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tIn this paper, we review ICARUS, a 
ognitive ar
hite
-ture that utilizes hierar
hi
al skills and 
on
epts forrea
tive exe
ution in physi
al environments. In addi-tion, we present two extensions to the framework. The�rst involves the in
orporation of means-ends analy-sis, whi
h lets the system 
ompose known skills to solvenovel problems. The se
ond involves the storage of newskills and 
on
epts that are based on su

essful means-ends tra
es. We report experimental studies of thisme
hanism in the blo
ks world, whi
h show that learn-ing operates in a 
umulative manner that redu
es thee�ort required to handle new tasks. We 
on
lude witha dis
ussion of related work on learning and prospe
tsfor additional resear
h.1.. Introdu
tion and MotivationResear
h on 
ognitive ar
hite
tures (Newell, 1990) at-tempts to understand the 
omputational infrastru
-tures that support intelligent behavior. A spe
i�
 ar-
hite
ture spe
i�es the aspe
ts of a 
ognitive agent thatremain the same a
ross time and over di�erent do-mains, and typi
ally makes strong 
ommitments aboutthe representation of knowledge stru
tures and the pro-
esses that operate them. Learning has been a 
entral
on
ern in most ar
hite
tural resear
h, with a varietyof me
hanisms having been proposed to model the a
-quisition of knowledge from experien
e.In this paper we review I
arus, a 
andidate ar
hi-te
ture that diverges from its prede
essors on a numberof dimensions. One important di�eren
e is that mostframeworks fo
us on produ
tion systems, whi
h en-
ode knowledge as a `
at' set of 
ondition-a
tion rules,whereas I
arus provides expli
it support for hierar-
hies of both 
on
epts and skills. In addition, most
ognitive ar
hite
tures evolved from theories of humanproblem solving, and thus fo
us on mental phenomena.

In 
ontrast, I
arus is mainly an exe
ution ar
hite
turethat per
eives and rea
ts to external environments.However, I
arus' relian
e on hierar
hi
al stru
turesraises key questions about their origin. Moreover, thear
hite
ture's emphasis on exe
ution does not meanthat mental a
tivities like problem solving are unim-portant, sin
e they 
an let an agent handle novel tasksfor whi
h stored knowledge is unavailable. The 
entralhypothesis of this paper is that hierar
hi
al skills and
on
epts arise, at least in many 
ases, from problem-solving behavior, and that, on
e learned, the agent 
anuse these stru
tures to support rea
tive exe
ution inthe environment.In the se
tions that follow, we review I
arus' repre-sentation and organization of 
on
epts and skills, alongwith the 
ategorization and exe
ution pro
esses thatutilize them. After this, we present a new module thatinterleaves means-ends problem solving with exe
utionwhen known skills are insuÆ
ient to solve a task. Nextwe des
ribe a me
hanism for 
reating generalized skillsand 
on
epts from tra
es of su

essful problem solvingthat supports both in
remental and 
umulative learn-ing. We report experiments with this learning me
h-anism that demonstrate its ability to redu
e e�ort onnew problems and that examine e�e
ts of training or-der. In 
losing, we dis
uss earlier resear
h on learn-ing problem-solving knowledge and 
umulative learn-ing, along with some dire
tions for future work.2.. Representation and OrganizationLike other 
ognitive ar
hite
tures, I
arus makes 
om-mitments to its representation of knowledge, the man-ner in whi
h it is organized, and the memories in whi
hit resides. Here we dis
uss the framework's long-termand short-term memories, in
luding formalisms used toen
ode their 
ontents. We will take our examples fromthe blo
ks world, sin
e many readers should �nd thisdomain familiar.1



One of I
arus' long-term memories stores Boolean
on
epts that des
ribe situations in the environment.These may involve isolated obje
ts, su
h as individ-ual blo
ks, but they 
an also 
hara
terize physi
al re-lations among obje
ts, su
h as the relative positionsof blo
ks. Long-term 
on
eptual memory 
ontains thede�nitions of these logi
al 
ategories. Ea
h elementspe
i�es the 
on
ept's name and arguments, along with�ve optional �elds { :per
epts, whi
h des
ribes per-
eptual entities that must be present; :positives,whi
h indi
ates lower-level 
on
epts that must mat
h;:negatives, whi
h spe
i�es lower-level 
on
epts thatmust not mat
h; :tests, whi
h states numeri
 rela-tions that must be satis�ed; and :ex
ludes, whi
hindi
ates literals whose negation is entailed when the
on
ept holds.Table 1 presents some 
on
epts from the blo
ksworld. For example, on des
ribes a per
eived situa-tion in whi
h two blo
ks have the same x position andthe bottom of one has the same y position as the topof the other. The 
on
ept 
lear refers to a single blo
k,but one that 
annot hold the relation on to any other,as spe
i�ed in its :negatives �eld.De�nitions of this sort organize I
arus 
ategoriesinto a 
on
eptual hierar
hy. Primitive 
on
epts arede�ned entirely in terms of per
eptual 
onditions andnumeri
 tests, but many in
orporate other 
on
epts intheir de�nitions. This imposes a latti
e stru
ture onthe memory, with more basi
 
