Separating Skills from Preference:
Using Learning to Program by Reward

Daniel Shapiro
Pat Langley

DGS@QSTANFORD.EDU
LANGLEY@QISLE.ORG

Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USA

Abstract

Developers of artificial agents commonly as-
sume that we can only specify agent behav-
ior via the expensive process of implement-
ing new skills. This paper offers an alterna-
tive expressed by the separation hypothesis:
that behavioral differences among individu-
als can be captured as distinct preferences
over the same set of skills. We test this hy-
pothesis in a simulated automotive domain
by using reinforcement learning to induce ve-
hicle control policies, given a structured set
of driving skills that contains options and a
user-supplied reward function. We show that
qualitatively distinct reward functions pro-
duce agents with qualitatively distinct behav-
ior over the same set of skills. This leads to a
new development metaphor that we call ‘pro-
gramming by reward’.

1. Motivation and Background

In many domains, humans exhibit complex physi-
cal behaviors that let them accomplish sophisticated
tasks. Researchers have explored two main approaches
to learning such behaviors, each associated with a
different class of representational formalisms. One
paradigm encodes control knowledge as rules or similar
structures (e.g., Laird & Rosenbloom, 1990; Sammut,
1996) that state conditions under which to execute ac-
tions. An alternative framework instead specifies some
function that maps state-action pairs onto a numeric
utility (e.g., Watkins & Dayan, 1992), which is then
used to select among actions.

Both approaches have repeatedly demonstrated their
ability to learn useful control policies across a broad
range of domains, yet each lends itself to expressing
different aspects of intelligent behavior. This idea is
best illustrated by work on game playing, where devel-

opers use rules or other logical constraints to specify
which moves are legal but invoke numeric evaluation
functions to select among them. We claim that a sim-
ilar division of labor will prove useful in developing
policies for reactive control, including learning such
policies from agent experience.

We formalize this intuition by stating the separation
hypothesis:

We can effectively construct physical agents
by encoding legal behavior in a set of logical
skills and separately specifying a set of prefer-
ences over those skills cast as value functions.

This framework seems especially appropriate when one
desires a number of distinct agents that exhibit a great
variety of behaviors in the same domain. Further-
more, we claim that such agents can automatically
learn these behaviors from feedback signals, meaning
the developer only needs to implement these reward
signals given a base of shared skills. This approach
to agent design — which we call programming by re-
ward — should prove useful in constructing synthetic
agents for interactive entertainment, personalized ser-
vices, and many other tasks.

In the following pages, we report one instance of this
general framework, which we have cast in an archi-
tecture for physical agents called ICARUS. We begin
by describing the architecture’s logical formalism for
encoding hierarchical skills, taking examples from the
task of driving an automobile. We then turn to the
value functions that ICARUS uses to select among ap-
plicable skills and its algorithm for using delayed re-
wards to update these functions. After this, we present
experimental studies designed to test our hypothesis
that providing such a system with different rewards
can produce distinctive yet viable policies. Finally, we
examine some other approaches to learning complex
skills and suggest directions for additional research on
this topic.

Objectives

Sense i)
O =
ret ()

Act

Figure 1. The structure of ICARUS plans.

Means
Means

2. The IcAruUs Language

Icarus is a language for specifying the behavior of
artificial agents that learn. Its structure is dually mo-
tivated by the desire to build practical agent applica-
tions and the desire to support policy learning in a
computationally efficient way. We responded to these
goals by supplying ICARUS with powerful representa-
tions that map cleanly into the Markov Decision Pro-
cess model, which provides a conceptual framework for
developing learning algorithms. In particular, we cast
IcARUS as a reactive computing language.

2.1 A Reactive Formalism

Reactive languages are tools for specifying highly con-
tingent agent behavior. They supply a representation
for expressing plans, together with an interpreter for
evaluating plans that employs a repetitive sense-think-
act loop. This repetition provides adaptive response;
it lets an agent retrieve a relevant action even if the
world changes from one interpreter cycle to the next.

