
Learning Hierar
hi
al Skillsfrom ObservationRyutaro ICHISE,1;2 Daniel SHAPIRO,1 and Pat LANGLEY11 Center for the Study of Language and InformationStanford University, Stanford CA 94305-4115, USA2 National Institute of Informati
s, Tokyo 101-8430, Japanfi
hise,dgs,langleyg�
sli.stanford.eduAbstra
t. This paper addresses the problem of learning 
ontrol skillsfrom observation. In parti
ular, we show how to infer a hierar
hi
al, rea
-tive program that reprodu
es and explains the observed a
tions of otheragents, spe
i�
ally the elements that are shared a
ross multiple individ-uals. We infer these programs using a three-stage pro
ess that learns 
atunordered rules, 
ombines these rules into a 
lassi�
ation hierar
hy, and�nally translates this stru
ture into a hierar
hi
al rea
tive program. Theresulting program is 
on
ise and easy to understand, making it possi-ble to view program indu
tion as a pra
ti
al te
hnique for knowledgea
quisition.1 Introdu
tionPhysi
al agents like humans not only exe
ute 
omplex skills but also improvetheir ability over time. The past de
ade has seen 
onsiderable progress on 
om-putational methods for learning su
h skills and 
ontrol poli
ies from experien
e.Mu
h of this resear
h has fo
used on learning through trial and error explo-ration, but some has addressed learning by observing behavior of another agenton the task. In parti
ular, resear
h on behavioral 
loning (e.g., Sammut, 1996)has shown the ability to learn rea
tive skills through observation on 
hallenging
ontrol problems like 
ying a plane and driving an automobile.Although su
h methods 
an produ
e poli
ies that predi
t a

urately the de-sirable 
ontrol a
tions, they ignore the fa
t that 
omplex human skills are oftenhave a hierar
hi
al organization. This stru
ture make the skills both more under-standable and more transferable to other tasks. In this paper, we present a newapproa
h to learning rea
tive skills from observation that addresses the issue ofinferring their hierar
hi
al stru
ture. We start by spe
ifying the learning task,in
luding the training data and target representation, then present a method forlearning hierar
hi
al skills. After this, we report an experimental evaluation ofour method that examines the a

ura
y of the learned program and its similar-ity against the program that generated the training 
ases. In 
losing, we dis
ussrelated work and dire
tions for future resear
h on this topi
.



II2 The Task of Learning Hierar
hi
al SkillsWe 
an state the basi
 problem of learning 
ontrol poli
ies in terms of inputsand outputs:{ Given: a tra
e of agent behavior 
ontaining feature-a
tion pairs{ Find: a program that generates the same a
tions when presented with thesame features.Resear
h on behavioral 
loning (e.g., Anderson et al., 2000; Sammut, 1996) hasalready addressed this task, having developed methods that learn rea
tive skillsfrom observation that are both a

urate and 
omprehensible. However, 
omplexskills 
an often be de
omposed naturally into subproblems, and here we fo
us on
apturing this hierar
hi
al stru
ture in an e�ort to produ
e even more 
on
iseand understandable poli
ies.As an additional 
onstraint, we adopt the hypothesis that di�eren
es in indi-vidual behavior (for 
ommon tasks) are due to the a
tion of distin
t preferen
esover the same set of skills. In other words, we all know how to drive, but ourpreferen
es distinguish safe from re
kless drivers. This assumption simpli�es thetask of program a
quisition be
ause it implies that we should learn a nondeter-ministi
 mapping from the observed situation to a feasible set of a
tions, insteadof aiming for a deterministi
 
hara
terization of a single agent's behavior. Theresulting program will represent fewer distin
tions, and thus will be easier tounderstand.2.1 Nature of the Training DataWe assume that the learner observes tra
es of another agent's behavior as itexe
utes skills on some 
ontrol task. As in earlier work on learning skills fromobservation, these tra
es 
onsist of a sequen
e of environmental situations andthe a
tion(s) the agent 
arried out in ea
h 
ase. Be
ause we are 
on
erned withlearning rea
tive skills, we ignore the order in whi
h situations o