on
epts at the bottomand more 
omplex 
on
epts at higher levels. The re-sulting hierar
hy is similar in spirit to early models ofhuman memory like Epam (Feigenbaum, 1963), as wellas to frameworks like des
ription logi
s.I
arus also in
orporates a se
ond long-term mem-ory that stores knowledge about skills it 
an exe
ute inthe environment, in
luding their 
onditions for appli
a-tion and their expe
ted e�e
ts. Ea
h skill has a name,arguments, and a set of optional �elds. The :start�eld spe
i�es the 
on
epts that must hold to initiatethe skill, whereas the :requires �eld indi
ates 
ondi-tions that must hold throughout its exe
ution, whi
hmay require multiple 
y
les to 
omplete. The :effe
ts�eld spe
i�es a 
onjun
tion of 
on
epts that, taken to-gether, des
ribe the situation the skill produ
es whendone. For example, Table 2 shows the skill pi
kup,whi
h must satisfy the single start 
ondition, (pi
ku-pable ?blo
k ?from), de�ned in Table 1. The skill'sonly stated e�e
t is to make (holding ?blo
k) true.1Ea
h I
arus skill also in
ludes a �eld that spe
i-�es how to de
ompose it further. Two example skillsin the table utilize the :a
tions �eld, whi
h refers1Note that the use of :ex
ludes �elds in 
on
epts avoids theneed for expli
it delete lists in skills, as in most planning systems.

Table 1. Some I
arus 
on
epts for the blo
ks world,with variables indi
ated by question marks.(on (?blo
k1 ?blo
k2):per
epts ((blo
k ?blo
k1 xpos ?x1 ypos ?y1)(blo
k ?blo
k2 xpos ?x2 ypos ?y2height ?h2)):tests ((equal ?x1 ?x2) (>= ?y1 ?y2)(<= ?y1 (+ ?y2 ?h2))):ex
ludes ((
lear ?blo
k2)))(
lear (?blo
k):per
epts ((blo
k ?blo
k)):negatives ((on ?other ?blo
k)):ex
ludes ((on ?other ?blo
k)))(pi
kupable (?blo
k ?from):per
epts ((blo
k ?blo
k)(table ?from)):positives ((ontable ?blo
k ?from)(
lear ?blo
k)(hand-empty)))(pi
kup-sta
kable (?blo
k ?from ?to):per
epts ((blo
k ?blo
k)(table ?from)(blo
k ?to)):positives ((pi
kupable ?blo
k ?from)(
lear ?to)))to opaque a
tions the agent 
an exe
ute dire
tly inthe environment. For instan
e, unsta
k invokes both*grasp, whi
h grasps a blo
k, and *verti
al-move,whi
h moves the hand in the verti
al dire
tion. How-ever, the nonprimitive skill pi
kup-sta
k instead in-
ludes an :ordered �eld, whi
h spe
i�es the subskillsof whi
h it is 
omposed, in this 
ase the primitive skillspi
kup and sta
k.2In fa
t, I
arus lets one spe
ify multiple ways tode
ompose a given 
on
ept or skill, mu
h as a Prologprogram 
an in
lude more than one Horn 
lause withthe same head. In addition, ea
h skill de
omposition
an in
lude a value fun
tion that en
odes the utility ex-pe
ted if the agent exe
utes the skill with that de
om-position. Neither 
apability plays an important role inthis paper, but we have des
ribed them in some detailelsewhere (Choi et al., 2004).In addition to long-term memories, whi
h en
odestable knowledge about a domain, I
arus in
ludesshort-term stores that 
hange more rapidly. Thesemake 
onta
t with long-term 
on
epts and skills, butthey represent temporary beliefs about the environ-ment and intended a
tivities. In parti
ular, the per-
eptual bu�er 
ontains des
riptions of physi
al entitiesthat 
orrespond to the output of sensors. For the blo
ksworld, this in
ludes literals like (blo
k B xpos 10 ypos2I
arus also supports an unordered �eld for subskills that
an be exe
uted in any order, but they play no role here.2



