
Cumulative Learning of Hierarhial SkillsPat LangleySeth RogersComputational Learning LaboratoryCenter for the Study of Language and InformationStanford University, Stanford, CA 94305 USAAbstratIn this paper, we review ICARUS, a ognitive arhite-ture that utilizes hierarhial skills and onepts forreative exeution in physial environments. In addi-tion, we present two extensions to the framework. The�rst involves the inorporation of means-ends analy-sis, whih lets the system ompose known skills to solvenovel problems. The seond involves the storage of newskills and onepts that are based on suessful means-ends traes. We report experimental studies of thismehanism in the bloks world, whih show that learn-ing operates in a umulative manner that redues thee�ort required to handle new tasks. We onlude witha disussion of related work on learning and prospetsfor additional researh.1.. Introdution and MotivationResearh on ognitive arhitetures (Newell, 1990) at-tempts to understand the omputational infrastru-tures that support intelligent behavior. A spei� ar-hiteture spei�es the aspets of a ognitive agent thatremain the same aross time and over di�erent do-mains, and typially makes strong ommitments aboutthe representation of knowledge strutures and the pro-esses that operate them. Learning has been a entralonern in most arhitetural researh, with a varietyof mehanisms having been proposed to model the a-quisition of knowledge from experiene.In this paper we review Iarus, a andidate arhi-teture that diverges from its predeessors on a numberof dimensions. One important di�erene is that mostframeworks fous on prodution systems, whih en-ode knowledge as a `at' set of ondition-ation rules,whereas Iarus provides expliit support for hierar-hies of both onepts and skills. In addition, mostognitive arhitetures evolved from theories of humanproblem solving, and thus fous on mental phenomena.

In ontrast, Iarus is mainly an exeution arhiteturethat pereives and reats to external environments.However, Iarus' reliane on hierarhial struturesraises key questions about their origin. Moreover, thearhiteture's emphasis on exeution does not meanthat mental ativities like problem solving are unim-portant, sine they an let an agent handle novel tasksfor whih stored knowledge is unavailable. The entralhypothesis of this paper is that hierarhial skills andonepts arise, at least in many ases, from problem-solving behavior, and that, one learned, the agent anuse these strutures to support reative exeution inthe environment.In the setions that follow, we review Iarus' repre-sentation and organization of onepts and skills, alongwith the ategorization and exeution proesses thatutilize them. After this, we present a new module thatinterleaves means-ends problem solving with exeutionwhen known skills are insuÆient to solve a task. Nextwe desribe a mehanism for reating generalized skillsand onepts from traes of suessful problem solvingthat supports both inremental and umulative learn-ing. We report experiments with this learning meh-anism that demonstrate its ability to redue e�ort onnew problems and that examine e�ets of training or-der. In losing, we disuss earlier researh on learn-ing problem-solving knowledge and umulative learn-ing, along with some diretions for future work.2.. Representation and OrganizationLike other ognitive arhitetures, Iarus makes om-mitments to its representation of knowledge, the man-ner in whih it is organized, and the memories in whihit resides. Here we disuss the framework's long-termand short-term memories, inluding formalisms used toenode their ontents. We will take our examples fromthe bloks world, sine many readers should �nd thisdomain familiar.1



