarus with powerful representa-tions that map leanly into the Markov Deision Pro-ess model, whih provides a oneptual framework fordeveloping learning algorithms. In partiular, we astIarus as a reative omputing language.2.1 A Reative FormalismReative languages are tools for speifying highly on-tingent agent behavior. They supply a representationfor expressing plans, together with an interpreter forevaluating plans that employs a repetitive sense-think-at loop. This repetition provides adaptive response;it lets an agent retrieve a relevant ation even if theworld hanges from one interpreter yle to the next.Iarus is an extremely reative language, as its in-terpreter's view of the world an hange from onereognizable state to any other in exatly one timestep. The arhiteture shares the logial orientation ofteleoreative trees (Nilsson, 1994) and universal plans(Shoppers, 1987), but adds voabulary for express-ing hierarhial intent, as well as tools for problem de-omposition found in more general-purpose languages.For example, it supports funtion alls, Prolog-like pa-rameter passing, pattern mathing on fats, optionalparameters, and reursion.An Iarus program ontains up to three elements: anobjetive, a set of requirements, and a set of alternatemeans, as illustrated in Figure 1. Eah of these an beinstantiated by further Iarus plans, reating a log-ial hierarhy that terminates with alls to primitiveations or sensors. Iarus evaluates these �elds ina situation-dependent order, beginning with the :ob-jetive �eld. If the objetive is already true in theworld, evaluation sueeds and nothing further needs

Table 1. The top level of an Iarus freeway-driving plan.Drive ():objetive[*not* (Emergeny-brake())*not* (Avoid-trouble-ahead())Get-to-target-speed()*not* (Avoid-trouble-behind())Cruise() ℄to be done. If it is false, the interpreter examines the:requires �eld to determine if the preonditions for a-tion have been met. If so, evaluation progresses to the:means �eld, whih ontains alternate methods (prim-itive ations or subplans) for aomplishing the obje-tive. The :means �eld is the lous of all value-basedhoie, sine the objetives and requirements ontainno options. To support this hoie, the interpreter as-soiates a value estimate with eah plan and learns toselet the plan with the largest expeted reward.The arhiteture also supports several unusual fea-tures. It allows the exeution of a proess to be a goaland it embeds a sequene primitive within a reativeinterpreter (where reation within a sequential planis more ommon). Moreover, it supports ontrol overplan expansion; Iarus an ommit to a subplan be-fore investigating it, or it an investigate subplans andhoose among the ations returned. Shapiro (2001)provides a more omplete desription of the language.2.2 An Iarus Plan for DrivingTable 1 presents an exerpt from an Iarus plan forfreeway driving. The top-level routine, Drive, on-tains an ordered set of objetives implemented as fur-ther subplans. The �rst lause de�nes a reation toan impending ollision. The seond spei�es a planfor reating to trouble ahead, de�ned as a ar trav-eling slower than the agent in the agent's own lane.This subplan ontains options, as shown in Table 2.Here the agent an move one lane to the left, moveright, slow down, or ruise without hanging speed orlane. The third lause de�nes a goal-driven subplan(not shown) for bringing the agent to its target speed.The fourth de�nes options for reating to a faster arbehind; it lets the agent move over or ignore the ve-hile and ruise. The �nal lause leads the agent toCruise in its urrent lane and at its urrent speed.Iarus proesses the Drive program repetitively,starting with its �rst lause on every exeution yle.It performs a depth-�rst, left to right walk of the all-ing tree, using a three-valued semantis in whih everystatement in the language evaluates to True, False, oran ation. `True' means the statement was true inthe world, `False' means the plan did not apply, and