IcARUS is an extremely reactive language, as its in-
terpreter’s view of the world can change from one
recognizable state to any other in exactly one time
step. The architecture shares the logical orientation of
teleoreactive trees (Nilsson, 1994) and universal plans
(Schoppers, 1987), but adds vocabulary for express-
ing hierarchical intent, as well as tools for problem de-
composition found in more general-purpose languages.
For example, it supports function calls, Prolog-like pa-
rameter passing, pattern matching on facts, optional
parameters, and recursion.

An ICARUS program contains up to three elements: an
objective, a set of requirements, and a set of alternate
means, as illustrated in Figure 1. Each of these can be
instantiated by further ICARUS plans, creating a log-
ical hierarchy that terminates with calls to primitive
actions or sensors. ICARUS evaluates these fields in
a situation-dependent order, beginning with the :ob-
jective field. If the objective is already true in the
world, evaluation succeeds and nothing further needs

Table 1. The top level of an ICARUS freeway-driving plan.

Drive ()
:objective
[*not* (Emergency-brake())
not (Avoid-trouble-ahead())
Get-to-target-speed()
not (Avoid-trouble-behind())
Cruise() 1]

to be done. If it is false, the interpreter examines the
:requires field to determine if the preconditions for ac-
tion have been met. If so, evaluation progresses to the
:means field, which contains alternate methods (prim-
itive actions or subplans) for accomplishing the objec-
tive. The :means field is the locus of all value-based
choice, since the objectives and requirements contain
no options. To support this choice, the interpreter as-
sociates a value estimate with each plan and learns to
select the plan with the largest expected reward.

The architecture also supports several unusual fea-
tures. It allows the execution of a process to be a goal
and it embeds a sequence primitive within a reactive
interpreter (where reaction within a sequential plan
is more common). Moreover, it supports control over
plan expansion; ICARUS can commit to a subplan be-
fore investigating it, or it can investigate subplans and
choose among the actions returned. Shapiro (2001)
provides a more complete description of the language.

2.2 An Icarus Plan for Driving

Table 1 presents an excerpt from an ICARUS plan for
freeway driving. The top-level routine, Drive, con-
tains an ordered set of objectives implemented as fur-
ther subplans. The first clause defines a reaction to
an impending collision. The second specifies a plan
for reacting to trouble ahead, defined as a car trav-
eling slower than the agent in the agent’s own lane.
This subplan contains options, as shown in Table 2.
Here the agent can move one lane to the left, move
right, slow down, or cruise without changing speed or
lane. The third clause defines a goal-driven subplan
(not shown) for bringing the agent to its target speed.
The fourth defines options for reacting to a faster car
behind; it lets the agent move over or ignore the ve-
hicle and cruise. The final clause leads the agent to
Cruise in its current lane and at its current speed.

IcArRUS processes the Drive program repetitively,
starting with its first clause on every execution cycle.
It performs a depth-first, left to right walk of the call-
ing tree, using a three-valued semantics in which every
statement in the language evaluates to True, False, or
an action. ‘True’ means the statement was true in
the world, ‘False’ means the plan did not apply, and

Table 2. An ICARUS plan with alternate subplans.

Avoid-trouble-ahead ()
:requires
[bind(?c, car-ahead-center())
velocity() > velocity(?c)
bind(7tti, time-to-impact())
bind(?rd, distance-ahead())
bind(?rt, target-speed() — velocity())
bind(?art, abs(?rt)) 1]
:means
[safe-cruise(?tti, 7rd, 7art)
safe-to-slow-down(?tti, ?rd, ?rt)
move-right (7art)
move-left (7art)]

a returned action identifies code for controlling actu-
ators that addresses the objectives of the plan. Since
a :means clause can produce multiple actions, the in-
terpreter selects and returns the best one. It passes
the action returned from Drive to an external execu-
tion system, which applies it in the world. Thus, the
purpose of an ICARUS program is to find action.