One of Iarus' long-term memories stores Booleanonepts that desribe situations in the environment.These may involve isolated objets, suh as individ-ual bloks, but they an also haraterize physial re-lations among objets, suh as the relative positionsof bloks. Long-term oneptual memory ontains thede�nitions of these logial ategories. Eah elementspei�es the onept's name and arguments, along with�ve optional �elds { :perepts, whih desribes per-eptual entities that must be present; :positives,whih indiates lower-level onepts that must math;:negatives, whih spei�es lower-level onepts thatmust not math; :tests, whih states numeri rela-tions that must be satis�ed; and :exludes, whihindiates literals whose negation is entailed when theonept holds.Table 1 presents some onepts from the bloksworld. For example, on desribes a pereived situa-tion in whih two bloks have the same x position andthe bottom of one has the same y position as the topof the other. The onept lear refers to a single blok,but one that annot hold the relation on to any other,as spei�ed in its :negatives �eld.De�nitions of this sort organize Iarus ategoriesinto a oneptual hierarhy. Primitive onepts arede�ned entirely in terms of pereptual onditions andnumeri tests, but many inorporate other onepts intheir de�nitions. This imposes a lattie struture onthe memory, with more basi onepts at the bottomand more omplex onepts at higher levels. The re-sulting hierarhy is similar in spirit to early models ofhuman memory like Epam (Feigenbaum, 1963), as wellas to frameworks like desription logis.Iarus also inorporates a seond long-term mem-ory that stores knowledge about skills it an exeute inthe environment, inluding their onditions for applia-tion and their expeted e�ets. Eah skill has a name,arguments, and a set of optional �elds. The :start�eld spei�es the onepts that must hold to initiatethe skill, whereas the :requires �eld indiates ondi-tions that must hold throughout its exeution, whihmay require multiple yles to omplete. The :effets�eld spei�es a onjuntion of onepts that, taken to-gether, desribe the situation the skill produes whendone. For example, Table 2 shows the skill pikup,whih must satisfy the single start ondition, (piku-pable ?blok ?from), de�ned in Table 1. The skill'sonly stated e�et is to make (holding ?blok) true.1Eah Iarus skill also inludes a �eld that spei-�es how to deompose it further. Two example skillsin the table utilize the :ations �eld, whih refers1Note that the use of :exludes �elds in onepts avoids theneed for expliit delete lists in skills, as in most planning systems.

Table 1. Some Iarus onepts for the bloks world,with variables indiated by question marks.(on (?blok1 ?blok2):perepts ((blok ?blok1 xpos ?x1 ypos ?y1)(blok ?blok2 xpos ?x2 ypos ?y2height ?h2)):tests ((equal ?x1 ?x2) (>= ?y1 ?y2)(<= ?y1 (+ ?y2 ?h2))):exludes ((lear ?blok2)))(lear (?blok):perepts ((blok ?blok)):negatives ((on ?other ?blok)):exludes ((on ?other ?blok)))(pikupable (?blok ?from):perepts ((blok ?blok)(table ?from)):positives ((ontable ?blok ?from)(lear ?blok)(hand-empty)))(pikup-stakable (?blok ?from ?to):perepts ((blok ?blok)(table ?from)(blok ?to)):positives ((pikupable ?blok ?from)(lear ?to)))to opaque ations the agent an exeute diretly inthe environment. For instane, unstak invokes both*grasp, whih grasps a blok, and *vertial-move,whih moves the hand in the vertial diretion. How-ever, the nonprimitive skill pikup-stak instead in-ludes an :ordered �eld, whih spei�es the subskillsof whih it is omposed, in this ase the primitive skillspikup and stak.2In fat, Iarus lets one speify multiple ways todeompose a given onept or skill, muh as a Prologprogram an inlude more than one Horn lause withthe same head. In addition, eah skill deompositionan inlude a value funtion that enodes the utility ex-peted if the agent exeutes the skill with that deom-position. Neither apability plays an important role inthis paper, but we have desribed them in some detailelsewhere (Choi et al., 2004).In addition to long-term memories, whih enodestable knowledge about a domain, Iarus inludesshort-term stores that hange more rapidly. Thesemake ontat with long-term onepts and skills, butthey represent temporary beliefs about the environ-ment and intended ativities. In partiular, the per-eptual bu�er ontains desriptions of physial entitiesthat orrespond to the output of sensors. For the bloksworld, this inludes literals like (blok B xpos 10 ypos2Iarus also supports an unordered �eld for subskills thatan be exeuted in any order, but they play no role here.2



