
Learning Hierarhial Skillsfrom ObservationRyutaro ICHISE,1;2 Daniel SHAPIRO,1 and Pat LANGLEY11 Center for the Study of Language and InformationStanford University, Stanford CA 94305-4115, USA2 National Institute of Informatis, Tokyo 101-8430, Japanfihise,dgs,langleyg�sli.stanford.eduAbstrat. This paper addresses the problem of learning ontrol skillsfrom observation. In partiular, we show how to infer a hierarhial, rea-tive program that reprodues and explains the observed ations of otheragents, spei�ally the elements that are shared aross multiple individ-uals. We infer these programs using a three-stage proess that learns atunordered rules, ombines these rules into a lassi�ation hierarhy, and�nally translates this struture into a hierarhial reative program. Theresulting program is onise and easy to understand, making it possi-ble to view program indution as a pratial tehnique for knowledgeaquisition.1 IntrodutionPhysial agents like humans not only exeute omplex skills but also improvetheir ability over time. The past deade has seen onsiderable progress on om-putational methods for learning suh skills and ontrol poliies from experiene.Muh of this researh has foused on learning through trial and error explo-ration, but some has addressed learning by observing behavior of another agenton the task. In partiular, researh on behavioral loning (e.g., Sammut, 1996)has shown the ability to learn reative skills through observation on hallengingontrol problems like ying a plane and driving an automobile.Although suh methods an produe poliies that predit aurately the de-sirable ontrol ations, they ignore the fat that omplex human skills are oftenhave a hierarhial organization. This struture make the skills both more under-standable and more transferable to other tasks. In this paper, we present a newapproah to learning reative skills from observation that addresses the issue ofinferring their hierarhial struture. We start by speifying the learning task,inluding the training data and target representation, then present a method forlearning hierarhial skills. After this, we report an experimental evaluation ofour method that examines the auray of the learned program and its similar-ity against the program that generated the training ases. In losing, we disussrelated work and diretions for future researh on this topi.



II2 The Task of Learning Hierarhial SkillsWe an state the basi problem of learning ontrol poliies in terms of inputsand outputs:{ Given: a trae of agent behavior ontaining feature-ation pairs{ Find: a program that generates the same ations when presented with thesame features.Researh on behavioral loning (e.g., Anderson et al., 2000; Sammut, 1996) hasalready addressed this task, having developed methods that learn reative skillsfrom observation that are both aurate and omprehensible. However, omplexskills an often be deomposed naturally into subproblems, and here we fous onapturing this hierarhial struture in an e�ort to produe even more oniseand understandable poliies.As an additional onstraint, we adopt the hypothesis that di�erenes in indi-vidual behavior (for ommon tasks) are due to the ation of distint preferenesover the same set of skills. In other words, we all know how to drive, but ourpreferenes distinguish safe from rekless drivers. This assumption simpli�es thetask of program aquisition beause it implies that we should learn a nondeter-ministi mapping from the observed situation to a feasible set of ations, insteadof aiming for a deterministi haraterization of a single agent's behavior. Theresulting program will represent fewer distintions, and thus will be easier tounderstand.2.1 Nature of the Training DataWe assume that the learner observes traes of another agent's behavior as itexeutes skills on some ontrol task. As in earlier work on learning skills fromobservation, these traes onsist of a sequene of environmental situations andthe ation(s) the agent arried out in eah ase. Beause we are onerned withlearning reative skills, we ignore the order in whih situations our and trans-form them into an unordered set of training ases, one for eah situation.Traditional work in behavioral loning turns an observational trae into train-ing ases for supervised learning, treating eah possible ation as a lass value.Beause we are onerned with learning exible skills, we instead �nd sets ofations that our in the same environmental situation, then generate trainingases that treat eah observed ation set as a lass value. This lets us employstandard methods for supervised indution to partition situations into reativebut nondeterministi ontrol poliies.2.2 Nature of the Learned SkillsWe assume that learned skills are stated in Iarus (Shapiro, 2001), a hierarhi-al reative language for speifying the behavior of physial that enodes on-tingent mappings from situations to ations. Like other languages of this kind