This repetitive evaluation process lets the system re-
turn an action from an entirely different portion of
Drive on each successive iteration. For example, the
agent might slam on the brakes on cycle 1, but change
lanes on cycle 2 to avoid the (still) slower car in front,
after the first clause returns True. Assuming the new
lane is clear (the first two clauses return True), the
agent might speed up in service of Get-to-target-speed
on cycles 3 to 5, and then select the fifth clause, Cruise,
until some other obstacle appears.

Whenever a plan offers a choice (e.g., in the :means
field of Avoid-trouble-ahead), the agent needs a
method for selecting the right option to pursue.
IcARuUS provides this capability by associating a value
estimate with each plan. This number represents the
expected future discounted reward stream for choos-
ing a primitive action or subplan on the current exe-
cution cycle and following the policy (being learned)
thereafter. ICARUS computes this value using a linear
function of current observations. For example, Avoid-
trouble-ahead binds several parameters solely for the
purpose of value estimation; the data are not required
to execute any of the routines in its :means field.

This approach lets a plan’s value depend upon its con-
text. For example, the future of ‘decelerate’ is very
different if the car in front is close or far. However,
we should not force ICARUS programmers to spec-
ify all of the information required to estimate value
when writing individual functions, so the system inher-
its context-setting parameters down the calling tree.
Thus, Avoid-trouble-ahead measures the distance to
the car in front, and ICARUS passes that parameter to

~
R(t)

SHARSHA =(>) Avoid trouble
R(t

Figure 2. A comparison of SARSA and SHARSHA.

the decelerate action several levels deeper in the call-
ing tree. The programmer writes code in the usual
fashion, without concern for these implicit data.

2.3 The SHARSHA Algorithm

SHARSHA is a reinforcement learning method mated
to ICARUS plans. It is a model-free, on-line technique
that updates its control policy by exploring a single,
unbounded trajectory of states and actions. SHARSHA
(for State Hierarchy, Action, Reward, State Hierar-
chy, Action) adds hierarchical intent to the well-known
SARSA algorithm (for State, Action, Reward, State,
Action).

SARSA operates on state-action pairs, learning an es-
timate for the value of taking a given action in a given
state by sampling its future trajectory. SARSA repeats
four steps: (1) select and apply an action in the cur-
rent state; (2) measure the in-period reward; (3) ob-
serve the subsequent state and commit to an action in
that state; and (4) update the estimate for the starting
state-action pair, using its current value, the current
reward, and the estimate associated with the destina-
tion pair. In other words, SARSA bootstraps; it up-
dates value estimates with other estimates, grounding
the process in a real reward signal. Singh et al. (2000)
have shown that SARSA converges to the optimal pol-
icy and correct values for the future discounted reward
stream under a common set of Markov assumptions.

SHARSHA adapts SARSA to plans with a hierarchical
model of intent. In particular, it operates on stacks of
state-action pairs, where each pair corresponds to an
IcArus function (encoding a course of action), as de-
picted in Figure 2. For example, at time 1 the ICARUS
agent accelerates to reach its target speed in order to
drive, while at time 2 it brakes in order to avoid trouble
as part of the same driving skill. Our method employs
the SARSA inner loop with slight modifications: where
SARSA observes the current state, we observe the call-
ing hierarchy, and where SARSA updates the current
state, we update the estimates for each function in
the calling stack. The second difference is that SHAR-
SHA’s update operator inputs the current estimate,

the reward signal, and the estimate associated with
the primitive action on the next cycle. This primitive
carries the best estimate because it utilizes the more
informed picture of world state built while evaluating
the ICARUS program.