Table 2. Some Iarus skills for the bloks world.(pikup (?blok ?from):perepts ((blok ?blok)(table ?from height ?h)):start ((pikupable ?blok ?from)):ations ((*grasp ?blok)(*vertial-move ?blok (+ ?h 10))):effets ((holding ?blok)))(stak (?blok ?to):perepts ((blok ?blok)(blok ?to xpos ?x ypos ?y height ?h)):start ((stakable ?blok ?to)):ations ((*horizontal-move ?blok ?x)(*vertial-move ?blok (+ ?y ?h))(*ungrasp ?blok)):effets ((on ?blok ?to)(hand-empty)))(pikup-stak (?blok ?from ?to):perepts ((blok ?blok)(blok ?from)(table ?to)):start ((pikup-stakable ?blok ?from ?to)):ordered ((pikup ?blok ?from)(stak ?blok ?to)):effets ((on ?blok ?to)))2 width 2 height 2), whih speify the position and sizeof individual bloks. Moreover, the short-term onep-tual memory ontains beliefs about the environmentthat the agent infers from items present in its perep-tual bu�er and its long-term onept memory. For in-stane, this might ontain the instane (on B C), whihis an instane of the on onept in Table 1. Finally,a short-term skill memory ontains the agent's inten-tions about skill instanes it plans to exeute, whihlets the system engage in behavior that persists overtime. Eah literal spei�es the skill's name and its ar-guments, as in (stak B C).3.. Categorization and ExeutionLike most ognitive arhitetures, Iarus operates indistint yles. On eah suh iteration, the system up-dates its pereptual bu�er by sensing objets in its �eldof view. This produes pereptual elements that initi-ate mathing against long-term onepts. The matherheks to see whih onepts are satis�ed, adds eahmathed instane to oneptual short-term memory,and repeats the proess on the expanded set. In thisway, Iarus infers all instanes of onepts that areimplied by its oneptual de�nitions and the ontentsof the pereptual bu�er. In the bloks world, the agentwould �rst update its desriptions of the bloks and thetable, then infer primitive onepts like on, and �nallyinfer omplex onepts like unstakable.

On eah yle, the arhiteture examines the inten-tions in short-term skill memory to determine whih,if any, apply to the urrent situation and whih onehas the highest utility or value. For eah skill instane,Iarus aesses all expansions of the general skill tosee if they are appliable. A skill is appliable if, for itsurrent variable bindings, its :effets �eld does notmath, the :requires �eld mathes, and, if the sys-tem has not yet started exeuting it, the :start �eldmathes the urrent situation. Also, for higher-levelskills, at least one subskill must be appliable. Beausethis test is reursive, a skill is appliable only whenIarus an �nd at least one aeptable path down-ward to an exeutable ation. Iarus onsiders all a-eptable paths downward through the skill hierarhy,returning the path with the highest value.When the values are equal, Iarus selets one of theskill paths at random, as we assume in this paper. Forexample, suppose the agent has the intention (pikup-stak A table B) in a situation where the onept in-stanes (pikup-stakable A table B) and (pikupableA table) hold. This means the path ((pikup-stak Atable B), (pikup A table)) is appliable and would beonsidered for exeution. If seleted, the pikup skillwould alter the environment, making aeptable thepath ((pikup-stak A table B), (stak A B)) on thenext yle. This would produe a state that satis�esthe e�ets of (pikup-stak A table B), making anypath in whih it ours unaeptable.The arhiteture handles a skill di�erently depend-ing on how it is deomposed. For primitive skills thatinlude an :ations �eld, Iarus exeutes eah of thephysial ations, one after another, on a single yle.For higher-level skills that have an :ordered �eld, ittreats the list as a reative program that onsiders sub-skills in reverse order. If the �nal subskill is appliable,then it onsiders only paths whih inlude that subskill.Otherwise, it onsiders the penultimate skill, the onebefore that, and so forth. Presumably, the subskillsare ordered beause later ones are loser to the parentskill's objetive and thus are preferred when appliable.4.. Means-Ends Problem SolvingAs explained above, the previous version of Iarusould exeute omplex hierarhial skills in a reativemanner, but it assumed that these skills were alreadypresent in long-term memory. Although muh humanbehavior involves the appliation of suh routine skills,people an solve novel problems that require the om-bination of existing knowledge elements.To model this apability in Iarus, we have intro-dued a variant of means-ends analysis (Newell, Shaw,& Simon, 1960) that operates over the arhiteture's3



