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Abstract

Cognitive architectures serve as both unified theories of the mind and as computational

infrastructures for constructing intelligent agents. In this article, we review the evolu-

tion of one such framework, ICARUS, over the three decades of its development. We

discuss the representational and processing assumptions made by different versions of

the architecture, their relation to alternative theories, and some promising directions

for future research.
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Introduction

Research on cognitive architectures (Newell, 1990) atttempts to the specify the

computational infrastructure that underlies intelligent behavior. Candidate frameworks

specify the facets of cognition that hold constant across different domains. This in-

cludes available memories, the representation of elements in these memories, and the

processes that operate over these elements, but not the memories’ contents, which can

change across domains and over time. Thus, a cognitive architecture is similar to a

building architecture, which describes its fixed structure and use but not its contents,

like people or furniture.

Email addresses: dongkyuc@ku.edu (Dongkyu Choi), patrick.w.langley@gmail.com
(Pat Langley)
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These assumptions about the representations and mechanisms that underlie cogni-

tion correspond to theoretical postulates about the nature of the mind. Most cognitive

architectures incorporate ideas from psychology about human information processing.

They contain distinct modules, but these typically operate over the same memories and

representations, rather than being ‘black boxes’ with communication protocols, as in

most work on software engineering. The paradigm views constraints among modules

as desirable, rather than something to be avoided, as they should contribute to a unified

theory of cognition. Most architectures also come with a programming language that

eases construction of intelligent systems; these adopt a syntax that reflects theoretical

commitments about representation and processing.

In this paper, we review the development and history of ICARUS, a cognitive archi-

tecture that shares important features with other frameworks like Soar (Laird, Rosen-

bloom, & Newell, 1986; Laird, 2012), ACT-R (Anderson & Lebiere, 1998), and Prodigy

(Carbonell, Knoblock, & Minton, 1991) but that also makes some distinctive theoret-

ical commitments. We discuss these similarities and differences in the next section,

after which we summarize two early designs for the architecture that were superceded

by later versions. After this, we describe the main body of ICARUS research, followed

by extensions and variations that branched from this central core. We conclude by

noting some intellectual influences on ICARUS research and directions for future work.

Theoretical Claims of ICARUS

As we have noted, cognitive architectures are intended as theories of intelligent be-

havior. Some frameworks are concerned primarily with explaining human cognition,

while others emphasize the construction of intelligent agents. ICARUS falls in the mid-

dle of this spectrum in that it aims for qualitative consistency with high-level findings

from psychology, but it does not attempt to match detailed results from experiments

with humans. As Cassimatis, Bello, and Langley (2008) have argued, focusing on such

studies can delay achieving broad coverage of cognition functions, which has been our

main goal.
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ICARUS shares several core assumptions with other candidate architectures, includ-

ing production-system frameworks, that are worth stating explicitly. These include

claims that:

• Short-term memories are distinct from long-term stores. The former store content

that changes rapidly over time, like beliefs and goals; the latter contain elements that

are static or change gradually through learning.

• Memories are collections of symbolic structures. They contain distinct elements

that are typically encoded as list structures, with shared symbols among of items

denoting large-scale relations.

• Relational pattern matching accesses long-term content. This process maps between

relational patterns onto elements in short-term stores; these patterns match when

their variables bind consistently with constants across elements.

• Cognitive processing occurs in recognize-act cycles. The core interpreter alternates

between matching long-term structures against short-term ones, selecting a subset

of the former to apply, and executing their associated actions to alter memory or the

environment.

• Cognition dynamically composes mental structures. Sequential application of long-

term knowledge elements alters those in short-term memories, which lead to new

matches on later cycles. Similarly, structural learning composes new long-term

structures from existing content.

Again, these theoretical assumptions are not novel; our framework holds them in com-

mon with Soar, ACT-R, and many other production-system architectures. Problem-

space search has been a recurring theme in architectural research, with some frame-

works, like Soar and Prodigy, supporting it directly. ICARUS shares this feature, but,

as we will see, gives the process a different status. In addition, all cognitive architec-

tures can use expert knowledge, stated as long-term structures, in order to reduce or

eliminate search completely.

Despite its similarities to alternative frameworks, ICARUS makes other assumptions

that differentiate it from its predecessors. These include the postulates that:
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• Cognition is grounded in perception and action. This claim relates to an abiding

concern with intelligence in embodied agents that operate in a physical environment.