Our implementation of SHARSHA includes several ad-
ditional features. It employs eligibility lists to speed
learning, it normalizes sensor values at run time (since
the update rule can otherwise diverge), it supports
multiple exploration policies, and it employs linear ap-
proximations for value functions in place of tabular
forms. SHARSHA learns the coefficients of these lin-
ear mappings from delayed reward. We have proven
SHARSHA'’s convergence properties under a common
set of Markov assumptions (Shapiro, 2001).

3. An Experiment with Programming
by Reward

Now that we have reviewed the ICARUS architecture,
we can utilize it to experimentally evaluate the separa-
tion hypothesis. Here we focus on the task of freeway
driving, in which human drivers exhibit considerable
variation. Again, we hold that one can effectively cap-
ture this variability in synthetic agents by decompos-
ing behavior into logical skills, which are shared across
agents, and value-coded preferences, in which they dif-
fer. Moreover, such agents can learn these value func-
tions from delayed reward, using their shared skills as
background knowledge.

We evaluate the separation hypothesis in our test do-
main by conducting experiments with programming by
reward. We start with an intuitively reasonable and
constrained set of skills for the domain (thus distin-
guishing our approach from traditional reinforcement
learning). Next, we define a set of distinct reward func-
tions and use them as the target of learning. If this
produces diverse behavior over the same skill set, we
have support for the hypothesis. However, if we must
permute the skills to alter behavior, the hypothesis is
partially disconfirmed. The ideal result in the driving
domain would be to show coverage over common driver
types, including the ability to mimic extreme observed
behaviors like aggressive driving. The remainder of the
section reports on experiments of this form that uti-
lize the IcAarusS skills outlined in Tables 1 and 2 to
constrain behavior.

3.1 The Driving Environment

We used a freeway driving domain to conduct empir-
ical tests. This environment consists of a simulator
(written in C) together with an agent program (writ-

ten in ICARUS) that pilots one of several hundred sim-
ulated cars. The cars live on an endless loop freeway
that contains three lanes, but no entrances or exits.
Each car has a target velocity drawn from a normal
distribution with y = 60 mph and ¢ = 8 mph. With
the exception of the one ‘smart’ car that is capable of
learning, every vehicle in the simulation determines its
maneuvers by one of two fixed situation-action maps:
all of them will change lanes to maintain their tar-
get speed, but roughly half will also move over to let
a faster car pass. The ICARUS program controlling
the smart car can sense its own target speed (fixed at
62 mph), the presence and relative velocity of six sur-
rounding cars, the distance to the car ahead center and
behind center, and whether it can change lanes to the
left or right without hitting another vehicle. There are
six primitive actions: speed up by two mph, slow down
by two, cruise at current speed, change lane to the left,
change lane to the right, and emergency brake.

3.2 Agent-held Reward Functions

In order to test the model of programming by reward,
we defined a set of qualitatively different reward func-
tions. All of them are linear in their feature values,
and Table 3 associates their features with mnemonic
names. The airport driver is motivated solely by the
desire to reach the airport on time; it becomes less
happy as its velocity deviates from target speed. The
safe driver wants to avoid collisions; its reward func-
tion penalizes small times to impact with cars in front
and cars behind. The shorter the time to impact, the
larger the penalty, with times greater than 100 sec-
onds having no reward. The goldfish driver has an
imaginary fishbowl as luggage, and does not want ma-
neuvers to upend the fish. Alternatively, we can view
the goldfish driver as a bit queasy; its reward function
penalizes all forms of maneuver. The reckless teenager
is out for thrills; it garners reward for near misses and
cares about maintaining its cruising speed. The crowd
lover and the crowd hater desire the expected things;
their reward increases (or decreases) with the num-
ber of surrounding cars. ICARUS calculates the reward
once every execution cycle, and the learning system
seeks to acquire the greatest reward stream over time.