knowledge strutures. Traditional means-ends problemsolving selets some unsatis�ed aspet of the goal stateto ahieve, then selets an operator that would ahieveit. If that operator's preonditions math the urrentstate, it is applied; otherwise, the method selets anunsatis�ed preondition to ahieve, selets an operatorthat would ahieve it, and so on. One a ondition ismet, the proess is repeated until the original goal de-sription is satis�ed. This may require searh, whihis typially pursued in a depth-�rst manner. Means-ends analysis has been impliated repeatedly in humanproblem solving on novel tasks.Iarus implements a variant of this mehanismwith a stak that ontains goal elements in an orderedlist. Eah goal element spei�es an objetive (a desiredgoal literal) and whether it involves bakward hainingo� a onept de�nition or a skill. If the latter, then theelement may speify a skill that ahieves the objetive.Also, a goal element may have a `failed' �eld for skillsor onepts that it has tried and rejeted. On eahyle, Iarus takes one of six steps:� If the stak's top entry E has objetive O but hasno assoiated skill, it retrieves skills with O in theire�ets that have not failed before and do not lobberany ahieved goals earlier in the stak, selets aninstane S from this set, and assoiates S with E.� If Iarus retrieves no skills that would ahieve ob-jetive O, it determines whih instantiated subon-epts of O are not met, selets one (C) at random,and adds a goal element with C as its objetive.� If the top entry E on the stak has an assoiated skillinstane S that is appliable, in the sense desribedabove, then Iarus selets a skill path for S andexeutes it in the environment.� If the stak's top entry E inludes an assoiated skillinstane S that is not appliable, then Iarus addsa new entry on top of the stak with the start on-dition of skill S as its objetive.� If the objetive O for the top entry E on the stakis satis�ed by the urrent environmental state, thenIarus pops E from the stak.� Otherwise, if the system annot �nd a skill instanethat does not appear in the entry E's failed �eld,and if haining o� the unmathed elements of E'sobjetive O has failed, then it pops E from the stakand stores O in the failed �eld of E's parent.Eah of these ativities takes a single yle of the arhi-teture, with the initial situation being a speial aseof the �rst item that triggers the proess. Beause rea-soning about how to ahieve an objetive an requiremany manipulations of the goal stak, it takes moreyles than exeuting a hierarhial skill for that obje-tive, even when the agent does not have to baktrak.

Searh enters into this formulation in two plaes.One involves bakward haining o� the unmathed ele-ments of a onept de�nition. Here Iarus selets a lit-eral randomly from those not yet tried and keeps trakof literals it has failed to ahieve. The other involvesbakward haining o� skills that, if exeuted, wouldahieve the objetive of the urrent stak entry. HereIarus onsiders only skill instanes that have not yetfailed and prefers ones that have the fewest expanded:start onditions unmet by the urrent environmentalstate, with fully mathed onditions being most desir-able. If andidates tie on this riterion, it prefers skillinstanes that have a shorter expeted duration, and ifties remain, it selets a andidate at random.Taken together, these biases produe a heuristi ver-sion of means-ends analysis. However, this problem-solving method is tightly integrated with the exeu-tion proess. Iarus bakward hains o� onept orskill de�nitions when neessary, but it exeutes the skillassoiated with the top stak entry as soon as it be-omes appliable. Moreover, beause the arhiteturean hain over hierarhial reative skills, their exe-ution may ontinue for many yles before problemsolving is resumed. In ontrast, most models of humanproblem solving and most AI planning systems fouson the generation or the exeution of plans, rather thaninterleaving the two proesses.Of ourse, exeuting a omponent skill before on-struting a omplete plan an lead an agent into diÆ-ulties, sine it is harder to baktrak in the world thanin one's head. This strategy may well lead to subop-timal behaviors, but human intelligene is more aboutsatis�ing than optimizing, and interleaving problemsolving with exeuting requires far less memory thanonstruting a full plan before exeuting it. However,it an produe situations from whih the agent annotreover. Thus, if Iarus has not ahieved the top-levelobjetive in a goal stak within N yles, it resets theenvironment in the