• Categories and skills are distinct types of cognitive structure. This formalizes the in-

tuitive difference between knowledge about situations in the environment and about

activities that change them.

• Short-term elements are instances of long-term structures. Predicates used to de-

scribe dynamic elements, such as beliefs, goals, and intentions, must refer to defined

concepts and skills.

• Long-term knowledge is organized in a hierarchical manner. Complex concepts and

skills are specified as combinations of their simpler constituents.

• Inference has primacy over execution, which in turn has primacy over problem solv-

ing. Conceptual inference generates content needed for skill execution, and problem

solving relies on results from both mechanisms.

Some of these tenets have also appeared elsewhere in the architectural literature, but

only ICARUS combines them into a unified cognitive theory. Together, they make it a

distinctive contribution to theories of mental representation and processing.

Early Research on ICARUS

The research programme reported here grew out of a concern with embodied intel-

ligent systems. Until the 1980s, most work on high-level processing, in both AI and

cognitive science, focused on primarily mental tasks like puzzle solving, logical rea-

soning, game playing, and language understanding. Early research on cognitive archi-

tectures, typically associated with the production-system paradigm (e.g., Klahr, Lang-

ley, & Neches, 1987), reflected this emphasis. In response, Langley, Nicholas, Klahr,

and Hood (1981) proposed a simulated three-dimensional environment that would en-

courage research on embodied cognitive systems, but without requiring expertise in,

and the expense associated with, physical robots. The ICARUS architecture was devel-

oped in direct response to this challenge.
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Initial Designs for ICARUS

Langley et al. (1989) presented the earliest complete design for the ICARUS frame-

work. Later versions of the architecture diverged from it along multiple fronts, but they

have remained largely true to the programme’s original objectives. These included: an

integrated architecture whose explanatory power resides largely in interactions among

its components; consistency with coarse-grained psychological phenomena, including

the incremental character of human learning; interaction with an external environment

through sensors and effectors, including grounding of symbolic mental structures; and

organizaton of long-term memory into a hierarchy of structures that are used for index-

ing and retrieval.

Although the integrated architecture never saw full implementation, the research

team developed three components that addressed different facets of embodied intelli-

gence. These modules included:

• LABYRINTH, which encoded a taxonomic hierarchy of concepts for simple and com-

plex objects, classified new entities as instances of these concepts, and updated the

taxonomy in response to these inputs (Thompson & Langley, 1991);

• MÆANDER, which stored a taxonomy of motor skills, executed and monitored se-

lected skills in the environment, and revised its motor knowledge in light of its ex-

periences (Iba, 1991); and

• DÆDALUS, which stored a hierarchy of plan elements in memory, used them to se-

lect operators during the generation of plans with means-ends analysis, and updated

its memory based on successes and failures during search (Langley & Allen, 1993).

Despite their focus on quite different cognitive functions, these components1 shared a

common mechanism for storing, retrieving, and acquiring long-term content. Inspired

by Fisher’s (1987) COBWEB, they assumed that knowledge was stored in a hierarchy

of probabilistic categories, each of which summarized specializations below it in the

1A later design (Langley et al., 1991) included a fourth module, ARGUS, to the architecture that would
be responsible for transforming continuous perceptions into discrete objects and events.
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taxonomy. Retrieval involved sorting new items downward through the hierarchy, up-

dating probabilities along the way, and creating new categories when needed. This

mechanism made the design for ICARUS consistent with key findings on human cate-

gories and incremental learning.

Intermediate Versions of ICARUS

Research on the initial ICARUS design ended, in part, because its mechanisms for

incremental acquisition of probabilistic taxonomies were overly sensitive to training

order and did not produce reliable organizations for memory. Langley (1997) rebooted

the programme by focusing on knowledge-based reactive control and by introducing

handcrafted symbolic content about states and activities, rather than induced proba-

bilistic constructs. Statistical learning still played a role, but only to modulate symbolic

structures already present in long-term memory.

Shapiro and Langley (1999) elaborated on these ideas further by introducing a for-

malism for hierarchical skills and an interpreter for executing them reactively in exter-

nal environments. Each ICARUS skill S included three fields: a set of requirements R

that must be satisfied for S to apply, a set of objectives O that S aims to achieve, and a

set of means M that specified alternative ways to achieve O when R hold. Each element

in a field could be defined in terms of lower-level skills that eventually terminated in

primitive sensors or actions.