Table 2. An Iarus plan with alternate subplans.Avoid-trouble-ahead ():requires[bind(?, ar-ahead-enter())veloity() > veloity(?)bind(?tti, time-to-impat())bind(?rd, distane-ahead())bind(?rt, target-speed() � veloity())bind(?art, abs(?rt)) ℄:means[safe-ruise(?tti, ?rd, ?art)safe-to-slow-down(?tti, ?rd, ?rt)move-right(?art)move-left(?art) ℄a returned ation identi�es ode for ontrolling atu-ators that addresses the objetives of the plan. Sinea :means lause an produe multiple ations, the in-terpreter selets and returns the best one. It passesthe ation returned from Drive to an external exeu-tion system, whih applies it in the world. Thus, thepurpose of an Iarus program is to �nd ation.This repetitive evaluation proess lets the system re-turn an ation from an entirely di�erent portion ofDrive on eah suessive iteration. For example, theagent might slam on the brakes on yle 1, but hangelanes on yle 2 to avoid the (still) slower ar in front,after the �rst lause returns True. Assuming the newlane is lear (the �rst two lauses return True), theagent might speed up in servie of Get-to-target-speedon yles 3 to 5, and then selet the �fth lause, Cruise,until some other obstale appears.Whenever a plan o�ers a hoie (e.g., in the :means�eld of Avoid-trouble-ahead), the agent needs amethod for seleting the right option to pursue.Iarus provides this apability by assoiating a valueestimate with eah plan. This number represents theexpeted future disounted reward stream for hoos-ing a primitive ation or subplan on the urrent exe-ution yle and following the poliy (being learned)thereafter. Iarus omputes this value using a linearfuntion of urrent observations. For example, Avoid-trouble-ahead binds several parameters solely for thepurpose of value estimation; the data are not requiredto exeute any of the routines in its :means �eld.This approah lets a plan's value depend upon its on-text. For example, the future of `deelerate' is verydi�erent if the ar in front is lose or far. However,we should not fore Iarus programmers to spe-ify all of the information required to estimate valuewhen writing individual funtions, so the system inher-its ontext-setting parameters down the alling tree.Thus, Avoid-trouble-ahead measures the distane tothe ar in front, and Iarus passes that parameter to

SHARSHASARSA
AelerateGet to targetDriveState, ation =)R(t)

=)R(t)
BrakeAvoid troubleDriveState, ation

Figure 2. A omparison of SARSA and SHARSHA.the deelerate ation several levels deeper in the all-ing tree. The programmer writes ode in the usualfashion, without onern for these impliit data.2.3 The SHARSHA AlgorithmSHARSHA is a reinforement learning method matedto Iarus plans. It is a model-free, on-line tehniquethat updates its ontrol poliy by exploring a single,unbounded trajetory of states and ations. SHARSHA(for State Hierarhy, Ation, Reward, State Hierar-hy, Ation) adds hierarhial intent to the well-knownSARSA algorithm (for State, Ation, Reward, State,Ation).SARSA operates on state-ation pairs, learning an es-timate for the value of taking a given ation in a givenstate by sampling its future trajetory. SARSA repeatsfour steps: (1) selet and apply an ation in the ur-rent state; (2) measure the in-period reward; (3) ob-serve the subsequent state and ommit to an ation inthat state; and (4) update the estimate for the startingstate-ation pair, using its urrent value, the urrentreward, and the estimate assoiated with the destina-tion pair. In other words, SARSA bootstraps; it up-dates value estimates with other estimates, groundingthe proess in a real reward signal. Singh et al. (2000)have shown that SARSA onverges to the optimal pol-iy and orret values for the future disounted rewardstream under a ommon set of Markov assumptions.SHARSHA adapts SARSA to plans with a hierarhialmodel of intent. In partiular, it operates on staks ofstate-ation pairs, where eah pair orresponds to anIarus funtion (enoding a ourse of ation), as de-pited in Figure 2. For example, at time 1 the Iarusagent aelerates to reah its target speed in order todrive, while at time 2 it brakes in order to avoid troubleas part of the same driving skill. Our method employsthe SARSA inner loop with slight modi�ations: whereSARSA observes the urrent state, we observe the all-ing hierarhy, and where SARSA updates the urrentstate, we update the estimates for eah funtion inthe alling stak. The seond di�erene is that SHAR-SHA's update operator inputs the urrent estimate,