original situation and tries again,with no memory of its earlier attempts.5.. Learning from Problem SolvingIn the previous pages, we desribed two faets ofIarus: its exeution of hierarhial skills on famil-iar tasks and its use of problem solving to handle novelones. The �rst lets the system operate eÆiently, butskills are tedious to onstrut manually, whereas theseond gives the system exibility but requires reason-ing and means-ends searh. We believe that humansalso have both apabilities, but that they use learningto transform the results of suessful problem solvinginto hierarhial skills. We would like to inorporate asimilar apability into Iarus.4



However, we want our learning mehanisms to re-et ertain properties that appear to hold for humanskill aquisition. One is that learning should take ad-vantage of existing knowledge, suh as the de�nitionsof urrent skills and onepts. In addition, aquisi-tion should be inremental and interleaved with theproblem-solving proess. Taken together, these implythat learning should be umulative in that it buildsdiretly on the results of previous learning. The liter-ature on omputational learning ontains remarkablyfew ases of suh umulative knowledge aquisition.Our extension of Iarus ahieves this e�et througha form of impasse-driven learning that is tied loselyto its problem-solving and exeution proesses. As inSoar (Laird et al., 1986), the purpose of skill learningis to avoid suh impasses in the future. Thus, wheneverthe arhiteture ahieves an objetive that is assoiatedwith an entry in the goal stak, this provides an oppor-tunity for learning. The system aquires three distintforms of skill, whih we desribe in turn.The �rst ategory results from situations in whihIarus has attempted to exeute a skill instane Sto ahieve an objetive O, but found its start ondi-tions unsatis�ed and seleted another skill instane, P ,to ahieve them. One both skills have been exeutedsuessfully and the objetive reahed, the system on-struts a new skill N that has P and S as orderedsubskills. The objetive of N is the original objetive,O, and the start ondition is a new onept, C, that in-ludes the onditions of O that were satis�ed initially,the preonditions of S that were satis�ed initially, andthe start onditions of P . The de�nitions have their ar-guments replaed by variables in a onsistent manner.For example, the skill pikup-stak in Table 1 mightbe learned from exeuting (pikup A table) followedby (stak A B) to ahieve the goal (on A B).The other types of skills result from situations inwhih the problem solver ould not �nd a skill toahieve an objetive O, and thus reated as subgoalsthe literals fO1; O2; : : : ; Ong from the unsatis�ed on-ditions of O's oneptual de�nition. Suppose thesesubgoals have eah been ahieved in turn by exeut-ing the skill instanes fS1; S2; : : : ; Sng, respetively,thus satisfying the parent goal O. When this ours,Iarus onstruts a new skill N with ordered sub-skills fS1; G2; : : : ; Gng. Eah Gk is a \guard" skillwith Sk as a single subskill, with no e�ets, and withfO1; : : : ; Ok�1g as its start onditions, whih ensurethat Sk is invoked only after these objetives have beenmet. Their parent skill N has O as its e�et and, asits start ondition, a new onept C that inludes boththe elements of O that were satis�ed initially and theanalogous elements of S1, . . . , and Sn. Again, spei�

arguments are replaed onsistently by variables.We have emphasized the onstrution of hierarhi-al skills, but, as noted above, Iarus also aquiresnew onepts in the proess. These play the role ofstart onditions for the new skills and ensure they areexeuted only when appropriate. Thus, one an viewthese onepts as funtionally motivated, even thoughtheir de�nitions are purely strutural. For example, theonept (pikup-stakable ?blok ?from ?to) reated asthe start ondition of skill pikup-stak above is de-�ned as the onjuntion of (pikupable ?blok ?from)and (lear ?to), whih is the situation in whih exe-uting (pikup ?blok ?from) followed by (stak ?blok?to) will ahieve the e�et (on ?blok ?to).These learning mehanisms are fully inremental, inthat eah learning event draws on a single problem-solving experiene and thus requires no memory of pre-vious ones. They support within-trial learning, sineskills aquired on one subproblem may be used to han-dle later subproblems. The proesses