ur and trans-form them into an unordered set of training 
ases, one for ea
h situation.Traditional work in behavioral 
loning turns an observational tra
e into train-ing 
ases for supervised learning, treating ea
h possible a
tion as a 
lass value.Be
ause we are 
on
erned with learning 
exible skills, we instead �nd sets ofa
tions that o

ur in the same environmental situation, then generate training
ases that treat ea
h observed a
tion set as a 
lass value. This lets us employstandard methods for supervised indu
tion to partition situations into rea
tivebut nondeterministi
 
ontrol poli
ies.2.2 Nature of the Learned SkillsWe assume that learned skills are stated in I
arus (Shapiro, 2001), a hierar
hi-
al rea
tive language for spe
ifying the behavior of physi
al that en
odes 
on-tingent mappings from situations to a
tions. Like other languages of this kind



III(Brooks, 1986; Firby, 1989; George� et al., 1985), I
arus interprets programsin a repetitive sense-think-a
t loop that lets an agent retrieve a relevant a
tioneven if the world 
hanges from one 
y
le of the interpreter to the next. I
arusshares the logi
al orientation of teleorea
tive trees (Nilsson, 1994) and univer-sal plans (S
hoppers, 1987), but adds vo
abulary for expressing hierar
hi
al in-tent, as well as tools for problem de
omposition found in more general-purposelanguages. For example, I
arus supports fun
tion 
all, Prolog-like parameterpassing, pattern mat
hing on fa
ts, and re
ursion.An I
arus plan 
ontains up to three elements: an obje
tive, a set of require-ments (or pre
onditions), and a set of alternate means for a

omplishing theobje
tive. Ea
h of these 
an be instantiated by further I
arus plans, 
reatinga logi
al hierar
hy that terminates with 
alls to primitive a
tions or sensors.I
arus evaluates these �elds in a situation-dependent order, beginning with theobje
tive �eld. If the obje
tive is already true in the world, evaluation su

eedsand nothing further needs to be done. If the obje
tive is false, the interpreterexamines the requirements �eld to determine if the pre
onditions for a
tion havebeen met. If so, evaluation progresses to the means �eld, whi
h 
ontains alter-nate methods (subplans or primitive a
tions) for a

omplishing the obje
tive.The means �eld is the lo
us of all value-based 
hoi
e in I
arus. The systemlearns to sele
t the alternative that promises the largest expe
ted reward.2.3 A Sample Plan for DrivingTable 1 presents an I
arus plan for freeway driving. The top-level routine,Drive, 
ontains an ordered set of obje
tives implemented as further subplans.I
arus repetitively evaluates this program, starting with its �rst 
lause everyexe
ution 
y
le. As the interpreter en
ounters sensor tests it sele
tively des
endsthe 
alling tree, ultimately lo
ating one or more relevant a
tions. As the 
allingsta
k unwinds, I
arus returns the best a
tion found in ea
h subplan. The a
tionreturned from the top-level plan is passed to an external exe
ution system, whi
happlies it in the world. Thus, the purpose of an I
arus program is to �nd a
tion.For example, the �rst 
lause in Drive shown in Table 1 de�nes a rea
tionto an impending 
ollision. If this 
ontext applies, I
arus returns the Slam-on-brakes a
tion for appli
ation in the world. However, if Emergen
y-brake is notrequired, evaluation pro
eeds to the se
ond 
lause, whi
h en
odes a rea
tion totrouble ahead, de�ned as a 
ar traveling slower than the agent in the agent's ownlane. This subplan 
ontains multiple options. It lets the agent move one lane tothe left, move right, slow down, or 
ruise at its 
urrent speed. I
arus makes asele
tion based on the long-term expe
ted reward of ea
h alternative.At ea
h su

essive iteration, I
arus 
an return an a
tion from an entirelydi�erent portion of Drive. For example, the agent might slam on the brakes on
y
le 1, and speed up in servi
e of Get-to-target-speed (a goal-driven plan) on
y
le 2. However, if Emergen
y-brake and Avoid-trouble-ahead do not apply, andthe agent is already at its target speed, I
arus might return the Change-righta
tion in servi
e of Avoid-trouble-behind on 
y
le 3.