3.3 A Profile of Learned Behavior

We used each of the above reward functions to develop
agent personalities by employing them as the target
of policy learning. We conducted ten 32,000-iteration
training runs for each driver and averaged results over
the final 20,000 iterations of each run. In all cases, we
initialized the driver’s velocity to a random number
between zero and its target speed (62 mph), and all of

Table 3. Agent-held reward functions in terms of impact
time ahead (a) and behind (b), deviation from target speed
(t), slowing down (d), speeding up (u), changing lanes (1),
and nearby cars (c).

airport safe goldfish reckless crowd crowd
driver driver driver teenager lover hater

(a) + -

(b) + -

t - -

(d) -

(u) -

0] -

(c) + -

its value-estimation functions to zero. Figure 3 focuses
on behavioral measures, using the safe driver’s score
as the unit quantity. We analyze the maximum and
minimum values in each category.

The first measure is the absolute value of the agent’s
difference from its target speed. The fact that the air-
port driver has the lowest score is not surprising, since
its reward function directly penalizes nonzero values.
However, the safe driver shows the highest difference
from target speed. It is not motivated (positively or
negatively) by this quantity, but apparently it readily
adjusts its velocity to avoid potential collisions (i.e.,
short times to impact).

The safe driver also shows the largest following dis-
tance. This makes intuitive sense, since safe drivers
know that tailgating produces potential collisions. (If
the car in front slows down, the safe driver inherits
a significant penalty.) In contrast, the goldfish driver
has the shortest following distance, by a small mar-
gin. We explain this observation by a cruise control
effect: drivers who resist velocity changes will tend to
creep up on the car in front. Both the airport and
goldfish drivers contain this bias, but note that none
of the agents assign direct value to following distance
in their reward functions.

The airport driver displays the highest number of lane
changes. This makes sense because it must maneuver
to maintain its target speed. The goldfish driver shows
the fewest, as it is centrally motivated not to make
such changes. The speed change results are similar:
the airport driver is directly biased against deviating
from target speed, while the safe driver freely adjusts
its speed to avoid potential impacts.

Finally, the goldfish driver performs the fewest cutoff
actions, defined as a lane change in front of a faster
vehicle, as it is motivated to avoid all maneuvers. In

16
O Airport Driver
141| B SafeDriver -
e O Goldfish Driver _
T 121| O RecklessDriver
()
5 10
§ 0.8
g
-g 0.6
x 04
0.2
Diff from Following Lane Speed Cutoff
Target Distance Change Change

Figure 3. Learned behaviors in low-density traffic.

contrast, the reckless driver actively seeks near colli-
sions, as they contribute positive terms to its reward.

Note that the driving program prevents the reckless
teenager from simply colliding with the car in front; its
opportunity to learn is confined to an allowable realm.
Said differently, the agent’s skills ensure reasonable be-
havior. Its reward function is irrelevant whenever the
behavior is determined, and relevant only when choice
is allowed. This design frees us to construct reward
functions in an unconstrained way.

3.4 Learned Lane Preferences

Figure 4 illustrates an emergent property of program-
ming by reward. We plot the agent’s occupancy in
the different freeway lanes, and note that the crowd
lover evolves a slight preference for the middle lane,
while the crowd hater generates a strong preference
for the right hand lane. These preferences were never
encoded in the reward functions, although the results
make sense. A car in the center lane can encounter
up to six adjacent vehicles (good for a crowd lover),
while one in the right or left lane can have at most
four neighbors. It seems clear that the crowd hater
will avoid the center lane, but not why it prefers the
right lane to the left. The fixed control policies of the
other cars do act to sort vehicles into lanes by speed.
Perhaps there is a smaller difference between the aver-
age speed in the right and center lanes than between
left and center. If so, the crowd hater will encounter
fewer cars per unit time if it gravitates to the right.