III(Brooks, 1986; Firby, 1989; George� et al., 1985), Iarus interprets programsin a repetitive sense-think-at loop that lets an agent retrieve a relevant ationeven if the world hanges from one yle of the interpreter to the next. Iarusshares the logial orientation of teleoreative trees (Nilsson, 1994) and univer-sal plans (Shoppers, 1987), but adds voabulary for expressing hierarhial in-tent, as well as tools for problem deomposition found in more general-purposelanguages. For example, Iarus supports funtion all, Prolog-like parameterpassing, pattern mathing on fats, and reursion.An Iarus plan ontains up to three elements: an objetive, a set of require-ments (or preonditions), and a set of alternate means for aomplishing theobjetive. Eah of these an be instantiated by further Iarus plans, reatinga logial hierarhy that terminates with alls to primitive ations or sensors.Iarus evaluates these �elds in a situation-dependent order, beginning with theobjetive �eld. If the objetive is already true in the world, evaluation sueedsand nothing further needs to be done. If the objetive is false, the interpreterexamines the requirements �eld to determine if the preonditions for ation havebeen met. If so, evaluation progresses to the means �eld, whih ontains alter-nate methods (subplans or primitive ations) for aomplishing the objetive.The means �eld is the lous of all value-based hoie in Iarus. The systemlearns to selet the alternative that promises the largest expeted reward.2.3 A Sample Plan for DrivingTable 1 presents an Iarus plan for freeway driving. The top-level routine,Drive, ontains an ordered set of objetives implemented as further subplans.Iarus repetitively evaluates this program, starting with its �rst lause everyexeution yle. As the interpreter enounters sensor tests it seletively desendsthe alling tree, ultimately loating one or more relevant ations. As the allingstak unwinds, Iarus returns the best ation found in eah subplan. The ationreturned from the top-level plan is passed to an external exeution system, whihapplies it in the world. Thus, the purpose of an Iarus program is to �nd ation.For example, the �rst lause in Drive shown in Table 1 de�nes a reationto an impending ollision. If this ontext applies, Iarus returns the Slam-on-brakes ation for appliation in the world. However, if Emergeny-brake is notrequired, evaluation proeeds to the seond lause, whih enodes a reation totrouble ahead, de�ned as a ar traveling slower than the agent in the agent's ownlane. This subplan ontains multiple options. It lets the agent move one lane tothe left, move right, slow down, or ruise at its urrent speed. Iarus makes aseletion based on the long-term expeted reward of eah alternative.At eah suessive iteration, Iarus an return an ation from an entirelydi�erent portion of Drive. For example, the agent might slam on the brakes onyle 1, and speed up in servie of Get-to-target-speed (a goal-driven plan) onyle 2. However, if Emergeny-brake and Avoid-trouble-ahead do not apply, andthe agent is already at its target speed, Iarus might return the Change-rightation in servie of Avoid-trouble-behind on yle 3.