IV Table 1. The I
arus program for freeway driving.� �Drive():obje
tive[*not*(Emergen
y-brake())*not*(Avoid-trouble-ahead())Get-to-target-speed()*not*(Avoid-trouble-behind())Cruise()℄Emergen
y-brake():requires [Time-to-impa
t() <= 2℄:means [Slam-on-brakes()℄Avoid-trouble-ahead ():requires[?
 = Car-ahead-
enter()Velo
ity() > Velo
ity(?
)℄:means[Safe-
ruise()Safe-slow-down()Safe-
hange-left()Safe-
hange-right()℄Get-to-target-speed():obje
tive[Near(Velo
ity(), Target-speed())℄:means[Adjust-speed-if-lane-
lear()Adjust-speed-if-
ar-in-front()℄Avoid-trouble-behind():requires ;;faster 
ar behind[?
 = Car-behind-
enter()Velo
ity(?
) > Velo
ity()℄:means[Safe-
ruise()Safe-
hange-right()℄Safe-
ruise():requires [Time-to-impa
t() > 2℄:means [Cruise()℄
Safe-slow-down():requires [Time-to-impa
t(-2) > 2℄:means [Slow-down()℄Safe-speed-up():requires [Time-to-impa
t(2) > 2℄:means [Speed-up()℄Safe-
hange-left():requires [Clear-left()℄:means [Change-left()℄Safe-
hange-right():requires [Clear-right()℄:means [Change-right()℄Adjust-speed-if-lane-
lear():requires [*not*(Car-ahead-
enter())℄:means[Slow-down-if-too-fast()Speed-up-if-too-slow()℄Adjust-speed-if-
ar-in-front():requires[Car-ahead-
enter()*not*(Slow-down-if-too-fast())℄:means[Speed-up-if-too-slow()Safe-
ruise()Safe-slow-down()℄Slow-down-if-too-fast():requires [Velo
ity() > Target-speed()℄:means [Safe-slow-down()℄Speed-up-if-too-slow():requires[Velo
ity() <= Target-speed()℄:means [Safe-speed-up()℄Slam-on-brakes():a
tion [mat
h-speed-ahead()℄� �The remainder of the program follows a similar logi
 as the interpreter 
on-siders ea
h 
lause of Drive in turn. If a 
lause returns True, the system advan
esto the next term. If it returns False, Drive would exit with False as its value.However, I
arus supports a third option: a 
lause 
an return an a
tion, whi
hbe
omes the return value of the en
losing plan. For example, Avoid-trouble-behind might return Change-right, whi
h would be
ome the return value ofDrive (the �nal 
lause, Cruise, would not be evaluated that 
y
le).3 A Method for Learning Hierar
hi
al SkillsNow that we have de�ned our task, we 
an des
ribe our method for learninghierar
hi
al skills from behavior tra
es. The approa
h involves three distin
tstages. The �rst indu
es unordered 
at rules using a standard supervised learn-ing te
hnique that indu
es If-Then rules, ea
h of whi
h predi
ts an a
tion setsfor a 
lass of situations. To this end, we employ CN2 (Clark & Boswell, 1991)to generate a set of unordered produ
tion rules that determine the target 
lass



V
Action1

x,y y,Z

Action1Action2 Action2

x z

yFig. 1. Operator for promoting 
onditions.from attribute values. The se
ond stage 
reates a 
lassi�
ation hierar
hy by 
om-bining tests that appear in multiple rules. When viewed as an a
tion generator,this stru
ture resembles a hierar
hi
al program. The �nal stage transforms the
lassi�
ation tree into an I
arus program, taking advantage of I
arus' unique,three-valued logi
. In this se
tion, we dis
uss the se
ond and third stages.3.1 Constru
ting Hierar
hiesThe se
ond stage of our approa
h to program indu
tion generates a 
lassi�
ationhierar
hy. Our method operates by promoting 
onditions that appear in multiplerules. Consider the two rules:{ If x and y Then A
tion1{ If y and z Then A
tion2Sin
e the 
ondition y appears in the both rules, we 
an promote it by 
reatinga more abstra
t rule that tests the 
ommon pre
ondition, using a te
hniqueborrowed from work on grammar indu
tion (e.g., Langley & Stromsten, 2000).We illustrate this transformation in Figure 1. Here, the labels on ar
s denote
onditional tests, and the leaf nodes denote a
tions. The bla
k 
ir
les indi
ate
hoi
e points, where one (or more) of the subsequent tests apply. These stru
turesare interpreted from the top downwards. For example, the right side of Figure 1
lassi�es the 
urrent situation �rst by testing y, and then, if y holds, by testingx and z (in parallel) to determine whi
h a
tion or a
tions apply. This results ina more eÆ
ient 
lassi�
ation pro
ess; y is only tested on
e and, if it does nothold, there is no reason to test x or z. This stru
ture is similar to the de
isiontrees output by C4.5, but more general in that it allows non-ex
lusive 
hoi
e.In addition to promoting 
onditions, we 
an promote a
tions within a 
lassi-�
ation hierar
hy. Figure 2 provides a simple example, where the A
tion2 o