Table 2. Some I
arus skills for the blo
ks world.(pi
kup (?blo
k ?from):per
epts ((blo
k ?blo
k)(table ?from height ?h)):start ((pi
kupable ?blo
k ?from)):a
tions ((*grasp ?blo
k)(*verti
al-move ?blo
k (+ ?h 10))):effe
ts ((holding ?blo
k)))(sta
k (?blo
k ?to):per
epts ((blo
k ?blo
k)(blo
k ?to xpos ?x ypos ?y height ?h)):start ((sta
kable ?blo
k ?to)):a
tions ((*horizontal-move ?blo
k ?x)(*verti
al-move ?blo
k (+ ?y ?h))(*ungrasp ?blo
k)):effe
ts ((on ?blo
k ?to)(hand-empty)))(pi
kup-sta
k (?blo
k ?from ?to):per
epts ((blo
k ?blo
k)(blo
k ?from)(table ?to)):start ((pi
kup-sta
kable ?blo
k ?from ?to)):ordered ((pi
kup ?blo
k ?from)(sta
k ?blo
k ?to)):effe
ts ((on ?blo
k ?to)))2 width 2 height 2), whi
h spe
ify the position and sizeof individual blo
ks. Moreover, the short-term 
on
ep-tual memory 
ontains beliefs about the environmentthat the agent infers from items present in its per
ep-tual bu�er and its long-term 
on
ept memory. For in-stan
e, this might 
ontain the instan
e (on B C), whi
his an instan
e of the on 
on
ept in Table 1. Finally,a short-term skill memory 
ontains the agent's inten-tions about skill instan
es it plans to exe
ute, whi
hlets the system engage in behavior that persists overtime. Ea
h literal spe
i�es the skill's name and its ar-guments, as in (sta
k B C).3.. Categorization and Exe
utionLike most 
ognitive ar
hite
tures, I
arus operates indistin
t 
y
les. On ea
h su
h iteration, the system up-dates its per
eptual bu�er by sensing obje
ts in its �eldof view. This produ
es per
eptual elements that initi-ate mat
hing against long-term 
on
epts. The mat
her
he
ks to see whi
h 
on
epts are satis�ed, adds ea
hmat
hed instan
e to 
on
eptual short-term memory,and repeats the pro
ess on the expanded set. In thisway, I
arus infers all instan
es of 
on
epts that areimplied by its 
on
eptual de�nitions and the 
ontentsof the per
eptual bu�er. In the blo
ks world, the agentwould �rst update its des
riptions of the blo
ks and thetable, then infer primitive 
on
epts like on, and �nallyinfer 
omplex 
on
epts like unsta
kable.

On ea
h 
y
le, the ar
hite
ture examines the inten-tions in short-term skill memory to determine whi
h,if any, apply to the 
urrent situation and whi
h onehas the highest utility or value. For ea
h skill instan
e,I
arus a

esses all expansions of the general skill tosee if they are appli
able. A skill is appli
able if, for its
urrent variable bindings, its :effe
ts �eld does notmat
h, the :requires �eld mat
hes, and, if the sys-tem has not yet started exe
uting it, the :start �eldmat
hes the 
urrent situation. Also, for higher-levelskills, at least one subskill must be appli
able. Be
ausethis test is re
ursive, a skill is appli
able only whenI
arus 
an �nd at least one a

eptable path down-ward to an exe
utable a
tion. I
arus 
onsiders all a
-
eptable paths downward through the skill hierar
hy,returning the path with the highest value.When the values are equal, I
arus sele
ts one of theskill paths at random, as we assume in this paper. Forexample, suppose the agent has the intention (pi
kup-sta
k A table B) in a situation where the 
on
ept in-stan
es (pi
kup-sta
kable A table B) and (pi
kupableA table) hold. This means the path ((pi
kup-sta
k Atable B), (pi
kup A table)) is appli
able and would be
onsidered for exe
ution. If sele
ted, the pi
kup skillwould alter the environment, making a

eptable thepath ((pi
kup-sta
k A table B), (sta
k A B)) on thenext 
y
le. This would produ
e a state that satis�esthe e�e
ts of (pi
kup-sta
k A table B), making anypath in whi
h it o

urs una

eptable.The ar
hite
ture handles a skill di�erently depend-ing on how it is de
omposed. For primitive skills thatin
lude an :a
tions �eld, I
arus exe
utes ea
h of thephysi
al a
tions, one after another, on a single 
y
le.For higher-level skills that have an :ordered �eld, ittreats the list as a rea
tive program that 
onsiders sub-skills in reverse order. If the �nal subskill is appli
able,then it 
onsiders only paths whi
h in
lude that subskill.Otherwise, it 
onsiders the penultimate skill, the onebefore that, and so forth. Presumably, the subskillsare ordered be
ause later ones are 
loser to the parentskill's obje
tive and thus are preferred when appli
able.4.. Means-Ends Problem SolvingAs explained above, the previous version of I
arus
ould exe
ute 
omplex hierar
hi
al skills in a rea
tivemanner, but it assumed that these skills were alreadypresent in long-term memory. Although mu
h humanbehavior involves the appli
ation of su
h routine skills,people 
an solve novel problems that require the 
om-bination of existing knowledge elements.To model this 
apability in I
arus, we have intro-du
ed a variant of means-ends analysis (Newell, Shaw,& Simon, 1960) that operates over the ar
hite
ture's3