An important extension to this framework added a value function to each skill that

guided their selection during reactive control, along with a method for hierarchical

reinforcement learning that updated these functions in response to delayed rewards

(Shapiro, Langley, & Shachter, 2001; Shapiro & Langley, 2002). Experiments in a

simulated driving environment showed that, when exposed to distinct reward signals,

the same hierarchical skills came to generate radically different driving styles. They

also revealed that availability of such hierarchical knowledge led to far more rapid

learning than knowledge-lean approaches.

Mature Versions of ICARUS

Building on this early progress, the ICARUS research programme saw substantial

advances and consolidation during the ten years from 2003 to 2012, after which the
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architecture has remained largely stable. The version developed in this period retained

the theoretical commitments noted earlier, but they took on new guises that made de-

velopment more tractable. In this section, we discuss the resulting modules for con-

ceptual inference, teleoreactive execution, problem solving and skill learning, and goal

processing. Figure 1 depicts these components and the memories through which they

interact. We also discuss some agents constructed within this framework.

Long-term
Skill	Memory

Motor	Buffer

Short-term
Goal	Memory

Short-term
Belief	Memory

Perceptual	Buffer

Environment

Categorization
and	Inference

Perception

Long-term
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Problem	Solving
and	Skill	Learning

Goal
Processing

1
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3

4

5

6
Execution

Skill	Retrieval
and	Selection

Long-term
Goal	Memory

Figure 1: ICARUS’ memory stores and the modules that access and alter them on each cognitive cycle.

Conceptual Inference

The initial design for ICARUS (Langley et al., 1989) included separate memories

for concepts and skills, but the intermediate architecture (Shapiro & Langley, 1999)

abandoned the former to focus on the latter. The new version reported by Choi et al.

(2004) reintroduced this distinction and described inference mechanisms that operated

over conceptual structures. As Table 1 shows, these take the form of logical rules, each

of which associates a conceptual predicate with a conjunction of generalized relational

antecedents. The new ICARUS uses these rules to define both categories of objects and

relations among them.
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Table 1: Some ICARUS conceptual rules for urban driving adapted from Choi (2011).

((line-on-left ?self ?line)

:percepts ((self ?self segment ?sg)

(lane-line ?line segment ?sg dist ?dist))

:tests ((< ?dist 0)))

((right-of ?right ?left)

:percepts ((lane-line ?right dist ?dist1 segment ?segment)

(lane-line ?left dist ?dist2 segment ?segment))

:tests ((> ?dist1 ?dist2)))

((in-between ?between ?left ?right)

:percepts ((lane-line ?between dist ?dist)

(lane-line ?left dist ?dist1)

(lane-line ?right dist ?dist2))

:relations ((right-of ?between ?left)

(right-of ?right ?between)))

((lane ?left ?right)

:percepts ((lane-line ?right)

(lane-line ?left))

:relations ((right-of ?right ?left)

(not (in-between ?any ?left ?right))))

((in-lane ?car ?line1 ?line2)

:percepts ((self ?car segment ?sg)

(lane-line ?line1 segment ?sg)

(lane-line ?line2 segment ?sg))

:relations ((lane ?line1 ?line2)

(line-on-left ?self ?line1)

(line-on-right ?self ?line2)))

Some rules define primitive concepts like line-on-left and right-of, the first two

examples in the table. Each such rule includes a :percepts field that specifies one

or more typed objects with associated attributes and a :tests field with zero or more

numeric tests on variables bound in the percepts. Primitive conceptual rules let ICARUS

transform a set of perceived objects with numeric attribute values into discrete relations

that are suitable for symbolic processing. For instance, suppose the agent perceives an

object, lane-line, with a continuous attribute, dist, that describes the distance of the

lane line from its perspective. The primitive concept line-on-left matches only when

the attribute’s values fall below zero. This concept discretizes the agent’s perceptions

into situations that satisfy its conditions and others that do not.