3.5 Driver Behavior Across Two Domains

It is clear that we can generate distinct behavior via
programming by reward, but we would also like to
know if that behavior is in some sense robust to en-
vironmental change. We investigated this question by

o
o

O Crowd-loving Driver
B Crowd-hating Driver

o
&

I
i

Percentage Occupancy
o o
N w

o
[

Left lane Middlelane Right lane

Figure 4. Lane preferences learned by two different drivers.

training the same agents in a high-density vs. a low-
density traffic scenario. Figure 5 provides the results.
Here, we take the performance of the safe driver in
low-density traffic as the unit quantity, so that we can
compare behavior both within and across domains.

Our first observation is that the absolute magnitudes
of the metrics differ as we move between scenarios. It
is generally harder to maintain target speed in high-
density traffic; following distances shrink, it becomes
more difficult to change lanes, and agents must ad-
just their speed more often in order to respond to
other traffic. These changes are largely forced upon
the agents by increased traffic density.

A more striking observation is that the behavioral
profiles are beautifully preserved across domains. Al-
though the number of instances of any given behavior
changes, the shapes of the curves are virtually identi-
cal in low and high-density traffic. There are only two
shifts in relative order, for the maximum number of
lane changes and minimum number of speed changes.
This constancy of behavior provides evidence that pro-
gramming by reward shapes agent behavior in a pre-
dictable way, and that it can be used in a development
model where agents are trained in a test domain and
deployed in an application environment.

3.6 Searching the Space of Reward Functions

Now that we have examined the relation between a
reward function and the behavior it generates, it is
worth asking the inverse question. Can we generate a
specific, predefined behavior via programming by re-
ward? We pursued this question by attempting to du-
plicate (in a qualitative sense) the behavior of a col-
league who is a particularly aggressive driver. We did
this by searching across the space of possible reward
functions, seeking to minimize the agent’s following

16 161 Cars
12 [
0.8
S04
©
>
20 ||
>
?E 40 O Airport Driver
g B Safe Driver 481 Cars
® 30 O Goldfish Driver
2 O RecklessDriver
2.0
Rl i [hﬂ
0 —: ;
Diff from Following Lane Speed Cutoff

Target Distance Change Change

Figure 5. Learned behavior in two driving domains.

distance while simultaneously maximizing the number
of cutoff maneuvers. This was an informal process,
where we hand tuned the coefficients of a linear reward
function that measured time to impact ahead/behind,
distance ahead/behind, cutoff events, own speed, and
the relative speed of cars in adjacent lanes.

The results were both positive and negative. On the
positive side, we succeeded in generating a ten-fold in-
crease in the number of cutoff maneuvers performed by
the ‘road rage driver’ relative to the reckless teenager,
as shown in Figure 6. However, we could do so only by
introducing a slight modification to the shared driving
skill; we gave both drivers the option to change lanes
in the absence of a slower car in front or a faster car
behind. The original skill lacked the flexibility to sup-
port the desired (extremist) behavior.

This experiment also generated an interesting strategic
lesson for programming by reward. We discovered that
it was far more successful to penalize the road rage
driver as it was being passed by other cars, rather than
to reward the agent when it cut off other vehicles. The
reason is that it there are more opportunities to learn
from persistent conditions than momentary events.

4. Related Work on Control Learning

Earlier we contrasted our framework for control learn-
ing with other approaches, but the previous work on
this topic and its differences from our own deserves a
more detailed discussion. Here we consider four dis-
tinct paradigms for learning control policies from ex-
perience that have appeared in the literature.

12
O Reckless Driver

8 10{ | B Road Rage Driver
™
>
) 8
35
i J
S 4
B
o
()

|l M cm [

Diff from Lane Speed Emergency Cutoff Following
Target Change Change Brake Distance

Figure 6. Using a reward function to generate road rage.