the reward signal, and the estimate assoiated withthe primitive ation on the next yle. This primitivearries the best estimate beause it utilizes the moreinformed piture of world state built while evaluatingthe Iarus program.Our implementation of SHARSHA inludes several ad-ditional features. It employs eligibility lists to speedlearning, it normalizes sensor values at run time (sinethe update rule an otherwise diverge), it supportsmultiple exploration poliies, and it employs linear ap-proximations for value funtions in plae of tabularforms. SHARSHA learns the oeÆients of these lin-ear mappings from delayed reward. We have provenSHARSHA's onvergene properties under a ommonset of Markov assumptions (Shapiro, 2001).3. An Experiment with Programmingby RewardNow that we have reviewed the Iarus arhiteture,we an utilize it to experimentally evaluate the separa-tion hypothesis. Here we fous on the task of freewaydriving, in whih human drivers exhibit onsiderablevariation. Again, we hold that one an e�etively ap-ture this variability in syntheti agents by deompos-ing behavior into logial skills, whih are shared arossagents, and value-oded preferenes, in whih they dif-fer. Moreover, suh agents an learn these value fun-tions from delayed reward, using their shared skills asbakground knowledge.We evaluate the separation hypothesis in our test do-main by onduting experiments with programming byreward. We start with an intuitively reasonable andonstrained set of skills for the domain (thus distin-guishing our approah from traditional reinforementlearning). Next, we de�ne a set of distint reward fun-tions and use them as the target of learning. If thisprodues diverse behavior over the same skill set, wehave support for the hypothesis. However, if we mustpermute the skills to alter behavior, the hypothesis ispartially dison�rmed. The ideal result in the drivingdomain would be to show overage over ommon drivertypes, inluding the ability to mimi extreme observedbehaviors like aggressive driving. The remainder of thesetion reports on experiments of this form that uti-lize the Iarus skills outlined in Tables 1 and 2 toonstrain behavior.3.1 The Driving EnvironmentWe used a freeway driving domain to ondut empir-ial tests. This environment onsists of a simulator(written in C) together with an agent program (writ-

ten in Iarus) that pilots one of several hundred sim-ulated ars. The ars live on an endless loop freewaythat ontains three lanes, but no entranes or exits.Eah ar has a target veloity drawn from a normaldistribution with � = 60 mph and � = 8 mph. Withthe exeption of the one `smart' ar that is apable oflearning, every vehile in the simulation determines itsmaneuvers by one of two �xed situation-ation maps:all of them will hange lanes to maintain their tar-get speed, but roughly half will also move over to leta faster ar pass. The Iarus program ontrollingthe smart ar an sense its own target speed (�xed at62 mph), the presene and relative veloity of six sur-rounding ars, the distane to the ar ahead enter andbehind enter, and whether it an hange lanes to theleft or right without hitting another vehile. There aresix primitive ations: speed up by two mph, slow downby two, ruise at urrent speed, hange lane to the left,hange lane to the right, and emergeny brake.3.2 Agent-held Reward FuntionsIn order to test the model of programming by reward,we de�ned a set of qualitatively di�erent reward fun-tions. All of them are linear in their feature values,and Table 3 assoiates their features with mnemoninames. The airport driver is motivated solely by thedesire to reah the airport on time; it beomes lesshappy as its veloity deviates from target speed. Thesafe driver wants to avoid ollisions; its reward fun-tion penalizes small times to impat with ars in frontand ars behind. The shorter the time to impat, thelarger the penalty, with times greater than 100 se-onds having no reward. The gold�sh driver has animaginary �shbowl as luggage, and does not want ma-neuvers to upend the �sh. Alternatively, we an viewthe gold�sh driver as a bit queasy; its reward funtionpenalizes all forms of maneuver. The rekless teenageris out for thrills; it garners reward for near misses andares about maintaining its ruising speed. The rowdlover and the rowd hater desire the expeted things;their reward inreases (or dereases) with the num-ber of surrounding ars. Iarus alulates the rewardone every exeution yle, and the learning systemseeks to aquire the greatest reward stream over time.3.3 A Pro�le of Learned BehaviorWe used eah of the above reward funtions to developagent personalities by employing them as the targetof poliy learning. We onduted ten 32,000-iterationtraining runs for eah driver and averaged results overthe �nal 20,000 iterations of eah run. In all ases, weinitialized the driver's veloity to a random numberbetween zero and its target speed (62 mph), and all of