also build on ex-isting knowledge, sine the onstrution of new skillsand onepts involves the omposition of those usedin a training problem's solution. Taken together, thesesupport a form of umulative learning, in whih Iaruslearns skills and onepts on one problem, uses themto solve a later problem, and inorporates them intostill higher-level skills and onepts.6.. Experiments with Hierarhy LearningInitial studies with the bloks world and the Tower ofHanoi on�rmed that the extended version of Iaruslearns hierarhial skills and onepts in the manner de-sribed. Moreover, they revealed that, when given thesame task to solve a seond time, the system utilizesthis knowledge to handle it without problem solving,although this does not mean it ompletes the problemin a single yle. Reall that, unlike traditional ogni-tive arhitetures, Iarus resorts to problem solvingonly to enable exeution, and it must still exeute itsaquired skills to reah an objetive. Thus, for a prob-lem that requires four primitive steps, the system takessix yles on the seond enounter, with one to retrievethe hierarhial skill and one to realize it has �nished.For the bloks world, Iarus learns skills for ahiev-ing partiular on�gurations from di�erent initial on-�gurations, along with onepts for the start onditionsof eah skill and subskill. Yet beause the system gen-eralizes its learned strutures beyond the spei� in-stanes on whih they are based, it an handle withoutproblem solving any task that is isomorphi to one ithas already solved. This isomorphism must involve thesame objetive and have the same subonepts satis�edor unsatis�ed in the initial environment.5



However, we desired more than anedotal demon-strations that the new mehanisms supported umula-tive learning of skills and onepts. We also wanted ev-idene from systemati experiments that this learnedknowledge produes more e�etive behavior. To thisend, we examined the state spae for bloks-worldproblems that involve three bloks. If one ignores iso-morphisms, then there are �ve problems that an besolved in two primitive steps, eight tasks solvable infour steps, nine six-step problems, and four eight-stepproblems.3 These 26 tasks onstituted both the train-ing and test problems for the study.We provided the system with four primitive skillsand ten onepts, inluding one for the desired state,that were suÆient, in priniple, to solve these bloks-world problems. We then presented it with these prob-lems in sequene, using eah task as a training prob-lem but also reording the number of yles required toomplete it. Beause misguided searh ombined withexeution an lead the problem solver into undesirablephysial states, we told it to halt if it had not �nisheda run within 50 yles and start over from the initialstate. However, it ould attempt a given problem onlyten times, and thus spend at most 500 yles before giv-ing up entirely. We also limited the stak depth to sixgoal elements. We enfored these onstraints for rea-sons of pratiality and beause we think they reetthe manner in whih humans takle novel problems.We ran Iarus on the 26 bloks-world problems,ordering them by diÆulty lass (two-step tasks �rstand eight-step tasks last) but randomly within a lass.The intuition was that the system would learn moree�etively if we presented it �rst with simpler prob-lems, whih it ould then use in solving more diÆultones. To this end, Iarus retained skills and oneptsaquired on suessful runs for use in later tasks. How-ever, if the system failed on a given run, it removed anyskills and onepts reated during that run, to preventinuene on later attempts. We ran Iarus over 200randomly generated problem orders and averaged thenumber of yles needed at eah level of experiene. Asa ontrol, we also ran the arhiteture with its learningmehanisms o� for another 200 random problem sets.Figure 1 shows the result of this experiment, inlud-ing 95 perent on�dene intervals around eah mean.The two urves show learly that learning redues thetotal yles required to solve problems in the bloksworld. Both urves are step funtions that inreasewith problem diÆulty, as one would expet. Remem-ber that none of the problems are isomorphi, although3We ignored tasks with an odd number of steps, sine thesestart or end with a blok in the air. Also, we onsidered onlyproblems in whih the objetive was a fully spei�ed state.