One body of research focuses on architectures for in-
telligent agents, with two well-known examples be-
ing SOAR (Laird & Rosenbloom, 1990) and PRODIGY
(Minton, 1990). These systems represent knowledge
about legal actions as production rules or logical op-
erators, which they utilize during problem solving and
execution. Because this knowledge predicts the effects
of operators, they can learn from the results of problem
solving, rather than relying, as does ICARUS, on feed-
back from the environment. Both architectures learn
preferences over actions, states, and goals, but they
encode these as logical rules, in contrast with ICARUS’
use of utility functions. The ACT-R architecture (An-
derson, 1993) associates strengths with learned pro-
duction rules based on their success in achieving goals,
but these specify a scalar value rather than a numeric
function of environmental features.

An alternative framework learns control policies from
observations of another agent’s behavior by transform-
ing traces into supervised training cases. Such behav-
ioral cloning typically generates knowledge in the form
of decision trees or logical rules (e.g., Sammut, 1996;
Urbancic & Bratko, 1994), though other encodings are
possible (Anderson, Draper, & Peterson, 2000). Un-
like ICARUS, these systems typically acquire control
knowledge from scratch, but one could utilize high-
level plans to parse a behavioral trace and thus con-
strain the cloning process. More broadly, the separa-
tion hypothesis suggests that behavioral cloning can
proceed in two steps, where the first learns the struc-
ture of shared skills from observations, and the second
learns numeric value functions that characterize indi-
vidual behavior. Some work on adaptive interfaces can
induce such functions from user choices.

A larger body of research emphasizes learning policies
from delayed external rewards. Within this frame-
work, some methods represent control knowledge as
logical rules that state the conditions under which par-

ticular actions are desirable (e.g., Grefenstette, Ram-
sey, & Schultz, 1990). Others achieve the same ef-
fect with different formalisms like multilayer neural
networks (e.g., Moriarty & Langley, 1998). In this
paradigm, learning involves a search through the space
of policies, using genetic or other methods, guided by
the rewards that alternative candidates receive from
the environment. The search process typically starts
from scratch, but, clearly, it could be aided by start-
ing from skills that specify legal actions. However, this
framework does not lend itself to a division between
legal skills and preferences stated as utility functions.

An alternative approach to learning from delayed re-
wards encodes policies as utility functions, an idea that
plays a central role in ICARUS. These functions are
typically stored in a table that associates an estimated
value with each state-action pair, but some work in-
stead uses approximations. This mapping is learned
through methods like Q learning (Watkins & Dayan,
1992), which update the estimated value of a state-
action pair based on the discounted reward that it pro-
duces. Most research on estimating value functions in
this manner emphasizes learning from scratch, though
some work on hierarchical reinforcement learning (e.g.,
Andre & Russell, 2000; Dietterich, 2000; Parr & Rus-
sell, 1998; Sutton et al., 1998) provides the learner
with background knowledge. Our approach fits com-
fortably within this framework, but the notion of pro-
gramming by reward distinguishes it from these efforts.

In summary, our approach to representing, using and
learning control policies has many common features
with other work on this topic. However, ICARUS dif-
fers from previous systems in its clear separation of
control knowledge into logical skills and numeric util-
ity functions, which we claim supports considerable
variety in agent behavior while keeping it within do-
main constraints. This division in turn lets us program
agents by reward to exhibit quite different behaviors.

5. Conclusions

Our experiments have shown that we can produce
qualitatively distinct agents via programming by re-
ward. That is, we can construct one set of skills, define
individual agents by encoding suitable reward func-
tions, and train those agents by letting them learn
from experience. The reward functions are easy to
construct and their content is unconstrained.

The experimental results provide evidence in support
of the separation hypothesis in the context of our traf-
fic domain. If it holds more generally, then skills
and value-encoded preferences may be decoupled suffi-
ciently to enable programming by reward in practical

applications. If so, then we can create entire families
of agents in these domains without writing new skills.
This is important because skill development is time
consuming and difficult work.