Table 3. Agent-held reward funtions in terms of impattime ahead (a) and behind (b), deviation from target speed(t), slowing down (d), speeding up (u), hanging lanes (l),and nearby ars ().airport safe gold�sh rekless rowd rowddriver driver driver teenager lover hater(a) + �(b) + �(t) � �(d) �(u) �(l) �() + �its value-estimation funtions to zero. Figure 3 fouseson behavioral measures, using the safe driver's soreas the unit quantity. We analyze the maximum andminimum values in eah ategory.The �rst measure is the absolute value of the agent'sdi�erene from its target speed. The fat that the air-port driver has the lowest sore is not surprising, sineits reward funtion diretly penalizes nonzero values.However, the safe driver shows the highest di�erenefrom target speed. It is not motivated (positively ornegatively) by this quantity, but apparently it readilyadjusts its veloity to avoid potential ollisions (i.e.,short times to impat).The safe driver also shows the largest following dis-tane. This makes intuitive sense, sine safe driversknow that tailgating produes potential ollisions. (Ifthe ar in front slows down, the safe driver inheritsa signi�ant penalty.) In ontrast, the gold�sh driverhas the shortest following distane, by a small mar-gin. We explain this observation by a ruise ontrole�et: drivers who resist veloity hanges will tend toreep up on the ar in front. Both the airport andgold�sh drivers ontain this bias, but note that noneof the agents assign diret value to following distanein their reward funtions.The airport driver displays the highest number of lanehanges. This makes sense beause it must maneuverto maintain its target speed. The gold�sh driver showsthe fewest, as it is entrally motivated not to makesuh hanges. The speed hange results are similar:the airport driver is diretly biased against deviatingfrom target speed, while the safe driver freely adjustsits speed to avoid potential impats.Finally, the gold�sh driver performs the fewest uto�ations, de�ned as a lane hange in front of a fastervehile, as it is motivated to avoid all maneuvers. In

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Diff from
Target

Following
Distance

Speed
Change

CutoffLane
Change

R
el

at
iv

e
Fe

at
ur

e
V

al
ue

Airport Driver
Safe Driver
Goldfish Driver
Reckless Driver

Figure 3. Learned behaviors in low-density traÆ.ontrast, the rekless driver atively seeks near olli-sions, as they ontribute positive terms to its reward.Note that the driving program prevents the reklessteenager from simply olliding with the ar in front; itsopportunity to learn is on�ned to an allowable realm.Said di�erently, the agent's skills ensure reasonable be-havior. Its reward funtion is irrelevant whenever thebehavior is determined, and relevant only when hoieis allowed. This design frees us to onstrut rewardfuntions in an unonstrained way.3.4 Learned Lane PreferenesFigure 4 illustrates an emergent property of program-ming by reward. We plot the agent's oupany inthe di�erent freeway lanes, and note that the rowdlover evolves a slight preferene for the middle lane,while the rowd hater generates a strong preferenefor the right hand lane. These preferenes were neverenoded in the reward funtions, although the resultsmake sense. A ar in the enter lane an enounterup to six adjaent vehiles (good for a rowd lover),while one in the right or left lane an have at mostfour neighbors. It seems lear that the rowd haterwill avoid the enter lane, but not why it prefers theright lane to the left. The �xed ontrol poliies of theother ars do at to sort vehiles into lanes by speed.Perhaps there is a smaller di�erene between the aver-age speed in the right and enter lanes than betweenleft and enter. If so, the rowd hater will enounterfewer ars per unit time if it gravitates to the right.3.5 Driver Behavior Aross Two DomainsIt is lear that we an generate distint behavior viaprogramming by reward, but we would also like toknow if that behavior is in some sense robust to en-vironmental hange. We investigated this question by