ursat all leaf nodes within a given subtree. If the system is guaranteed to rea
h atleast one of the leaf nodes3 we 
an asso
iate A
tion2 with the root node of thesubtree. We represent su
h nodes with a hollow 
ir
le. This simpli�
ation applieseven if the leaf nodes are at an arbitrary depth beneath the root of the subtree.3 Here we mean that the tests in the subtree form a 
olle
tively exhaustive set.



VI
Action1 Action3

x

Action1
Action2

Action2
Action3

x x

Action2

xFig. 2. Operator for promoting a
tions.Condition promotion transforms the 
at rules learned by CN2 into a 
lassi�-
ation hierar
hy. However, sin
e there are many possible ways to 
ombine rulesby promoting 
onditions, we have an opportunity to shape the �nal 
lassi�
ationhierar
hy by de�ning rule-sele
tion heuristi
s. (Note that this degree of 
ontrolwould not be available if we had used de
ision trees instead instead of rules.)The key idea is to merge rules with similar a
tions. In parti
ular, we identifythree heuristi
s that seem to produ
e well-stru
tured trees and understandableprograms (after the �nal transformation of our learning pro
ess):1. Sele
t rules with same a
tion or same set of a
tions.2. Sele
t rules with subset relations among the a
tions.3. Sele
t rules with the same 
onditions.Our algorithm 
onsiders these heuristi
s in priority order. If two rules sele
tthe same a
tion 
lass, they are the highest priority 
andidates for 
onditionpromotion. The operation will only be su

essful, of 
ourse, if the rules share
onditions. If more than two rules sele
t the same a
tion 
lass, the ones that sharethe largest number of 
onditions will be 
ombined. The se
ond heuristi
 appliesif no two rules sele
t the same a
tion 
lass. In this 
ase, the algorithm looks forrules whose a
tion sets bear a subset relation to one another, su
h as \Speed-up"and \Speed-up, Change-right". If a single rule enters into many su
h pairings,the system takes the ones with the smallest number of a
tions on the theorythat these rules express the most 
ohesive intent. Ties are broken by a similaritymetri
 that maximizes the number of shared and thus promotable 
onditions.Finally, if no a
tion sets bear subset relations, the system pi
ks rules that sharethe largest number of 
onditions. The 
ombination of any two rules yields asubtree with shared 
onditions on its top-level ar
, and these 
onditions 
an enterinto further promotion operations.4 The remaining 
onditions 
annot be mergedwith any other rules. This pro
ess of rule sele
tion and 
ombination 
ontinuesto exhaustion, merging top-level 
onditions to build multi-layered subtrees.Some simple examples may help to 
larify this algorithm. Consider the fol-lowing three rules (whose abbreviations de�ned in Table 2):4 For the purpose of the rule-sele
tion heuristi
s, the a
tion set of a subtree is theunion of the a
tion sets in its leaf nodes, while the most similar subtrees share thelargest number top-level 
onditions.