knowledge stru
tures. Traditional means-ends problemsolving sele
ts some unsatis�ed aspe
t of the goal stateto a
hieve, then sele
ts an operator that would a
hieveit. If that operator's pre
onditions mat
h the 
urrentstate, it is applied; otherwise, the method sele
ts anunsatis�ed pre
ondition to a
hieve, sele
ts an operatorthat would a
hieve it, and so on. On
e a 
ondition ismet, the pro
ess is repeated until the original goal de-s
ription is satis�ed. This may require sear
h, whi
his typi
ally pursued in a depth-�rst manner. Means-ends analysis has been impli
ated repeatedly in humanproblem solving on novel tasks.I
arus implements a variant of this me
hanismwith a sta
k that 
ontains goal elements in an orderedlist. Ea
h goal element spe
i�es an obje
tive (a desiredgoal literal) and whether it involves ba
kward 
hainingo� a 
on
ept de�nition or a skill. If the latter, then theelement may spe
ify a skill that a
hieves the obje
tive.Also, a goal element may have a `failed' �eld for skillsor 
on
epts that it has tried and reje
ted. On ea
h
y
le, I
arus takes one of six steps:� If the sta
k's top entry E has obje
tive O but hasno asso
iated skill, it retrieves skills with O in theire�e
ts that have not failed before and do not 
lobberany a
hieved goals earlier in the sta
k, sele
ts aninstan
e S from this set, and asso
iates S with E.� If I
arus retrieves no skills that would a
hieve ob-je
tive O, it determines whi
h instantiated sub
on-
epts of O are not met, sele
ts one (C) at random,and adds a goal element with C as its obje
tive.� If the top entry E on the sta
k has an asso
iated skillinstan
e S that is appli
able, in the sense des
ribedabove, then I
arus sele
ts a skill path for S andexe
utes it in the environment.� If the sta
k's top entry E in
ludes an asso
iated skillinstan
e S that is not appli
able, then I
arus addsa new entry on top of the sta
k with the start 
on-dition of skill S as its obje
tive.� If the obje
tive O for the top entry E on the sta
kis satis�ed by the 
urrent environmental state, thenI
arus pops E from the sta
k.� Otherwise, if the system 
annot �nd a skill instan
ethat does not appear in the entry E's failed �eld,and if 
haining o� the unmat
hed elements of E'sobje
tive O has failed, then it pops E from the sta
kand stores O in the failed �eld of E's parent.Ea
h of these a
tivities takes a single 
y
le of the ar
hi-te
ture, with the initial situation being a spe
ial 
aseof the �rst item that triggers the pro
ess. Be
ause rea-soning about how to a
hieve an obje
tive 
an requiremany manipulations of the goal sta
k, it takes more
y
les than exe
uting a hierar
hi
al skill for that obje
-tive, even when the agent does not have to ba
ktra
k.

Sear
h enters into this formulation in two pla
es.One involves ba
kward 
haining o� the unmat
hed ele-ments of a 
on
ept de�nition. Here I
arus sele
ts a lit-eral randomly from those not yet tried and keeps tra
kof literals it has failed to a
hieve. The other involvesba
kward 
haining o� skills that, if exe
uted, woulda
hieve the obje
tive of the 
urrent sta
k entry. HereI
arus 
onsiders only skill instan
es that have not yetfailed and prefers ones that have the fewest expanded:start 
onditions unmet by the 
urrent environmentalstate, with fully mat
hed 
onditions being most desir-able. If 
andidates tie on this 
riterion, it prefers skillinstan
es that have a shorter expe
ted duration, and ifties remain, it sele
ts a 
andidate at random.Taken together, these biases produ
e a heuristi
 ver-sion of means-ends analysis. However, this problem-solving method is tightly integrated with the exe
u-tion pro
ess. I
arus ba
kward 
hains o� 
on
ept orskill de�nitions when ne
essary, but it exe
utes the skillasso
iated with the top sta
k entry as soon as it be-
omes appli
able. Moreover, be
ause the ar
hite
ture
an 
hain over hierar
hi
al rea
tive skills, their exe-
ution may 
ontinue for many 
y
les before problemsolving is resumed. In 
ontrast, most models of humanproblem solving and most AI planning systems fo
uson the generation or the exe
ution of plans, rather thaninterleaving the two pro
esses.Of 
ourse, exe
uting a 
omponent skill before 
on-stru
ting a 
omplete plan 
an lead an agent into diÆ-
ulties, sin
e it is harder to ba
ktra
k in the world thanin one's head. This strategy may well lead to subop-timal behaviors, but human intelligen
e is more aboutsatis�
ing than optimizing, and interleaving problemsolving with exe
uting requires far less memory than
onstru
ting a full plan before exe
uting it. However,it 
an produ
e situations from whi
h the agent 
annotre
over. Thus, if I
arus has not a
hieved the top-levelobje
tive in a goal sta
k within N 
y
les, it resets theenvironment in the original situation and tries again,with no memory of its earlier attempts.5.. Learning from Problem SolvingIn the previous pages, we des
ribed two fa
ets ofI
arus: its exe
ution of hierar
hi
al skills on famil-iar tasks and its use of problem solving to handle novelones. The �rst lets the system operate eÆ
iently, butskills are tedious to 
onstru
t manually, whereas these
ond gives the system 
exibility but requires reason-ing and means-ends sear
h. We believe that humansalso have both 
apabilities, but that they use learningto transform the results of su