0

0.1

0.2

0.3

0.4

0.5

0.6

Left lane Middle lane Right lane

Pe
rc

en
ta

ge
 O

cc
up

an
cy

Crowd-loving Driver

Crowd-hating Driver

Figure 4. Lane preferenes learned by two di�erent drivers.training the same agents in a high-density vs. a low-density traÆ senario. Figure 5 provides the results.Here, we take the performane of the safe driver inlow-density traÆ as the unit quantity, so that we anompare behavior both within and aross domains.Our �rst observation is that the absolute magnitudesof the metris di�er as we move between senarios. Itis generally harder to maintain target speed in high-density traÆ; following distanes shrink, it beomesmore diÆult to hange lanes, and agents must ad-just their speed more often in order to respond toother traÆ. These hanges are largely fored uponthe agents by inreased traÆ density.A more striking observation is that the behavioralpro�les are beautifully preserved aross domains. Al-though the number of instanes of any given behaviorhanges, the shapes of the urves are virtually identi-al in low and high-density traÆ. There are only twoshifts in relative order, for the maximum number oflane hanges and minimum number of speed hanges.This onstany of behavior provides evidene that pro-gramming by reward shapes agent behavior in a pre-ditable way, and that it an be used in a developmentmodel where agents are trained in a test domain anddeployed in an appliation environment.3.6 Searhing the Spae of Reward FuntionsNow that we have examined the relation between areward funtion and the behavior it generates, it isworth asking the inverse question. Can we generate aspei�, prede�ned behavior via programming by re-ward? We pursued this question by attempting to du-pliate (in a qualitative sense) the behavior of a ol-league who is a partiularly aggressive driver. We didthis by searhing aross the spae of possible rewardfuntions, seeking to minimize the agent's following

481 Cars

161 Cars

0

1.0

2.0

3.0

4.0

0

0.4

0.8

1.2

1.6

 Diff from
Target

Following
Distance

Speed
Change

CutoffLane
Change

R
el

at
iv

e
Fe

at
ur

e
V

al
ue

Airport Driver
Safe Driver
Goldfish Driver
Reckless Driver

Figure 5. Learned behavior in two driving domains.distane while simultaneously maximizing the numberof uto� maneuvers. This was an informal proess,where we hand tuned the oeÆients of a linear rewardfuntion that measured time to impat ahead/behind,distane ahead/behind, uto� events, own speed, andthe relative speed of ars in adjaent lanes.The results were both positive and negative. On thepositive side, we sueeded in generating a ten-fold in-rease in the number of uto� maneuvers performed bythe `road rage driver' relative to the rekless teenager,as shown in Figure 6. However, we ould do so only byintroduing a slight modi�ation to the shared drivingskill; we gave both drivers the option to hange lanesin the absene of a slower ar in front or a faster arbehind. The original skill laked the exibility to sup-port the desired (extremist) behavior.This experiment also generated an interesting strategilesson for programming by reward. We disovered thatit was far more suessful to penalize the road ragedriver as it was being passed by other ars, rather thanto reward the agent when it ut o� other vehiles. Thereason is that it there are more opportunities to learnfrom persistent onditions than momentary events.4. Related Work on Control LearningEarlier we ontrasted our framework for ontrol learn-ing with other approahes, but the previous work onthis topi and its di�erenes from our own deserves amore detailed disussion. Here we onsider four dis-tint paradigms for learning ontrol poliies from ex-periene that have appeared in the literature.