VIITable 2. Notation used in example rules and hierar
hies.a
tions 
onditionsabbreviation meaning abbreviation meaningCRU Cruise CAC Car Ahead CenterSLO Slow Down CBC Car Behind CenterSPE Speed Up CLR Clear RightMAT Mat
h Speed Ahead CLL Clear LeftCHR Change Right TTIA Time To Impa
t AheadCHL Change Left TTIB Time To Impa
t BehindVEL Velo
ityIF TTIA < 52:18AND TTIA > 1:82AND CLR = TrueAND CLL = FalseTHEN A
tion =CHR, CHL, CRU, SLO IF TTIA < 52:18AND TTIA > 1:82AND CLR = TrueAND CLL = FalseTHEN A
tion =CHR, CRU, SLO IF TTIA < 52:18AND TTIA > 1:82AND CLR = FalseAND CLL = FalseTHEN A
tion =CRU, SLOAlthough no two rules sele
t identi
al a
tions sets, all three a
tion sets bearsubset relations. In this 
ase, the algorithm will sele
t the last two rules be
ausetheir a
tion sets are the smallest, and promote three 
onditions to obtain a newshared stru
ture. Two of those 
onditions 
an be 
ombined with the rule forCHR,CHL,CRU,SLO, yielding a three level subtree representing all three rules.When the pro
ess of 
ondition promotion terminates, we add a top-level nodeto represent the 
hoi
e among subtrees. Then, we simplify the stru
ture usingthe a
tion promotion rule shown in Figure 2. When we apply this algorithm tothe entire set of observational data, we obtain the 
lassi�
ation tree in Figure 3.3.2 Constru
ting the I
arus ProgramWe translate this 
lassi�
ation stru
ture into an I
arus program by the useof a few simple rules. We performed this transformation by hand, although thepro
ess 
ould be automated. The key idea is to re
ognize that Figure 3 representsa mutually ex
lusive and 
olle
tively exhaustive 
lassi�
ation hierar
hy, and thusthe bran
hes 
an be ordered without loss of generality.We number the bran
hes in Figure 3 in in
reasing order from left to right,and note that 
onditions whi
h let a bran
h return ANY a
tion must not holdin a later bran
h. When we take these bran
hes in the order 4,5,3,1,2, we 
animmediately eliminate TTIA > 1:82 from bran
h 5, and TTIA > 52:18 frombran
hes 3 and 1. Now 
onsider bran
h 3. Without the 
lause TTIA > 52:18,we 
an dis
ard the strongest requirement on VEL and eliminate one of the leafnodes. This yields a simpli�ed rule:CAC=T and 56.5>VEL => CRU SLO SPENow 
ompare the revised expression for bran
h 3 with the rule in bran
h 2:



VIII
CLR=T

CHR

VEL>67.5

CAC=F

56.5>VEL

1.82>TTIA

CAC=T

45.5>VEL

TTIA>52.18

67.5>VEL>56.5 TTIA>52.18

52.18>TTIA>1.82

56.5>VEL

SLO CHL

MATSPE

SLO
CRU

CRU
CRUCRU
SLO
SPE

52.18>TTIB

CRU
SLO
SPE

CLR=TCLL=T

CHRFig. 3. The 
lassi�
ation tree obtained by our approa
h.CAC = N and 56.5>VEL => SPEHere, the predi
ate CAC is irrelevant to SPE, and we 
an merge both rules intoa single bran
h representing the statements:56.5>VEL => SPE56.5>VEL and CAC=T => CRU SLOWe use this expression to simplify bran
h 1, sin
e VEL must be greater than56.5 if exe
ution rea
hes that point. This leaves a single 
hoi
e point on VEL inbran
h 1, whi
h we 
an simplify by ordering the subtrees from right to left. Thisresults in the ordered rules:VEL > 67.5 => SLOCRU or (CLR = T and 52.18 > TTIB) => CHRTaken together, these 
hanges produ
e the I
arus program in Table 3. At thispoint, our method halts, having indu
ed a hierar
hi
al 
ontrol poli
y from ob-servational tra
es.4 Experimental EvaluationAlthough our approa
h to learning hierar
hi
al skills seems quite plausible, wewanted to evaluate its behavior experimentally.We 
hose the driving task for thispurpose, both be
ause we already had 
onsiderable experien
e with the domainand be
ause we had developed manually a hierar
hi
al driving poli
y.