Although this paper emphasized the use of reward
functions in a programming metaphor, we also de-
signed a reward function to accomplish a specific ob-
jective. This required some search, but more direct
methods are possible. In particular, we have shown
elsewhere (Shapiro, 2001) that one can always align
an agent’s reward function with human utility, such
that the agent will do the best job possible for that
person as a byproduct of learning to maximize its own
reward. This is an open area for future research.

In summary, the ICARUS architecture and the method-
ology of programming by reward appear to provide an
efficient means of encoding a diverse range of desired
behaviors. The approach merits an in-depth examina-
tion in a variety of domains, including conversational
agents, characters in computer games, and household
robots whose personalities are tailored to their owners.

Acknowledgements

This research was carried out at the DaimlerChrysler
Research and Technology Center. We thank Simon
Handley, David Moriarty, and Mark Pendrith for de-
veloping the traffic simulator, and Ross Shachter for
his many contributions to the overall framework.

References

Anderson, C., Draper, B., & Peterson, D. (2000). Be-
havioral cloning of student pilots with modular neu-
ral networks. Proceedings of the Seventeenth Inter-
national Conference on Machine Learning (pp. 25
32). Stanford: Morgan Kaufmann.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Lawrence Erlbaum.

Andre, D.; & Russell, S. J. (2001). Programmable re-
inforcement learning agents. Advances in Neural In-
formation Processing Systems 13 (pp. 1019-1025).
Cambridge, MA: MIT Press.

Dietterich, T. G. (2000). State abstraction in MAXQ
hierarchical reinforcement learning. Advances in
Neural Information Processing Systems 12 (pp.
994-1000). Cambridge, MA: MIT Press.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. C.
(1990). Learning sequential decision rules using sim-
ulation models and competition. Machine Learning,
5, 355-381.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrat-
ing execution, planning, and learning in soar for
external environments. Proceedings of the FEighth

National Conference on Artificial Intelligence (pp.
1022 1029). Boston, MA: AAAT Press.

Minton, S. N. (1990). Quantitative results concerning
the utility of explanation-based learning. Artificial
Intelligence, 42, 363-391.

Moriarty, D., & Langley, P. (1998). Learning coopera-
tive lane selection strategies for highways. Proceed-
ings of the Fifteenth National Conference on Artifi-
cial Intelligence (pp. 684 691). AAAIT Press.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research,
1,139 158.

Parr, R., & Russell, S. (1998). Reinforcement learn-
ing with hierarchies of machines. Advances in Neu-
ral Information Processing Systems 10 (pp. 1043-
1049). Cambirdge, MA: MIT Press.

Sammut, C. (1996). Automatic construction of reac-
tive control systems using symbolic machine learn-
ing. Knowledge Engineering Review, 11, 27 42.

Schoppers, M. (1987). Universal plans for reactive ro-
bots in unpredictable environments. Proceedings of
the Tenth International Joint Conference on Artifi-
cial Intelligence (pp.1039 1046). Morgan Kaufmann.

Shapiro, D. (2001). Value-driven agents. Doctoral dis-
sertation, Department of Management Science and
Engineering, Stanford University, Stanford, CA.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learn-
ing in physical agents. Proceedings of the Fifth In-
ternational Conference on Autonomous Agents (pp.
254-261). Montreal: ACM Press.

Singh, S.; Jaakola, T., Littman, M. L., & Szepesvari,
C. (2000). Convergence results for single-step on-
policy reinforcement learning algorithms. Machine
Learning, 38, 287 308.

Sutton, R. S., Precup, D., & Singh, S. (1998). Intra-
option learning about temporally abstract actions.
Proceedings of the Fifteenth International Confer-
ence on Machine Learning (pp. 556-564). Madison,
WI: Morgan Kaufmann.

Urbancic, T., & Bratko, I. (1994). Reconstructing hu-
man skill with machine learning. Proceedings of the
Eleventh Furopean Conference on Artificial Intelli-
gence (pp. 498 502). Amsterdam: John Wiley.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279-292.