0

2

4

6

8

10

12

 Diff from
Target

Lane
Change

Speed
Change

Cutoff Following
Distance

R
el

at
iv

e
Fe

at
ur

e
V

al
ue

Emergency
Brake

Road Rage Driver
Reckless Driver

Figure 6. Using a reward funtion to generate road rage.One body of researh fouses on arhitetures for in-telligent agents, with two well-known examples be-ing Soar (Laird & Rosenbloom, 1990) and Prodigy(Minton, 1990). These systems represent knowledgeabout legal ations as prodution rules or logial op-erators, whih they utilize during problem solving andexeution. Beause this knowledge predits the e�etsof operators, they an learn from the results of problemsolving, rather than relying, as does Iarus, on feed-bak from the environment. Both arhitetures learnpreferenes over ations, states, and goals, but theyenode these as logial rules, in ontrast with Iarus'use of utility funtions. The ACT-R arhiteture (An-derson, 1993) assoiates strengths with learned pro-dution rules based on their suess in ahieving goals,but these speify a salar value rather than a numerifuntion of environmental features.An alternative framework learns ontrol poliies fromobservations of another agent's behavior by transform-ing traes into supervised training ases. Suh behav-ioral loning typially generates knowledge in the formof deision trees or logial rules (e.g., Sammut, 1996;Urbani & Bratko, 1994), though other enodings arepossible (Anderson, Draper, & Peterson, 2000). Un-like Iarus, these systems typially aquire ontrolknowledge from srath, but one ould utilize high-level plans to parse a behavioral trae and thus on-strain the loning proess. More broadly, the separa-tion hypothesis suggests that behavioral loning anproeed in two steps, where the �rst learns the stru-ture of shared skills from observations, and the seondlearns numeri value funtions that haraterize indi-vidual behavior. Some work on adaptive interfaes anindue suh funtions from user hoies.A larger body of researh emphasizes learning poliiesfrom delayed external rewards. Within this frame-work, some methods represent ontrol knowledge aslogial rules that state the onditions under whih par-

tiular ations are desirable (e.g., Grefenstette, Ram-sey, & Shultz, 1990). Others ahieve the same ef-fet with di�erent formalisms like multilayer neuralnetworks (e.g., Moriarty & Langley, 1998). In thisparadigm, learning involves a searh through the spaeof poliies, using geneti or other methods, guided bythe rewards that alternative andidates reeive fromthe environment. The searh proess typially startsfrom srath, but, learly, it ould be aided by start-ing from skills that speify legal ations. However, thisframework does not lend itself to a division betweenlegal skills and preferenes stated as utility funtions.An alternative approah to learning from delayed re-wards enodes poliies as utility funtions, an idea thatplays a entral role in Iarus. These funtions aretypially stored in a table that assoiates an estimatedvalue with eah state-ation pair, but some work in-stead uses approximations. This mapping is learnedthrough methods like Q learning (Watkins & Dayan,1992), whih update the estimated value of a state-ation pair based on the disounted reward that it pro-dues. Most researh on estimating value funtions inthis manner emphasizes learning from srath, thoughsome work on hierarhial reinforement learning (e.g.,Andre & Russell, 2000; Dietterih, 2000; Parr & Rus-sell, 1998; Sutton et al., 1998) provides the learnerwith bakground knowledge. Our approah �ts om-fortably within this framework, but the notion of pro-gramming by reward distinguishes it from these e�orts.In summary, our approah to representing, using andlearning ontrol poliies has many ommon featureswith other work on this topi. However, Iarus dif-fers from previous systems in its lear separation ofontrol knowledge into logial skills and numeri util-ity funtions, whih we laim supports onsiderablevariety in agent behavior while keeping it within do-main onstraints. This division in turn lets us programagents by reward to exhibit quite di�erent behaviors.5. ConlusionsOur experiments have shown that we an produequalitatively distint agents via programming by re-ward. That is, we an onstrut one set of skills, de�neindividual agents by enoding suitable reward fun-tions, and train those agents by letting them learnfrom experiene. The reward funtions are easy toonstrut and their ontent is unonstrained.The experimental results provide evidene in supportof the separation hypothesis in the ontext of our traf-� domain. If it holds more generally, then skillsand value-enoded preferenes may be deoupled suÆ-iently to enable programming by reward in pratial