IXTable 3. The I
arus program indu
ed by our method.� �Drive ():requires [NOT(R1)NOT(R2)NOT(R3)NOT(R4)℄R1 ():requires [TTIA < 1.82℄:means [MAT℄R2 ():requires [TTIA < 52.18℄:means [SLO CRU R21 R22℄R21 ():requires [CLL = True℄:means [CHL℄R22 ():requires [CLR = True℄:means [CHR℄
R3 ():requires [VEL < 56.5℄:means [SPE R31℄R31 ():requires [CAC = True℄:means [SLO CRU℄R4 ():requires [NOT(R41)℄:means [CRU R42℄R41 ():requires [VEL > 67.5℄:means [SLO℄R42 ():requires [CLR = TrueTTIB < 52.18℄:means [CHR℄� �4.1 Data GenerationWe utilized the I
arus program in Table 1 to generate observational tra
es foruse in training and testing. We instrumented the program and re
orded situation-a
tion pairs, using all situation features, not just those tested en route to a
tion.Sin
e our goal was to re
over the stru
ture of a shared driving skill, we wantedtra
es frommultiple drivers whose preferen
es would 
olle
tively span all optionsen
oded in the Drive plan. Instead of 
reating these agents, we took the simplerapproa
h of dire
tly exer
ising every 
ontrol path in the I
arus program. Thisprodu
ed a list of situation-a
tion tuples that in
luded every possible a
tionresponse.Spe
i�
ally, we enumerated �ve values of in-lane separation (both to the 
arahead and behind), �ve values of velo
ity for ea
h of the three in-lane 
ars, andthe status of the adja
ent lane (whether it was 
lear or not 
lear). We 
hose theparti
ular distan
e and velo
ity numbers to produ
e True and False values for therelevant predi
ates in the driving program (e.g., time to impa
t ahead, velo
ityrelative to target speed). This pro
edure also 
reated multiple o

urren
es ofmany situation-a
tion tuples (i.e., the mapping from distan
e and velo
ity ontotime to impa
t was many-one).The resulting data had nine attributes. Four of these were Boolean, repre-senting the presen
e or absen
e of a 
ar in front/ba
k, and whether the lanes tothe right or left of the agent are 
lear. The rest were numeri
al attributes. Twoof these represented time to impa
t with the 
ar ahead or behind, two en
odedrelative velo
ity ahead or behind, and the last measured the agent's own velo
ity.Our formulation of the driving task assumes six primitive a
tions. We pre-pro
essed the data to identify sets of these a
tions that o

urred under the samesituation. We obtained ten su
h sets, ea
h 
ontaining one to four primitive a
-



Xtions. These 
lasses de�ne a mutually ex
lusive and 
olle
tively exhaustive setof responses for our indu
ed program. The resulting data set in
luded 4600 su
hsituation and a
tion-set tuples.4.2 Experimental ResultsWe evaluated our learning method in several ways. First, we measured the a

u-ra
y of the learned program by employing a standard 
ross-validation te
hniqueto determine how mu
h of the original behavior we were able to re
over. In ad-dition, we examined the 
on
iseness of the hierar
hi
al I
arus program indu
edby our method relative the 
at rules produ
ed by CN2. Finally, we evaluatedthe stru
ture of the learned I
arus program in a more subje
tive sense, by
omparing it against the original I
arus program that generated the data.We measured the a

ura
y of the learned program by 
ondu
ting a 10-fold
ross validation. The results showed that for ea
h training set, our method in-du
ed a program that had 100% a