IV Table 1. The Iarus program for freeway driving.� �Drive():objetive[*not*(Emergeny-brake())*not*(Avoid-trouble-ahead())Get-to-target-speed()*not*(Avoid-trouble-behind())Cruise()℄Emergeny-brake():requires [Time-to-impat() <= 2℄:means [Slam-on-brakes()℄Avoid-trouble-ahead ():requires[? = Car-ahead-enter()Veloity() > Veloity(?)℄:means[Safe-ruise()Safe-slow-down()Safe-hange-left()Safe-hange-right()℄Get-to-target-speed():objetive[Near(Veloity(), Target-speed())℄:means[Adjust-speed-if-lane-lear()Adjust-speed-if-ar-in-front()℄Avoid-trouble-behind():requires ;;faster ar behind[? = Car-behind-enter()Veloity(?) > Veloity()℄:means[Safe-ruise()Safe-hange-right()℄Safe-ruise():requires [Time-to-impat() > 2℄:means [Cruise()℄
Safe-slow-down():requires [Time-to-impat(-2) > 2℄:means [Slow-down()℄Safe-speed-up():requires [Time-to-impat(2) > 2℄:means [Speed-up()℄Safe-hange-left():requires [Clear-left()℄:means [Change-left()℄Safe-hange-right():requires [Clear-right()℄:means [Change-right()℄Adjust-speed-if-lane-lear():requires [*not*(Car-ahead-enter())℄:means[Slow-down-if-too-fast()Speed-up-if-too-slow()℄Adjust-speed-if-ar-in-front():requires[Car-ahead-enter()*not*(Slow-down-if-too-fast())℄:means[Speed-up-if-too-slow()Safe-ruise()Safe-slow-down()℄Slow-down-if-too-fast():requires [Veloity() > Target-speed()℄:means [Safe-slow-down()℄Speed-up-if-too-slow():requires[Veloity() <= Target-speed()℄:means [Safe-speed-up()℄Slam-on-brakes():ation [math-speed-ahead()℄� �The remainder of the program follows a similar logi as the interpreter on-siders eah lause of Drive in turn. If a lause returns True, the system advanesto the next term. If it returns False, Drive would exit with False as its value.However, Iarus supports a third option: a lause an return an ation, whihbeomes the return value of the enlosing plan. For example, Avoid-trouble-behind might return Change-right, whih would beome the return value ofDrive (the �nal lause, Cruise, would not be evaluated that yle).3 A Method for Learning Hierarhial SkillsNow that we have de�ned our task, we an desribe our method for learninghierarhial skills from behavior traes. The approah involves three distintstages. The �rst indues unordered at rules using a standard supervised learn-ing tehnique that indues If-Then rules, eah of whih predits an ation setsfor a lass of situations. To this end, we employ CN2 (Clark & Boswell, 1991)to generate a set of unordered prodution rules that determine the target lass



V
Action1

x,y y,Z

Action1Action2 Action2

x z

yFig. 1. Operator for promoting onditions.from attribute values. The seond stage reates a lassi�ation hierarhy by om-bining tests that appear in multiple rules. When viewed as an ation generator,this struture resembles a hierarhial program. The �nal stage transforms thelassi�ation tree into an Iarus program, taking advantage of Iarus' unique,three-valued logi. In this setion, we disuss the seond and third stages.3.1 Construting HierarhiesThe seond stage of our approah to program indution generates a lassi�ationhierarhy. Our method operates by promoting onditions that appear in multiplerules. Consider the two rules:{ If x and y Then Ation1{ If y and z Then Ation2Sine the ondition y appears in the both rules, we an promote it by reatinga more abstrat rule that tests the ommon preondition, using a tehniqueborrowed from work on grammar indution (e.g., Langley & Stromsten, 2000).We illustrate this transformation in Figure 1. Here, the labels on ars denoteonditional tests, and the leaf nodes denote ations. The blak irles indiatehoie points, where one (or more) of the subsequent tests apply. These struturesare interpreted from the top downwards. For example, the right side of Figure 1lassi�es the urrent situation �rst by testing y, and then, if y holds, by testingx and z (in parallel) to determine whih ation or ations apply. This results ina more eÆient lassi�ation proess; y is only tested one and, if it does nothold, there is no reason to test x or z. This struture is similar to the deisiontrees output by C4.5, but more general in that it allows non-exlusive hoie.In addition to promoting onditions, we an promote ations within a lassi-�ation hierarhy. Figure 2 provides a simple example, where the Ation2 oursat all leaf nodes within a given subtree. If the system is guaranteed to reah atleast one of the leaf nodes3 we an assoiate Ation2 with the root node of thesubtree. We represent suh nodes with a hollow irle. This simpli�ation applieseven if the leaf nodes are at an arbitrary depth beneath the root of the subtree.3 Here we mean that the tests in the subtree form a olletively exhaustive set.