In contrast, nonprimitive rules like those for in-between, lane, and in-lane, the three

latter examples in the table, impose a conceptual hierarchy like that depicted in Figure 2
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percepts

primitive
beliefs

higher-level
beliefs

(lane-line
line1)

(lane-line
line2)

(lane-line
line3)

(right-of
line2	line1)

(right-of
line3	line2)

(in-between
line2	line1	line3)

(lane	line1	line2)

(in-lane	me	line1	line2)

(line-on-left
me	line1)

(self	me)

(line-on-right
me	line2)

(in-between
?any	line1	line2)

Figure 2: Bottom-up inference of beliefs in ICARUS. The dotted line connected to the pattern in gray denotes
a negated relation. For the sake of clarity, we show only a subset of the observed percepts and inferred
beliefs.

that captures multiple levels of abstraction. Each nonprimitive rule includes another

field, :relations, that specifies conditions in terms of conceptual predicates de-

fined in other rules or recursive references to the concept itself with different variable

bindings. For instance, the nonprimitive rule for lane will be true when the positive

condition that refers to right-of holds in the environment and when the negated con-

dition that refers to in-between does not.2 Another nonprimitive rule, in-lane, will

be true when the agent perceives its three positive conditions, lane, line-on-left, and

line-on-right, to hold in the environment. Such rules can also include numeric tests as

needed. Furthermore, since two or more rules can have the same head, concepts can be

disjunctive or recursive.

As shown in Figure 2, conceptual inference in ICARUS operates in a bottom-up

manner. On each cognitive cycle, a perceptual process deposits a set of visible objects,

2Unlike early production-system frameworks (e.g., Forgy & McDermott, 1978; Langley, 1983), negated
conditions include only one relation. To embed one negation within another requires defining the embedded
predicate in a separate conceptual rule.
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each with a type (e.g., lane-line and self) and associated attributes, into the architec-

ture’s perceptual buffer. The inference mechanism first finds all ways that each primi-

tive conceptual rule matches against these objects; for every such instantiation, it adds

a primitive belief like (right-of line2 line1) and (line-on-left me line1) to the agent’s

belief memory. Once it has completed this step, ICARUS matches nonprimitive rules

against these elements to infer high-level beliefs like (in-between line2 line1 line3) or

(in-lane me line1 line2). The architecture repeats this procedure until it has generated

all relations that are implied deductively by its conceptual rules and observed objects.

In addition to providing ICARUS with vocabulary for describing discrete situations

in the environment, conceptual predicates serve another important role as a notation

for agent goals . These take the same form as beliefs, except that some arguments may

be variables rather than constants, and they may be negated to specify a relationship

one wants to avoid. For instance, a driving agent might have the goal (on-right-side-of-

road ?line), which does not care about the name of the line that bounds the center lane.

Similarly, a blocks world agent might have the goal (not (on ?any A)), which states that

it wants to have nothing on top of block A. The architecture includes a distinct short-

term memory that stores such goal elements, each of which must refer to a predicate

defined in one or more conceptual rules, ensuring they are grounded in perception.

Teleoreactive Skill Execution

Early versions of the ICARUS architecture incorporated reactive execution over hi-

erarchical skills, but the introduction of conceptual knowledge lets us elaborate further

on this idea. Shapiro and Langley’s (1999) skills included a requirements field that

specified when they were applicable and an objectives field that determined when they

were relevant, but these could refer only to direct sensory tests or to subskills. The in-

troduction of defined concepts lets agents adopt both requirements and objectives that

refer to any desired level of abstraction, which extends the architecture’s representa-

tional power substantially.

In some ways, skill clauses are similar to those in the previous version of ICARUS.

The first two examples in Table 2 are primitive clauses, each of which has an :actions

field that specifies actions like (*steer 30) or (*cruise) that the agent can execute in the
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Table 2: Some ICARUS skills for urban driving adapted from Choi (2011).

((in-lane ?self ?line1 ?line2)

:percepts ((self ?self))

:conditions ((lane-on-right ?self ?line1 ?line2))

:actions ((

*

steer 30)))

((in-intersection-for-right-turn ?self ?int ?c ?tg)

:percepts ((self ?self)

(street ?c)

(street ?tg)

(intersection ?int))

:start ((on-street ?self ?c)

(ready-for-right-turn ?self))

:actions ((

*

cruise)))

((in-rightmost-lane ?self ?line1 ?line2)

:percepts ((self ?self))

:conditions ((rightmost-lane ?line1 ?line2))

:subgoals ((in-lane ?self ?line1 ?line2)))

((ready-for-right-turn ?self)