essful problem solvinginto hierar
hi
al skills. We would like to in
orporate asimilar 
apability into I
arus.4



However, we want our learning me
hanisms to re-
e
t 
ertain properties that appear to hold for humanskill a
quisition. One is that learning should take ad-vantage of existing knowledge, su
h as the de�nitionsof 
urrent skills and 
on
epts. In addition, a
quisi-tion should be in
remental and interleaved with theproblem-solving pro
ess. Taken together, these implythat learning should be 
umulative in that it buildsdire
tly on the results of previous learning. The liter-ature on 
omputational learning 
ontains remarkablyfew 
ases of su
h 
umulative knowledge a
quisition.Our extension of I
arus a
hieves this e�e
t througha form of impasse-driven learning that is tied 
loselyto its problem-solving and exe
ution pro
esses. As inSoar (Laird et al., 1986), the purpose of skill learningis to avoid su
h impasses in the future. Thus, wheneverthe ar
hite
ture a
hieves an obje
tive that is asso
iatedwith an entry in the goal sta
k, this provides an oppor-tunity for learning. The system a
quires three distin
tforms of skill, whi
h we des
ribe in turn.The �rst 
ategory results from situations in whi
hI
arus has attempted to exe
ute a skill instan
e Sto a
hieve an obje
tive O, but found its start 
ondi-tions unsatis�ed and sele
ted another skill instan
e, P ,to a
hieve them. On
e both skills have been exe
utedsu

essfully and the obje
tive rea
hed, the system 
on-stru
ts a new skill N that has P and S as orderedsubskills. The obje
tive of N is the original obje
tive,O, and the start 
ondition is a new 
on
ept, C, that in-
ludes the 
onditions of O that were satis�ed initially,the pre
onditions of S that were satis�ed initially, andthe start 
onditions of P . The de�nitions have their ar-guments repla
ed by variables in a 
onsistent manner.For example, the skill pi
kup-sta
k in Table 1 mightbe learned from exe
uting (pi
kup A table) followedby (sta
k A B) to a
hieve the goal (on A B).The other types of skills result from situations inwhi
h the problem solver 
ould not �nd a skill toa
hieve an obje
tive O, and thus 
reated as subgoalsthe literals fO1; O2; : : : ; Ong from the unsatis�ed 
on-ditions of O's 
on
eptual de�nition. Suppose thesesubgoals have ea
h been a
hieved in turn by exe
ut-ing the skill instan
es fS1; S2; : : : ; Sng, respe
tively,thus satisfying the parent goal O. When this o

urs,I
arus 
onstru
ts a new skill N with ordered sub-skills fS1; G2; : : : ; Gng. Ea
h Gk is a \guard" skillwith Sk as a single subskill, with no e�e
ts, and withfO1; : : : ; Ok�1g as its start 
onditions, whi
h ensurethat Sk is invoked only after these obje
tives have beenmet. Their parent skill N has O as its e�e
t and, asits start 
ondition, a new 
on
ept C that in
ludes boththe elements of O that were satis�ed initially and theanalogous elements of S1, . . . , and Sn. Again, spe
i�


arguments are repla
ed 
onsistently by variables.We have emphasized the 
onstru
tion of hierar
hi-
al skills, but, as noted above, I
arus also a
quiresnew 
on
epts in the pro
ess. These play the role ofstart 
onditions for the new skills and ensure they areexe
uted only when appropriate. Thus, one 
an viewthese 
on
epts as fun
tionally motivated, even thoughtheir de�nitions are purely stru
tural. For example, the
on
ept (pi
kup-sta
kable ?blo
k ?from ?to) 
reated asthe start 
ondition of skill pi
kup-sta
k above is de-�ned as the 
onjun
tion of (pi
kupable ?blo
k ?from)and (
lear ?to), whi
h is the situation in whi
h exe-
uting (pi
kup ?blo
k ?from) followed by (sta
k ?blo
k?to) will a
hieve the e�e
t (on ?blo
k ?to).These learning me
hanisms are fully in
remental, inthat ea
h learning event draws on a single problem-solving experien
e and thus requires no memory of pre-vious ones. They support within-trial learning, sin
eskills a
quired on one subproblem may be used to han-dle later subproblems. The pro
esses also build on ex-isting knowledge, sin
e the 
onstru
tion of new skillsand 
on
epts involves the 
omposition of those usedin a training problem's solution. Taken together, thesesupport a form of 
umulative learning, in whi
h I
aruslearns skills and 
on
epts on one problem, uses themto solve a later problem, and in
orporates them intostill higher-level skills and 
on
epts.6.. Experiments with Hierar
hy LearningInitial studies with the blo
ks world and the Tower ofHanoi 
on�rmed that the extended version of I
aruslearns hierar
hi
al skills and 
on
epts in the manner de-s
ribed. Moreover, they revealed that, when given thesame task to solve a se
ond time, the system utilizesthis knowledge to handle it without problem solving,although this does not mean it 
ompletes the problemin a single 
y
le. Re
all that, unlike traditional 
ogni-tive ar
hite
tures, I
arus resorts to problem solvingonly to enable exe
ution, and it must still exe
ute itsa
quired skills to rea
h an obje
tive. Thus, for a prob-lem that requires four primitive steps, the system takessix 
y
les on the se
ond en
ounter, with one to retrievethe hierar
hi
al skill and one to realize it has �nished.For the blo
ks world, I
arus learns skills for a
hiev-ing parti
ular 
on�gurations from di�erent initial 
on-�gurations, along with 
on
epts for the start 
onditionsof ea
h skill and subskill. Yet be
ause the system gen-eralizes its learned stru
tures beyond the spe
i�
 in-stan
es on whi
h they are based, it 
an handle withoutproblem solving any task that is isomorphi
 to one ithas already solved. This isomorphism must involve thesame obje
tive and have the same sub
on
epts satis�edor unsatis�ed in the initial environment.5



However, we desired more than ane
dotal demon-strations that the new me
hanisms supported 
umula-tive learning of skills and 
on
epts. We also wanted ev-iden
e from systemati
 experiments that this learnedknowledge produ
es more e�e
tive behavior. To thisend, we examined the state spa
e for blo
ks-worldproblems that involve three blo
ks. If one ignores iso-morphisms, then there are �ve problems that 
an besolved in two primitive steps, eight tasks solvable infour steps, nine six-step problems, and four eight-stepproblems.3 These 26 tasks 
onstituted both the train-ing and test problems for the study.We provided the system with four primitive skillsand ten 
on
epts, in
luding one for the desired state,that were suÆ
ient, in prin
iple, to solve these blo
ks-world problems. We then presented it with these prob-lems in sequen
e, using ea
h task as a training prob-lem but also re
ording the number of 
y
les required to
omplete it. Be
ause misguided sear
h 
ombined withexe
ution 
an lead the problem solver into undesirablephysi
al states, we told it to halt if it had not �nisheda run within 50 
y
les and start over from the initialstate. However, it 
ould attempt a given problem onlyten times, and thus spend at most 500 
y
les before giv-ing up entirely. We also limited the sta
k depth to sixgoal elements. We enfor
ed these 
onstraints for rea-sons of pra
ti
ality and be
ause we think they re
e
tthe manner in whi
h humans ta
kle novel problems.We ran I
arus on the 26 blo
ks-world problems,ordering them by diÆ
ulty 
lass (two-step tasks �rstand eight-step tasks last) but randomly within a 
lass.The intuition was that the system would learn moree�e
tively if we presented it �rst with simpler prob-lems, whi
h it 
ould then use in solving more diÆ
ultones. To this end, I
arus retained skills and 
on
eptsa
quired on su