VI
Action1 Action3

x

Action1
Action2

Action2
Action3

x x

Action2

xFig. 2. Operator for promoting ations.Condition promotion transforms the at rules learned by CN2 into a lassi�-ation hierarhy. However, sine there are many possible ways to ombine rulesby promoting onditions, we have an opportunity to shape the �nal lassi�ationhierarhy by de�ning rule-seletion heuristis. (Note that this degree of ontrolwould not be available if we had used deision trees instead instead of rules.)The key idea is to merge rules with similar ations. In partiular, we identifythree heuristis that seem to produe well-strutured trees and understandableprograms (after the �nal transformation of our learning proess):1. Selet rules with same ation or same set of ations.2. Selet rules with subset relations among the ations.3. Selet rules with the same onditions.Our algorithm onsiders these heuristis in priority order. If two rules seletthe same ation lass, they are the highest priority andidates for onditionpromotion. The operation will only be suessful, of ourse, if the rules shareonditions. If more than two rules selet the same ation lass, the ones that sharethe largest number of onditions will be ombined. The seond heuristi appliesif no two rules selet the same ation lass. In this ase, the algorithm looks forrules whose ation sets bear a subset relation to one another, suh as \Speed-up"and \Speed-up, Change-right". If a single rule enters into many suh pairings,the system takes the ones with the smallest number of ations on the theorythat these rules express the most ohesive intent. Ties are broken by a similaritymetri that maximizes the number of shared and thus promotable onditions.Finally, if no ation sets bear subset relations, the system piks rules that sharethe largest number of onditions. The ombination of any two rules yields asubtree with shared onditions on its top-level ar, and these onditions an enterinto further promotion operations.4 The remaining onditions annot be mergedwith any other rules. This proess of rule seletion and ombination ontinuesto exhaustion, merging top-level onditions to build multi-layered subtrees.Some simple examples may help to larify this algorithm. Consider the fol-lowing three rules (whose abbreviations de�ned in Table 2):4 For the purpose of the rule-seletion heuristis, the ation set of a subtree is theunion of the ation sets in its leaf nodes, while the most similar subtrees share thelargest number top-level onditions.



VIITable 2. Notation used in example rules and hierarhies.ations onditionsabbreviation meaning abbreviation meaningCRU Cruise CAC Car Ahead CenterSLO Slow Down CBC Car Behind CenterSPE Speed Up CLR Clear RightMAT Math Speed Ahead CLL Clear LeftCHR Change Right TTIA Time To Impat AheadCHL Change Left TTIB Time To Impat BehindVEL VeloityIF TTIA < 52:18AND TTIA > 1:82AND CLR = TrueAND CLL = FalseTHEN Ation =CHR, CHL, CRU, SLO IF TTIA < 52:18AND TTIA > 1:82AND CLR = TrueAND CLL = FalseTHEN Ation =CHR, CRU, SLO IF TTIA < 52:18AND TTIA > 1:82AND CLR = FalseAND CLL = FalseTHEN Ation =CRU, SLOAlthough no two rules selet idential ations sets, all three ation sets bearsubset relations. In this ase, the algorithm will selet the last two rules beausetheir ation sets are the smallest, and promote three onditions to obtain a newshared struture. Two of those onditions an be ombined with the rule forCHR,CHL,CRU,SLO, yielding a three level subtree representing all three rules.When the proess of ondition promotion terminates, we add a top-level nodeto represent the hoie among subtrees. Then, we simplify the struture usingthe ation promotion rule shown in Figure 2. When we apply this algorithm tothe entire set of observational data, we obtain the lassi�ation tree in Figure 3.3.2 Construting the Iarus ProgramWe translate this lassi�ation struture into an Iarus program by the useof a few simple rules. We performed this transformation by hand, although theproess ould be automated. The key idea is to reognize that Figure 3 representsa mutually exlusive and olletively exhaustive lassi�ation hierarhy, and thusthe branhes an be ordered without loss of generality.We number the branhes in Figure 3 in inreasing order from left to right,and note that onditions whih let a branh return ANY ation must not holdin a later branh. When we take these branhes in the order 4,5,3,1,2, we animmediately eliminate TTIA > 1:82 from branh 5, and TTIA > 52:18 frombranhes 3 and 1. Now onsider branh 3. Without the lause TTIA > 52:18,we an disard the strongest requirement on VEL and eliminate one of the leafnodes. This yields a simpli�ed rule:CAC=T and 56.5>VEL => CRU SLO SPENow ompare the revised expression for branh 3 with the rule in branh 2:



VIII
CLR=T

CHR

VEL>67.5

CAC=F

56.5>VEL

1.82>TTIA

CAC=T

45.5>VEL

TTIA>52.18

67.5>VEL>56.5 TTIA>52.18

52.18>TTIA>1.82

56.5>VEL

SLO CHL

MATSPE

SLO
CRU

CRU
CRUCRU
SLO
SPE

52.18>TTIB

CRU
SLO
SPE

CLR=TCLL=T

CHRFig. 3. The lassi�ation tree obtained by our approah.CAC = N and 56.5>VEL => SPEHere, the prediate CAC is irrelevant to SPE, and we an merge both rules intoa single branh representing the statements:56.5>VEL => SPE56.5>VEL and CAC=T => CRU SLOWe use this expression to simplify branh 1, sine VEL must be greater than56.5 if exeution reahes that point. This leaves a single hoie point on VEL inbranh 1, whih we an simplify by ordering the subtrees from right to left. Thisresults in the ordered rules:VEL > 67.5 => SLOCRU or (CLR = T and 52.18 > TTIB) => CHRTaken together, these hanges produe the Iarus program in Table 3. At thispoint, our method halts, having indued a hierarhial ontrol poliy from ob-servational traes.4 Experimental EvaluationAlthough our approah to learning hierarhial skills seems quite plausible, wewanted to evaluate its behavior experimentally.We hose the driving task for thispurpose, both beause we already had onsiderable experiene with the domainand beause we had developed manually a hierarhial driving poliy.



IXTable 3. The Iarus program indued by our method.� �Drive ():requires [NOT(R1)NOT(R2)NOT(R3)NOT(R4)℄R1 ():requires [TTIA < 1.82℄:means [MAT℄R2 ():requires [TTIA < 52.18℄:means [SLO CRU R21 R22℄R21 ():requires [CLL = True℄:means [CHL℄R22 ():requires [CLR = True℄:means [CHR℄
R3 ():requires [VEL < 56.5℄:means [SPE R31℄R31 ():requires [CAC = True℄:means [SLO CRU℄R4 ():requires [NOT(R41)℄:means [CRU R42℄R41 ():requires [VEL > 67.5℄:means [SLO℄R42 ():requires [CLR = TrueTTIB < 52.18℄:means [CHR℄� �4.1 Data GenerationWe utilized the Iarus program in Table 1 to generate observational traes foruse in training and testing. We instrumented the program and reorded situation-ation pairs, using all situation features, not just those tested en route to ation.Sine our goal was to reover the struture of a shared driving skill, we wantedtraes frommultiple drivers whose preferenes would olletively span all optionsenoded in the Drive plan. Instead of reating these agents, we took the simplerapproah of diretly exerising every ontrol path in the Iarus program. Thisprodued a list of situation-ation tuples that inluded every possible ationresponse.Spei�ally, we enumerated �ve values of in-lane separation (both to the arahead and behind), �ve values of veloity for eah of the three in-lane ars, andthe status of the adjaent lane (whether it was lear or not lear). We hose thepartiular distane and veloity numbers to produe True and False values for therelevant prediates in the driving program (e.g., time to impat ahead, veloityrelative to target speed). This proedure also reated multiple ourrenes ofmany situation-ation tuples (i.e., the mapping from distane and veloity ontotime to impat was many-one).The resulting data had nine attributes. Four of these were Boolean, repre-senting the presene or absene of a ar in front/bak, and whether the lanes tothe right or left of the agent are lear. The rest were numerial attributes. Twoof these represented time to impat with the ar ahead or behind, two enodedrelative veloity ahead or behind, and the last measured the agent's own veloity.Our formulation of the driving task assumes six primitive ations. We pre-proessed the data to identify sets of these ations that ourred under the samesituation. We obtained ten suh sets, eah ontaining one to four primitive a-