:percepts ((self ?self))

:subgoals ((in-rightmost-lane ?self ?line1 ?line2)

(at-turning-speed ?self)))

((on-street ?self ?tg)

:percepts ((self ?self)

(street ?st)

(street ?tg)

(intersection ?int))

:condiitons ((intersection-ahead ?self ?int ?tg)

(close-to-intersection ?self ?int))

:subgoals ((ready-for-right-turn ?self)

(in-intersection-for-right-turn ?self ?int ?st ?tg)

(on-street ?self ?tg)))

environment. In contrast, the other three entries are nonprimitive skills with a differ-

ent field, :subgoals, that states how to decompose the task into ordered subgoals.

For instance, the fourth skill clause breaks the task ready-for-right-turn down into the

simpler tasks of achieving in-rightmost-lane and at-turning-speed. Similarly, the third

skill decomposes on-street into three subgoals, ready-for-right-turn, in-intersection-for-

right-turn, and on-street, in that order. This imposes a hierarchy on ICARUS skills much

like that for concepts. Also, because two or more clauses can have the same head, skills

can be disjunctive or even recursive, much like a context-free grammar.

However, the extended ICARUS differs from its predecessor in the ability of skills

to reference concepts. Each skill clause includes a :percepts field that specifies
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a set of perceived objects, as in the body of conceptual clauses, but, in addition, the

:conditions field specifies relational conditions that must hold for the clause to be

applicable. These conditions’ predicates must be defined in the conceptual knowledge

base, which means they can denote primitive concepts or high-level, abstract ones.

Each skill also includes a conceptual relation in its head that specifies a goal it aims to

achieve. For instance, the first skill clause in Table 2 has the head (in-lane ?self ?line1

?line2), the second skill mentions in-intersection-for-right-turn, and the third refers to

in-rightmost-lane. Each is defined in terms of more basic relations or percepts from the

environment. We will see shortly how the architecture uses these during execution.

In summary, ICARUS associates its skills with the goals they achieve and decom-

poses them into ordered subgoals that index lower-level skills. This distinguishes it

from hierarchical task networks or HTNs (e.g., Nau et al., 2003), which comprise a

set of methods that are analogous to skills but that include task names in their heads

and subtasks in their bodies. These let one specify arbitrarily complex procedures, but

they do not support goal-directed behavior. More recent efforts on hierarchical goal

networks (Shivashankar et al., 2012), which grew out of the HTN paradigm, use a no-

tation similar to the one we have described. This is somewhat ironic, as recent versions

of ICARUS have adopted an HTN-like formalism that uses task names in the heads of

skills. However, introduction of an :effects field still lets the architecture index

skills by the goals they achieve, which is not supported by traditional HTNs.

During execution, ICARUS evaluates skills in a top-down fashion, as Figure 3 il-

lustrates. Each cognitive cycle begins with conceptual inference, described earlier, af-

ter which the architecture makes a single execution-related decision. The architecture

starts with an unsatisfied top-level goal like (on-street me A) and retrieves all skills that

are relevant, in that their heads unify with the goal, and that are applicable, in that ele-

ments in their :conditions field match consistently against current beliefs. When

this process retrieves multiple skill clauses, or multiple instantiations of a single clause,

a conflict-resolution method (e.g., preference for more recent skills) selects one of the

candidates and makes it the agent’s current intention.

If this intention is a nonprimitive skill like that shown in the figure, then on the next

cycle ICARUS examines its subgoals and finds the first one that is not satisfied by the
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top-level
goals

direct
actions

higher-level
intentions

(on-street	me	A)

(on-street	me	A)

(ready-for-right-turn	me)

(in-intersection-for-
right-turn	me	A2	2	A)

(on-street	me	A)

(in-rightmost-lane
me	?line1	?line2)

(in-lane	me
line2	line3)

(at-turning-
speed	me)

(*steer	30) (*cruise)

primitive
intentions

Figure 3: Top-down selection of subgoals (boxes) and assocated intentions (not shown) by ICARUS’ execu-
tion module on a single cognitive cyle.

agent’s current belief state (e.g., (ready-for-right-turn me)). This becomes the agent’s

current intention, but it retains a link to its parent. The system repeats this process as

necessary, retrieving subgoals lower in the skill hierarchy on later cycles until it selects

an intention based on a primitive skill (e.g., (in-lane me line2 line3)). At this point,

ICARUS sends the actions associated with that skill to its motor buffer and executes

them in the environment.