essful runs for use in later tasks. How-ever, if the system failed on a given run, it removed anyskills and 
on
epts 
reated during that run, to preventin
uen
e on later attempts. We ran I
arus over 200randomly generated problem orders and averaged thenumber of 
y
les needed at ea
h level of experien
e. Asa 
ontrol, we also ran the ar
hite
ture with its learningme
hanisms o� for another 200 random problem sets.Figure 1 shows the result of this experiment, in
lud-ing 95 per
ent 
on�den
e intervals around ea
h mean.The two 
urves show 
learly that learning redu
es thetotal 
y
les required to solve problems in the blo
ksworld. Both 
urves are step fun
tions that in
reasewith problem diÆ
ulty, as one would expe
t. Remem-ber that none of the problems are isomorphi
, although3We ignored tasks with an odd number of steps, sin
e thesestart or end with a blo
k in the air. Also, we 
onsidered onlyproblems in whi
h the obje
tive was a fully spe
i�ed state.
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Figure 1. Number of 
y
les required by I
arus tosolve a blo
ks-world task as a fun
tion of the numberof training problems, averaged over 200 runs, withorder randomized within ea
h di�i
ulty 
lass.they may involve isomorphi
 subtasks. The results sug-gest that I
arus takes advantage of that similar sub-stru
ture to redu
e its e�ort on later problems. In atypi
al run on 26 problems, the system 
onstru
ted 9new 
on
epts and 74 skills, in
luding 9 skill-
hainingskills, 34 
on
ept-
haining skills, and 31 guard skills.We presented I
arus with problems in in
reasingorder of diÆ
ulty be
ause we believed this training reg-imen would lead to better learning. Our intuition wasthat, be
ause the system would be more likely to solvesimpler problems, it would more readily a
quire skillsand 
on
epts that would prove useful in more 
om-plex ones en
ountered later. However, this hypothe-sis seemed worth testing experimentally, so we 
arriedout another study with this in mind. In this 
ase, weheld ba
k the four eight-step tasks for testing, and letI
arus learn only from the 22 simpler problems.We examined three 
onditions, one in whi
h (as be-fore) problems were ordered randomly within their dif-�
ulty 
lass, one in whi
h they were ordered randomlywithout this 
onsideration, and one in whi
h no learn-ing o

urred. Again we averaged the required numberof 
y
les over 200 di�erent runs and, in this 
ase, overthe four test problems. As expe
ted, the 
ondition withno learning fared far worst, taking 236:78�11:43 
y
les.However, the skills a
quired from problems ordered bydiÆ
ulty took 113:88 � 11:37, whereas those learnedfrom randomly ordered tasks took 99:06�10:16. Thus,presenting simpler problems earlier did not appear tohelp I
arus learn any more e�e
tively.To understand better the fa
tors at work, we re-peated the random order 
ondition with fewer training6



problems, again testing on the four eight-step tasks.When trained only on the �ve two-step problems, theaverage over 200 runs was 262:66 � 12:72 
y
les, andwhen the system learned from these and the eight four-step problems, the average was 160:38� 12:48 
y
les,while the diÆ
ulty ordering produ
ed nearly the sameresults. Thus, I
arus shows steady improvement withexperien
e, apparently a
quiring useful skills and 
on-
epts even from relatively 
omplex training problems.7.. Related Resear
hThe use of ba
kground knowledge to support learninghas a long history within both AI and 
ognitive s
ien
e.Resear
h on explanation-based learning often aimed toimprove eÆ
ien
y on problem-solving tasks and 
om-bined experien
e with a domain theory to 
reate new
ognitive stru
tures. Some te
hniques a
quired sear
h-
ontrol rules to guide problem solving, but others in-stead 
onstru
ted ma
ro-operators from primitive op-erators (e.g., Iba, 1988; Mooney, 1989). Our approa
hto skill learning 
omes 
loser to the se
ond tradition,sin
e both involve 
omposing knowledge elements intolarger stru
tures. However, I
arus adapts this idea forthe 
reation of skill hierar
hies, whereas earlier meth-ods produ
ed 
at ma
ro-operators that 
ontained lessstru
ture than the original knowledge base.4I
arus also has similarities to other 
ognitive ar-
hite
tures that in
orporate varieties of explanation-based learning. For example, Laird, Rosenbloom, andNewell's (1986) Soar revolves around a problem solverthat pro
eeds until the system en
ounters an impasse,in whi
h 
ase it 
arries out sear
h to resolve it. On
eSoar has handled the impasse, it 
reates a 
hunk thaten
odes a generalized explanation of the result in termsof the original goal 
ontext. Anderson's (1993) ACT-Remploys another me
hanism, 
ompilation, that 
reatesa new produ
tion rule from ones that are involved inthe same reasoning 
hain. This s
heme produ
es veryspe
i�
 rules that repla
e variables with the de
lara-tive elements against whi
h they mat
hed, rather thanforming generalized stru
tures. In fa
t, our approa
his mu
h 
loser to the 
omposition pro
ess that playeda role in mu
h earlier versions of ACT.The ar
hite
ture most akin to I
arus is Prodigy(Minton, 1990), whi
h invokes means-ends analysis tosolve problems and uses an analyti
al method to learneither sear
h-
ontrol roles or ma
ro-operators fromproblem-solving tra
es. Veloso and Carbonell (1993)also des
ribe an extension that re
ords these tra
es inmemory and solves new problems by analogy with ear-lier ones. None of these me
hanisms generates expli
it4However, we have adopted Mooney's key idea that oneshould not 
hain o� the pre
onditions of learned skills.