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Figure 1. Number of yles required by Iarus tosolve a bloks-world task as a funtion of the numberof training problems, averaged over 200 runs, withorder randomized within eah di�iulty lass.they may involve isomorphi subtasks. The results sug-gest that Iarus takes advantage of that similar sub-struture to redue its e�ort on later problems. In atypial run on 26 problems, the system onstruted 9new onepts and 74 skills, inluding 9 skill-hainingskills, 34 onept-haining skills, and 31 guard skills.We presented Iarus with problems in inreasingorder of diÆulty beause we believed this training reg-imen would lead to better learning. Our intuition wasthat, beause the system would be more likely to solvesimpler problems, it would more readily aquire skillsand onepts that would prove useful in more om-plex ones enountered later. However, this hypothe-sis seemed worth testing experimentally, so we arriedout another study with this in mind. In this ase, weheld bak the four eight-step tasks for testing, and letIarus learn only from the 22 simpler problems.We examined three onditions, one in whih (as be-fore) problems were ordered randomly within their dif-�ulty lass, one in whih they were ordered randomlywithout this onsideration, and one in whih no learn-ing ourred. Again we averaged the required numberof yles over 200 di�erent runs and, in this ase, overthe four test problems. As expeted, the ondition withno learning fared far worst, taking 236:78�11:43 yles.However, the skills aquired from problems ordered bydiÆulty took 113:88 � 11:37, whereas those learnedfrom randomly ordered tasks took 99:06�10:16. Thus,presenting simpler problems earlier did not appear tohelp Iarus learn any more e�etively.To understand better the fators at work, we re-peated the random order ondition with fewer training6



problems, again testing on the four eight-step tasks.When trained only on the �ve two-step problems, theaverage over 200 runs was 262:66 � 12:72 yles, andwhen the system learned from these and the eight four-step problems, the average was 160:38� 12:48 yles,while the diÆulty ordering produed nearly the sameresults. Thus, Iarus shows steady improvement withexperiene, apparently aquiring useful skills and on-epts even from relatively omplex training problems.7.. Related ResearhThe use of bakground knowledge to support learninghas a long history within both AI and ognitive siene.Researh on explanation-based learning often aimed toimprove eÆieny on problem-solving tasks and om-bined experiene with a domain theory to reate newognitive strutures. Some tehniques aquired searh-ontrol rules to guide problem solving, but others in-stead onstruted maro-operators from primitive op-erators (e.g., Iba, 1988; Mooney, 1989). Our approahto skill learning omes loser to the seond tradition,sine both involve omposing knowledge elements intolarger strutures. However, Iarus adapts this idea forthe reation of skill hierarhies, whereas earlier meth-ods produed at maro-operators that ontained lessstruture than the original knowledge base.4Iarus also has similarities to other ognitive ar-hitetures that inorporate varieties of explanation-based learning. For example, Laird, Rosenbloom, andNewell's (1986) Soar revolves around a problem solverthat proeeds until the system enounters an impasse,in whih ase it arries out searh to resolve it. OneSoar has handled the impasse, it reates a hunk thatenodes a generalized explanation of the result in termsof the original goal ontext. Anderson's (1993) ACT-Remploys another mehanism, ompilation, that reatesa new prodution rule from ones that are involved inthe same reasoning hain. This sheme produes veryspei� rules that replae variables with the delara-tive elements against whih they mathed, rather thanforming generalized strutures. In fat, our approahis muh loser to the omposition proess that playeda role in muh earlier versions of ACT.The arhiteture most akin to Iarus is Prodigy(Minton, 1990), whih invokes means-ends analysis tosolve problems and uses an analytial method to learneither searh-ontrol roles or maro-operators fromproblem-solving traes. Veloso and Carbonell (1993)also desribe an extension that reords these traes inmemory and solves new problems by analogy with ear-lier ones. None of these mehanisms generates expliit4However, we have adopted Mooney's key idea that oneshould not hain o� the preonditions of learned skills.