Of course, this action will take the agent only one step toward achieving its top-

level goal. Because a primitive skill S can be durative, the architecture may need to

execute an intention multiple times, on successive cycles, before it reaches a belief state

that satisfies the goal S’s own head. Once this occurs, ICARUS replaces the completed

intention with its parent P, which becomes the current focus again. This can lead to

selection of another subgoal, a skill that should achieve it, and a related intention I or,

if actions have achieved P’s goal as well, to replacing I with its parent. This process

repeats so that, across more cycles, the system carries out a sequence of external actions

that eventually produce a state that matches the top-level goal. This effectively involves
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traversing an AND tree, as in Prolog, except that it takes place over time to produce

physical change.

Even this scenario assumes that events unfold as predicted by the stored hierar-

chical skills, but the original reason for making execution reactive is that this will not

always happen. In cases where the current intention I becomes inapplicable, ICARUS

abandons it and considers other skills that should achieve the associated goal. If no

alternative are applicable, the architecture abandons I’s parent intention as well and

considers other ways to achieve its goal. This continues until the system finds another

approach that should achieve the top-level goal or it determines the environment has

changed so drastically that it cannot be reached. ICARUS strikes a balance between per-

sistence, which leads it to continue executing a hierarchical skill if possible once it has

started, and reactivity, which lets it respond adaptively to unexpected events. This dif-

fers from work on Markov decision processes (Puterman, 1994), which reevaluate each

alternative after each action, placing them on the extreme end of the reactive spectrum.

Problem Solving and Skill Learning

Teleoreactive execution is effective when an ICARUS agent has a sufficient set of

hierarchical skills, and supporting concepts, to handle the situations that cross its path.

However, in some cases the architecture may encounter novel goals or situations for

which it lacks appropriate knowledge. This requires a mechanism that can decompose

problems into smaller ones that it can handle using the skills and concepts already in

long-term memory.

As noted earlier, the initial design for ICARUS (Langley et al., 1989) included a

module for means-ends problem solving, but the intermediate version (Shapiro & Lan-

gley, 1999) abandoned this ability. The core architecture incorporates a similar mech-

anism that we have adapted to operate over the new representations for concepts and

skills. Upon encountering an unsatisfied goal or subgoal for which it lacks applicable

skills, the problem solver chains backward through skills or conceptual rules to create

new intentions and associated subgoals. ICARUS invokes this process recursively until

it finds an applicable primitive skill, which it executes in the environment,3 or until it

3This eager strategy can sometimes lead the agent to carry out actions that do not lead to its top-level
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reaches a dead end, in which case it backtracks. This involves search through a space of

possible decompositions, which the module pursues in a depth-first fashion, selecting

among alternatives at random. Whenever the architecture achieves a goal in this way,

it constructs a new skill that encodes the steps involved, using information stored with

its intentions.

For instance, Figure 4 shows a trace of successful means-ends problem solving

in the urban driving domain, along with graphics that depict the changes in the envi-

ronment. ICARUS first uses its skill, steer-for-right-turn, to chain off the goal sg and

generate the subgoal s2. Then it uses another skill, in-intersection-for-right-turn, to

chain off s2 and produce another goal, s1. ICARUS does not have a skill that achieves

the subgoal, in-rightmost-lane, but the architecture knows the definition of this predi-

cate, which depends on two subconcepts, driving-in-segment and last-lane. Since the

latter already holds in the current state, s0, the architecture chains off of the former,

which, in turn, can be decomposed into five subconcepts. ICARUS selects at random

a concept that is currently unsatisfied, in-lane, which it can achieve directly from the

current state. The system retrieves and executes a skill that should make in-lane true

in the world. The system achieves the other two unsatisfied concepts, centered-in-

lane and aligned-with-lane, in a similar manner. Together, these let the agent infer the

driving-in-segment belief, and, in turn, one for in-rightmost-lane. The latter appears

in the starting condition for the in-intersection-for-right-turn skill, which ICARUS then

executes. After this, the system executes another applicable skill, steer-for-right-turn,

to achieve the top-level goal, in-segment.