hierar
hi
al stru
tures, but be
ause the latter stores
ases of ever-in
reasing size, it 
an produ
e e�e
ts sim-ilar to the 
umulative learning found in I
arus.A few resear
hers have built systems that support
umulative learning outside the 
ontext of problem-solving tasks. One early example was Sammut andBanerji's (1986) Marvin, whi
h learns logi
al 
on
eptsthat are 
omposed of other 
on
epts. A human trainerpresents the system with examples of in
reasingly 
om-plex 
on
epts, ensuring it has mastered ea
h one beforemoving to the next. P
eger (in press) des
ribes anothersystem that a
quires hierar
hi
al patterns in an unsu-pervised on-line setting. Like Marvin, it learns 
on-
eptual stru
tures from the bottom up, so that more
omplex patterns are apparent after simpler ones havebeen a
quired. Stra
uzzi and Utgo� (2002) report athird system that learns in a 
umulative fashion.Ruby and Kibler's (1991) SteppingStone also learnsto solve more diÆ
ult problems based on solutions gen-eralized from simpler ones, whi
h it obtains through amixture of problem redu
tion and exhaustive sear
h.Benson's (1995) TRAIL in
orporates a rea
tive 
on-trol module that invokes learning when it rea
hes anexe
ution impasse. Observation and experimentationdrive learning rather than problem solving, and the sys-tem a
quires models for primitive a
tions rather thanhierar
hi
al stru
tures, but its later learning dependson earlier experien
e. Ilghami et al. (2002) present an-other system that organizes plan knowledge in a hier-ar
hi
al task network, but learns 
onditions for methodsele
tion rather than the network itself. A 
loser rel-ative to I
arus is Reddy and Tadepalli's (1997) X-Learn, whi
h a
quires goal-de
omposition rules from asequen
e of training exer
ises. Their system does notin
lude an exe
ution engine, but it generates hierar
hi-
al plans and learns stru
tures in a 
umulative manner.8.. Con
luding RemarksIn the pre
eding pages, we presented I
arus, a 
og-nitive ar
hite
ture for physi
al agents that uses stored
on
epts and skills, both organized in hierar
hies, tore
ognize familiar situations and 
ontrol its behavior.We des
ribed a new module that supports means-endsproblem solving on novel tasks, along with a learningme
hanism that produ
es new skills and 
on
epts fromtra
es of problem solutions. This method operates inan in
remental and 
umulative manner, 
reating hier-ar
hi
al stru
tures that refer to others learned earlier.In addition, we reported experiments with the blo
ksworld that showed su
h learning enables more e�e
tivebehavior on unfamiliar problems.Despite these advan
es, our work on 
umulativelearning in I
arus is still in its early stages. For in-7



stan
e, we should show its ability to learn hierar
hi
alstru
tures on other problem-solving tasks besides theblo
ks world and the Tower of Hanoi. More important,we should study I
arus' behavior in dynami
 domainsthat require integration of problem solving with rea
-tive 
ontrol. A prime 
andidate is the driving environ-ment we have used to evaluate the ar
hite
ture's 
ate-gorization and exe
ution modules (Choi et al., 2004).In addition, I
arus' methods for problem solvingand hierar
hi
al learning would bene�t from new 
a-pabilities. The 
urrent system sele
ts subgoals ran-domly when 
haining o� a 
on
ept de�nition, whi
hmeans that it must often ba
ktra
k even when it hasskills for 
omponent subproblems. Extending the prob-lem solver to sele
t subgoals heuristi
ally would let ittake better advantage of learned subskills. Nor 
anI
arus a
quire re
ursive skills for tasks that involveregular stru
ture, su
h as building towers in the blo
ksworld. Analyzing relations among learned skills mayprovide this ability, whi
h should let the system trans-fer learned knowledge to problems with more obje
ts.We should also address the utility problem, whi
h
an a
tually produ
e slower behavior in systems thatlearn problem-solving skills. Our plans here involvestoring an expe
ted duration and su

ess probabilitywith ea
h skill, whi
h would then be used in exe
u-tion and problem solving. Initial estimates would 
omefrom a skill's 
omponents but would be revised as theagent utlizes the skill. Combined with other extensions,this should give I
arus a more robust and e�e
tiveapproa
h to 
umulative learning that, in its own right,builds on our experien
e with the 
urrent ar
hite
ture.A
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