appliations. If so, then we an reate entire familiesof agents in these domains without writing new skills.This is important beause skill development is timeonsuming and diÆult work.Although this paper emphasized the use of rewardfuntions in a programming metaphor, we also de-signed a reward funtion to aomplish a spei� ob-jetive. This required some searh, but more diretmethods are possible. In partiular, we have shownelsewhere (Shapiro, 2001) that one an always alignan agent's reward funtion with human utility, suhthat the agent will do the best job possible for thatperson as a byprodut of learning to maximize its ownreward. This is an open area for future researh.In summary, the Iarus arhiteture and the method-ology of programming by reward appear to provide aneÆient means of enoding a diverse range of desiredbehaviors. The approah merits an in-depth examina-tion in a variety of domains, inluding onversationalagents, haraters in omputer games, and householdrobots whose personalities are tailored to their owners.AknowledgementsThis researh was arried out at the DaimlerChryslerResearh and Tehnology Center. We thank SimonHandley, David Moriarty, and Mark Pendrith for de-veloping the traÆ simulator, and Ross Shahter forhis many ontributions to the overall framework.ReferenesAnderson, C., Draper, B., & Peterson, D. (2000). Be-havioral loning of student pilots with modular neu-ral networks. Proeedings of the Seventeenth Inter-national Conferene on Mahine Learning (pp. 25{32). Stanford: Morgan Kaufmann.Anderson, J. R. (1993). Rules of the mind . Hillsdale,NJ: Lawrene Erlbaum.Andre, D., & Russell, S. J. (2001). Programmable re-inforement learning agents. Advanes in Neural In-formation Proessing Systems 13 (pp. 1019{1025).Cambridge, MA: MIT Press.Dietterih, T. G. (2000). State abstration in MAXQhierarhial reinforement learning. Advanes inNeural Information Proessing Systems 12 (pp.994{1000). Cambridge, MA: MIT Press.Grefenstette, J. J., Ramsey, C. L., & Shultz, A. C.(1990). Learning sequential deision rules using sim-ulation models and ompetition. Mahine Learning ,5 , 355{381.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrat-ing exeution, planning, and learning in soar forexternal environments. Proeedings of the EighthNational Conferene on Arti�ial Intelligene (pp.1022{1029). Boston, MA: AAAI Press.Minton, S. N. (1990). Quantitative results onerningthe utility of explanation-based learning. Arti�ialIntelligene, 42 , 363{391.Moriarty, D., & Langley, P. (1998). Learning oopera-tive lane seletion strategies for highways. Proeed-ings of the Fifteenth National Conferene on Arti�-ial Intelligene (pp. 684{691). AAAI Press.Nilsson, N. (1994). Teleoreative programs for agentontrol. Journal of Arti�ial Intelligene Researh,1 , 139{158.Parr, R., & Russell, S. (1998). Reinforement learn-ing with hierarhies of mahines. Advanes in Neu-ral Information Proessing Systems 10 (pp. 1043{1049). Cambirdge, MA: MIT Press.Sammut, C. (1996). Automati onstrution of rea-tive ontrol systems using symboli mahine learn-ing. Knowledge Engineering Review , 11 , 27{42.Shoppers, M. (1987). Universal plans for reative ro-bots in unpreditable environments. Proeedings ofthe Tenth International Joint Conferene on Arti�-ial Intelligene (pp.1039{1046).MorganKaufmann.Shapiro, D. (2001). Value-driven agents . Dotoral dis-sertation, Department of Management Siene andEngineering, Stanford University, Stanford, CA.Shapiro, D., Langley, P., & Shahter, R. (2001). Usingbakground knowledge to speed reinforement learn-ing in physial agents. Proeedings of the Fifth In-ternational Conferene on Autonomous Agents (pp.254{261). Montreal: ACM Press.Singh, S., Jaakola, T., Littman, M. L., & Szepesvari,C. (2000). Convergene results for single-step on-poliy reinforement learning algorithms. MahineLearning , 38 , 287{308.Sutton, R. S., Preup, D., & Singh, S. (1998). Intra-option learning about temporally abstrat ations.Proeedings of the Fifteenth International Confer-ene on Mahine Learning (pp. 556{564). Madison,WI: Morgan Kaufmann.Urbani, T., & Bratko, I. (1994). Reonstruting hu-man skill with mahine learning. Proeedings of theEleventh European Conferene on Arti�ial Intelli-gene (pp. 498{502). Amsterdam: John Wiley.Watkins, C., & Dayan, P. (1992). Q-learning. MahineLearning , 8 , 279{292.