Xtions. These lasses de�ne a mutually exlusive and olletively exhaustive setof responses for our indued program. The resulting data set inluded 4600 suhsituation and ation-set tuples.4.2 Experimental ResultsWe evaluated our learning method in several ways. First, we measured the au-ray of the learned program by employing a standard ross-validation tehniqueto determine how muh of the original behavior we were able to reover. In ad-dition, we examined the oniseness of the hierarhial Iarus program induedby our method relative the at rules produed by CN2. Finally, we evaluatedthe struture of the learned Iarus program in a more subjetive sense, byomparing it against the original Iarus program that generated the data.We measured the auray of the learned program by onduting a 10-foldross validation. The results showed that for eah training set, our method in-dued a program that had 100% auray on the orresponding test set. More-over, even though the rules indued by CN2 were slightly di�erent aross thetraining runs, the resulting lassi�ation hierarhies were idential to the tree inFigure 3. So, our heuristis for rule ombination regularized the struture.We also ompared the number of onditions that must be evaluated to seletation in the at rules and the Iarus program. This provides a measure ofthe omputational eÆieny of the two representations. The at rules requiredan average of 7361 evaluations to proess the training data, while the learnedIarus program employed 2216. Thus, the hierarhial representation requiresonly 30% of the e�ort.When we ompare the learned Iarus program in Table 3 with the originalprogram in Table 1 several interesting features emerge. First, the learned pro-gram is simpler. It employs 10 Iarus funtions, whereas the original programrequired 14. This was quite surprising, espeially sine the original ode waswritten by an expert Iarus programmer. Next, the learned program apturesa good deal of the natural struture of the driving task. This is evidened by thefat that the top level routines all roughly the same number of funtions, andhalf of those implement idential reations. To be spei�, R1 in Table 3 orre-spond to Emergeny-brake in Table 1, while R2 represents Avoid-trouble-aheadusing a simpler gating ondition. Similarly, R4 aptures all of the behavior ofAvoid-trouble-behind, although it adds the Slow-down operation found in Get-to-target-speed. R3 represents the remainder of Get-to-target-speed, absent theSlow-down ation. The system repakaged these responses in a slightly more ef-�ient way. The only feature truly missing from the learned program is the ideathat maintaining target speed is an objetive of the original plan. This reetsa limitation of our urrent indution tehnique.5 Related Work on Control LearningWe have already mentioned in passing some related work on learning ontrolpoliies, but the previous researh on this topi deserves more detailed disus-



XIsion. The largest body of work fouses on learning from delayed external rewards.Some methods (e.g., Moriarty et al., 1999) arry out diret searh through thespae of poliies, whereas others (e.g., Kaelbling et al., 1996) estimate valuefuntions for state-ation pairs. Researh in both paradigms emphasizes explo-ration and learning from trial and error, whereas our approah addresses learningfrom observed behaviors of another agent. However, the nondeterministi poli-ies aquired in this fashion an be used to onstrain and speed learning fromdelayed reward, as we have shown elsewhere (Shapiro et al., 2001).Another framework learns ontrol poliies from observed behaviors, but drawsheavily on domain knowledge to interpret these traes. This paradigm inludessome, but not all, approahes to explanation-based learning (e.g., Segre, 1987),learning apprenties (e.g., Mithell et al., 1985), and programming by demon-stration (e.g., Cypher, 1993). The method we have reported for learning fromobservation relies on less bakground knowledge than these tehniques, and alsoaquires reative poliies, whih are not typially addressed by these paradigms.Our approah is most losely related to a third framework, known as behav-ioral loning, that also observes another agent's behavior, transforms traes intosupervised training ases, and indues reative poliies. This approah typiallyasts learned knowledge as deision trees or logial rules (e.g., Sammut, 1996;Urbani & Bratko, 1994), but other enodings are possible (Anderson et al.,2000; Pomerleau, 1991). In fat, our method's �rst stage takes exatly this ap-proah, but the seond stage borrows ideas from work on grammar indution(e.g., Langley & Stromsten, 2000) to develop simpler and more strutured rep-resentations of its learned skills.6 Conluding RemarksThis paper has shown that it is possible to learn from a trae of an agent'sbehavior an aurate and well-strutured program that is easy for a person tounderstand. Our approah extends behavioral loning tehniques, and our resultsillustrate that suh methods an produe simpler ontrol programs hierarhialstruture with no loss in preditive auray. Moreover, its emphasis on learningthe shared omponents holds promise for inreased generality of the resultingprograms.Our tehnique employed several heuristis for learning hierarhial struturesthat provided a substantial soure of indutive power. In partiular, the attemptto ombine rules for similar ation sets tended to group rules by purpose, whilethe operation of promoting onditions tended to isolate speial ases. Both teh-niques led to simpler ontrol programs and, presumably, more understandableenodings of reative poliies.We hope to develop these ideas further in future work. For example, we willaddress the problem of inferring Iarus objetive lauses, whih is equivalentto learning teleologial struture from observed behavior. We also plan to on-dut experiments in other problem domains, starting with traes obtained fromsimulations and/or human behavior. Finally, we intend to automate the proess