ura
y on the 
orresponding test set. More-over, even though the rules indu
ed by CN2 were slightly di�erent a
ross thetraining runs, the resulting 
lassi�
ation hierar
hies were identi
al to the tree inFigure 3. So, our heuristi
s for rule 
ombination regularized the stru
ture.We also 
ompared the number of 
onditions that must be evaluated to sele
ta
tion in the 
at rules and the I
arus program. This provides a measure ofthe 
omputational eÆ
ien
y of the two representations. The 
at rules requiredan average of 7361 evaluations to pro
ess the training data, while the learnedI
arus program employed 2216. Thus, the hierar
hi
al representation requiresonly 30% of the e�ort.When we 
ompare the learned I
arus program in Table 3 with the originalprogram in Table 1 several interesting features emerge. First, the learned pro-gram is simpler. It employs 10 I
arus fun
tions, whereas the original programrequired 14. This was quite surprising, espe
ially sin
e the original 
ode waswritten by an expert I
arus programmer. Next, the learned program 
apturesa good deal of the natural stru
ture of the driving task. This is eviden
ed by thefa
t that the top level routines 
all roughly the same number of fun
tions, andhalf of those implement identi
al rea
tions. To be spe
i�
, R1 in Table 3 
orre-spond to Emergen
y-brake in Table 1, while R2 represents Avoid-trouble-aheadusing a simpler gating 
ondition. Similarly, R4 
aptures all of the behavior ofAvoid-trouble-behind, although it adds the Slow-down operation found in Get-to-target-speed. R3 represents the remainder of Get-to-target-speed, absent theSlow-down a
tion. The system repa
kaged these responses in a slightly more ef-�
ient way. The only feature truly missing from the learned program is the ideathat maintaining target speed is an obje
tive of the original plan. This re
e
tsa limitation of our 
urrent indu
tion te
hnique.5 Related Work on Control LearningWe have already mentioned in passing some related work on learning 
ontrolpoli
ies, but the previous resear
h on this topi
 deserves more detailed dis
us-



XIsion. The largest body of work fo
uses on learning from delayed external rewards.Some methods (e.g., Moriarty et al., 1999) 
arry out dire
t sear
h through thespa
e of poli
ies, whereas others (e.g., Kaelbling et al., 1996) estimate valuefun
tions for state-a
tion pairs. Resear
h in both paradigms emphasizes explo-ration and learning from trial and error, whereas our approa
h addresses learningfrom observed behaviors of another agent. However, the nondeterministi
 poli-
ies a
quired in this fashion 
an be used to 
onstrain and speed learning fromdelayed reward, as we have shown elsewhere (Shapiro et al., 2001).Another framework learns 
ontrol poli
ies from observed behaviors, but drawsheavily on domain knowledge to interpret these tra
es. This paradigm in
ludessome, but not all, approa
hes to explanation-based learning (e.g., Segre, 1987),learning apprenti
es (e.g., Mit
hell et al., 1985), and programming by demon-stration (e.g., Cypher, 1993). The method we have reported for learning fromobservation relies on less ba
kground knowledge than these te
hniques, and alsoa
quires rea
tive poli
ies, whi
h are not typi
ally addressed by these paradigms.Our approa
h is most 
losely related to a third framework, known as behav-ioral 
loning, that also observes another agent's behavior, transforms tra
es intosupervised training 
ases, and indu
es rea
tive poli
ies. This approa
h typi
ally
asts learned knowledge as de
ision trees or logi
al rules (e.g., Sammut, 1996;Urban
i
 & Bratko, 1994), but other en
odings are possible (Anderson et al.,2000; Pomerleau, 1991). In fa
t, our method's �rst stage takes exa
tly this ap-proa
h, but the se
ond stage borrows ideas from work on grammar indu
tion(e.g., Langley & Stromsten, 2000) to develop simpler and more stru
tured rep-resentations of its learned skills.6 Con
luding RemarksThis paper has shown that it is possible to learn from a tra
e of an agent'sbehavior an a

urate and well-stru
tured program that is easy for a person tounderstand. Our approa
h extends behavioral 
loning te
hniques, and our resultsillustrate that su
h methods 
an produ
e simpler 
ontrol programs hierar
hi
alstru
ture with no loss in predi
tive a

ura
y. Moreover, its emphasis on learningthe shared 
omponents holds promise for in
reased generality of the resultingprograms.Our te
hnique employed several heuristi
s for learning hierar
hi
al stru
turesthat provided a substantial sour
e of indu
tive power. In parti
ular, the attemptto 
ombine rules for similar a
tion sets tended to group rules by purpose, whilethe operation of promoting 
onditions tended to isolate spe
ial 
ases. Both te
h-niques led to simpler 
ontrol programs and, presumably, more understandableen
odings of rea
tive poli
ies.We hope to develop these ideas further in future work. For example, we willaddress the problem of inferring I
arus obje
tive 
lauses, whi
h is equivalentto learning teleologi
al stru
ture from observed behavior. We also plan to 
on-du
t experiments in other problem domains, starting with tra
es obtained fromsimulations and/or human behavior. Finally, we intend to automate the pro
ess