hierarhial strutures, but beause the latter storesases of ever-inreasing size, it an produe e�ets sim-ilar to the umulative learning found in Iarus.A few researhers have built systems that supportumulative learning outside the ontext of problem-solving tasks. One early example was Sammut andBanerji's (1986) Marvin, whih learns logial oneptsthat are omposed of other onepts. A human trainerpresents the system with examples of inreasingly om-plex onepts, ensuring it has mastered eah one beforemoving to the next. Peger (in press) desribes anothersystem that aquires hierarhial patterns in an unsu-pervised on-line setting. Like Marvin, it learns on-eptual strutures from the bottom up, so that moreomplex patterns are apparent after simpler ones havebeen aquired. Strauzzi and Utgo� (2002) report athird system that learns in a umulative fashion.Ruby and Kibler's (1991) SteppingStone also learnsto solve more diÆult problems based on solutions gen-eralized from simpler ones, whih it obtains through amixture of problem redution and exhaustive searh.Benson's (1995) TRAIL inorporates a reative on-trol module that invokes learning when it reahes anexeution impasse. Observation and experimentationdrive learning rather than problem solving, and the sys-tem aquires models for primitive ations rather thanhierarhial strutures, but its later learning dependson earlier experiene. Ilghami et al. (2002) present an-other system that organizes plan knowledge in a hier-arhial task network, but learns onditions for methodseletion rather than the network itself. A loser rel-ative to Iarus is Reddy and Tadepalli's (1997) X-Learn, whih aquires goal-deomposition rules from asequene of training exerises. Their system does notinlude an exeution engine, but it generates hierarhi-al plans and learns strutures in a umulative manner.8.. Conluding RemarksIn the preeding pages, we presented Iarus, a og-nitive arhiteture for physial agents that uses storedonepts and skills, both organized in hierarhies, toreognize familiar situations and ontrol its behavior.We desribed a new module that supports means-endsproblem solving on novel tasks, along with a learningmehanism that produes new skills and onepts fromtraes of problem solutions. This method operates inan inremental and umulative manner, reating hier-arhial strutures that refer to others learned earlier.In addition, we reported experiments with the bloksworld that showed suh learning enables more e�etivebehavior on unfamiliar problems.Despite these advanes, our work on umulativelearning in Iarus is still in its early stages. For in-7



stane, we should show its ability to learn hierarhialstrutures on other problem-solving tasks besides thebloks world and the Tower of Hanoi. More important,we should study Iarus' behavior in dynami domainsthat require integration of problem solving with rea-tive ontrol. A prime andidate is the driving environ-ment we have used to evaluate the arhiteture's ate-gorization and exeution modules (Choi et al., 2004).In addition, Iarus' methods for problem solvingand hierarhial learning would bene�t from new a-pabilities. The urrent system selets subgoals ran-domly when haining o� a onept de�nition, whihmeans that it must often baktrak even when it hasskills for omponent subproblems. Extending the prob-lem solver to selet subgoals heuristially would let ittake better advantage of learned subskills. Nor anIarus aquire reursive skills for tasks that involveregular struture, suh as building towers in the bloksworld. Analyzing relations among learned skills mayprovide this ability, whih should let the system trans-fer learned knowledge to problems with more objets.We should also address the utility problem, whihan atually produe slower behavior in systems thatlearn problem-solving skills. Our plans here involvestoring an expeted duration and suess probabilitywith eah skill, whih would then be used in exeu-tion and problem solving. Initial estimates would omefrom a skill's omponents but would be revised as theagent utlizes the skill. Combined with other extensions,this should give Iarus a more robust and e�etiveapproah to umulative learning that, in its own right,builds on our experiene with the urrent arhiteture.AknowledgementsThis researh was funded in part by Grant HR0011-04-1-0008 from DARPA IPTO and by Grant IIS-0335353from the National Siene Foundation. Disussionswith Glenn Iba, David Niholas, Stephanie Sage, andDan Shapiro ontributed to many ideas presented here.ReferenesAnderson, J. R. (1993). Rules of the mind . Hillsdale,NJ: Lawrene Erlbaum.Benson, S. (1995). Indution learning of reative a-tion models. Proeedings of the Twelfth Interna-tional Conferene on Mahine Learning (pp. 47{54).San Franiso: Morgan Kaufmann.Choi, D., Kaufman, M., Langley, P., Nejati, N., &Shapiro, D. (2004). An arhiteture for persistentreative behavior. Proeedings of the Third Interna-tional Joint Conferene on Autonomous Agents andMulti Agent Systems (pp. 988{995). ACM Press.
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