XIIof transforming lassi�ation hierarhies into Iarus programs. This will let ussearh for riteria that generate the most understandable or aestheti skills.ReferenesAnderson, C., Draper, B., & Peterson, D. (2000). Behavioral loning of student pi-lots with modular neural networks. Proeedings of the Seventeenth InternationalConferene on Mahine Learning (pp. 25-32). Stanford: Morgan Kaufmann.Brooks, R. (1986). A robust layered ontrol system for a mobile robot. IEEE Journalof Robotis and Automation, 2, 1.Clark, P., Boswell, R. (1991). Rule indution with CN2: Some reent improvements.Proeedings of the European Working Session on Learning : Mahine Learning,LNAI, 482, 151{163.Cypher, A. (Ed.). (1993). Wath what I do: Programming by demonstration. Cam-bridge, MA: MIT Press.Firby, J. (1989). Adaptive exeution in omplex dynami worlds. PhD Thesis, Depart-ment of Computer Siene, Yale University, New Haven, CT.George�, M., Lansky, A., & Bessiere, P. (1985). A proedural logi. Proeedings of theNinth International Joint Conferene on Arti�ial Intelligene.Morgan Kaufmann.Kaelbling, L. P., Littman, L. M., & Moore, A. W. (1996). Reinforement learning: Asurvey. Journal of Arti�ial Intelligene Researh, 4 , 237{285.Langley, P., & Stromsten, S. (2000). Learning ontext-free grammars with a simpliitybias. Proeedings of the Eleventh European Conferene on Mahine Learning (pp.220{228). Barelona: Springer-Verlag.Mithell, T. M., Mahadevan, S., & Steinberg, L. (1985). Leap: A learning apprentie forVLSI design. Proeedings of the Ninth International Joint Conferene on Arti�ialIntelligene, (pp. 573-580). Los Angeles, CA: Morgan Kaufmann.Moriarty, D. E., Shultz, A. C., & Grefenstette, J. J., (1999). Evolutionary algorithmsfor reinforement learning. Journal of Arti�ial Intelligene Researh, 11 , 241{276.Nilsson, N. (1994). Teleoreative programs for agent ontrol. Journal of Arti�ial In-telligene Researh, 1, 139{158.Pomerleau, D. (1991). Rapidly adapting arti�ial neural networks for autonomous nav-igation. Advanes in Neural Information Proessing Systems 3 (pp. 429{435). SanFraniso: Morgan Kaufmann.Quinlan, J. R. (1993). C4.5: Programs for Mahine Learning. Morgan Kaufmann.Sammut, C. (1996). Automati onstrution of reative ontrol systems using symbolimahine learning. Knowledge Engineering Review , 11 , 27{42.Shoppers, M. (1987). Universal plans for reative robots in unpreditable environ-ments. Proeedings of the Tenth International Joint Conferene on Arti�ial Intel-ligene (pp. 1039-1046). Morgan Kaufmann.Segre, A. (1987). A learning apprentie system for mehanial assembly. Proeedingsof the Third IEEE Conferene on AI for Appliations (pp. 112{117).Shapiro, D., Langley, P., & Shahter, R. (2001). Using bakground knowledge to speedreinforement learning in physial agents. Proeedings of the Fifth InternationalConferene on Autonomous Agents (pp. 254{261). Montreal: ACM Press.Shapiro, D., (2001). Value-driven agents. PhD thesis, Department of Management Si-ene and Engineering, Stanford University, Stanford, CA.Urbani, T., & Bratko, I. (1994). Reonstruting human skill with mahine learning.Proeedings of the Eleventh European Conferene on Arti�ial Intelligene (pp.498{502). Amsterdam: John Wiley.