XIIof transforming 
lassi�
ation hierar
hies into I
arus programs. This will let ussear
h for 
riteria that generate the most understandable or aestheti
 skills.Referen
esAnderson, C., Draper, B., & Peterson, D. (2000). Behavioral 
loning of student pi-lots with modular neural networks. Pro
eedings of the Seventeenth InternationalConferen
e on Ma
hine Learning (pp. 25-32). Stanford: Morgan Kaufmann.Brooks, R. (1986). A robust layered 
ontrol system for a mobile robot. IEEE Journalof Roboti
s and Automation, 2, 1.Clark, P., Boswell, R. (1991). Rule indu
tion with CN2: Some re
ent improvements.Pro
eedings of the European Working Session on Learning : Ma
hine Learning,LNAI, 482, 151{163.Cypher, A. (Ed.). (1993). Wat
h what I do: Programming by demonstration. Cam-bridge, MA: MIT Press.Firby, J. (1989). Adaptive exe
ution in 
omplex dynami
 worlds. PhD Thesis, Depart-ment of Computer S
ien
e, Yale University, New Haven, CT.George�, M., Lansky, A., & Bessiere, P. (1985). A pro
edural logi
. Pro
eedings of theNinth International Joint Conferen
e on Arti�
ial Intelligen
e.Morgan Kaufmann.Kaelbling, L. P., Littman, L. M., & Moore, A. W. (1996). Reinfor
ement learning: Asurvey. Journal of Arti�
ial Intelligen
e Resear
h, 4 , 237{285.Langley, P., & Stromsten, S. (2000). Learning 
ontext-free grammars with a simpli
itybias. Pro
eedings of the Eleventh European Conferen
e on Ma
hine Learning (pp.220{228). Bar
elona: Springer-Verlag.Mit
hell, T. M., Mahadevan, S., & Steinberg, L. (1985). Leap: A learning apprenti
e forVLSI design. Pro
eedings of the Ninth International Joint Conferen
e on Arti�
ialIntelligen
e, (pp. 573-580). Los Angeles, CA: Morgan Kaufmann.Moriarty, D. E., S
hultz, A. C., & Grefenstette, J. J., (1999). Evolutionary algorithmsfor reinfor
ement learning. Journal of Arti�
ial Intelligen
e Resear
h, 11 , 241{276.Nilsson, N. (1994). Teleorea
tive programs for agent 
ontrol. Journal of Arti�
ial In-telligen
e Resear
h, 1, 139{158.Pomerleau, D. (1991). Rapidly adapting arti�
ial neural networks for autonomous nav-igation. Advan
es in Neural Information Pro
essing Systems 3 (pp. 429{435). SanFran
is
o: Morgan Kaufmann.Quinlan, J. R. (1993). C4.5: Programs for Ma
hine Learning. Morgan Kaufmann.Sammut, C. (1996). Automati
 
onstru
tion of rea
tive 
ontrol systems using symboli
ma
hine learning. Knowledge Engineering Review , 11 , 27{42.S
hoppers, M. (1987). Universal plans for rea
tive robots in unpredi
table environ-ments. Pro
eedings of the Tenth International Joint Conferen
e on Arti�
ial Intel-ligen
e (pp. 1039-1046). Morgan Kaufmann.Segre, A. (1987). A learning apprenti
e system for me
hani
al assembly. Pro
eedingsof the Third IEEE Conferen
e on AI for Appli
ations (pp. 112{117).Shapiro, D., Langley, P., & Sha
hter, R. (2001). Using ba
kground knowledge to speedreinfor
ement learning in physi
al agents. Pro
eedings of the Fifth InternationalConferen
e on Autonomous Agents (pp. 254{261). Montreal: ACM Press.Shapiro, D., (2001). Value-driven agents. PhD thesis, Department of Management S
i-en
e and Engineering, Stanford University, Stanford, CA.Urban
i
, T., & Bratko, I. (1994). Re
onstru
ting human skill with ma
hine learning.Pro
eedings of the Eleventh European Conferen
e on Arti�
ial Intelligen
e (pp.498{502). Amsterdam: John Wiley.