Problem-solving traces like the one just described are stored in a distributed manner

among the agent’s intentions, and ICARUS invokes skill learning whenever it achieves

a subgoal during interleaved problem solving and execution. New skills learned from

a chain that involves a concept, A, encode the achievement of A’s subconcepts in the

order they were satisfied during problem solving, whereas it places any subconcepts

that were already true into the start conditions. New skills learned from a chain that

involves a skill, B, include any achievement of B’s start conditions as their first steps

goal, in which case it must retrace its steps or give up if this is not possible.
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Figure 4: A trace of successful problem solving in the urban driving domain as reported in Langley et al.
(2009). Ellipses indicate (sub)goals and rectangles denote primitive skills.

and then the skill B itself as the final step.

In the problem solving example above, when ICARUS achieves driving-in-segment,

it learns a new skill from this concept chain. The new skill will have as precondi-

tions both in-segment and steering-wheel-straight, as they were already satisfied dur-

ing problem solving, and it will include ordered subgoals for in-lane, centered-in-lane,

and aligned-with-lane, as ICARUS created and solved these as subgoals in that order.

In contrast, when the architecture achieves in-segment by chaining through a skill, it

learns a new structure that has in-intersection-for-right-turn (the precondition ICARUS

achieved) and steer-for-right-turn (the skill it used to chain off of the goal) as ordered

subgoals with no preconditions.
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Table 3: Sample goal-generating rules stored in ICARUS’ long-term goal memory, as described by Choi
(2011).

((stopped-and-clear me ?ped)

:nominate ((pedestrian-ahead me ?ped))

:priority 10)

((clear me ?car)

:nominate ((vehicle-ahead me ?car))

:priority 5)

((cruising-in-lane me ?line1 ?line2)

:nominate nil

:priority 1)

Goal Selection and Generation

ICARUS’ modules for skill execution and problem solving both assume as inputs

a top-level goal the agent wants to achieve and a perceived set of objects, but they

say nothing about the selection or orgin of this goal. A more recent addition to the

architecture, reported by Choi (2010, 2011), is a module that moves beyond this simple-

minded view to support goal reasoning.

One function of this module is to select among the agent’s top-level goals. On

each cycle, it finds the highest-priority goal that is not currently satisfied by the agent’s

beliefs or, if there are ties, selects one at random. When priorities are static, this means

that ICARUS will keep working on a top-level goal until achieving it, after which it will

shift attention to the next most important alternative. If changes to the environment

cause a previously achieved goal to become unsatisfied, the architecture will focus on

it again until the agent has reachieved it.

A more radical extension lets the architecture generate top-level goals, retract them,

and change the priorities. This depends on structures stored in a third long-term mem-

ory containing rules that specify conditions for creating new goals. Table 3 shows

three such rules for urban driving. The first states that, when the agent believes some

pedestrian is directly ahead, then it should adopt a goal of being stopped-and-clear with

respect to that pedestrian, where this predicate refers to a defined concept. The third

rule generates a default goal for the agent to be cruising in some lane, but this has lower

priority than the first goal.
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The goal-processing module examines these rules on each cycle after completing

conceptual inference, finding all possible ways in which their conditions match against

inferred beliefs. This mechanism may instantiate a goal rule in multiple ways. For

instance, if the agent believes there are three pedestrians in its path, the first rule in the

table will introduce three elements to goal memory, each with a different pedestrian as

its second argument. If the conditions for a rule stop holding on a later cycle, in this

case because some of the pedestrians have moved away, the module will remove the

corresponding top-level goals it created earlier. Rules with no conditions, like the third

example, lead to active goals by default on every cycle.

After determining which goals to adopt on a given cycle, ICARUS calculates their

relative importance. An initial implementation simply used the constant specfied in

each rule’s :priority field, but this did not allow values to change with the agent’s per-

ceptions. In response, we augmented the representation for concepts to allow degrees

of match and used the result to modulate goal priorities. More specifically, the degree

of match 0 < m < 1 for a concept that appears as a condition in a goal rule is multi-

plied by the number in that rule’s :priority field to obtain the priority for the generated

the current goal instance.

Table 4 presents two concepts that illustrate this capability. These include numeric

tests like the angle being equal to 10 and the speed being between 15 and 20. Includ-

ing the variables ?speed and ?angle in the :pivot field tells ICARUS that it should

compute how close their values come to targets, which in turn determine the degree

to which the concept matches. For example, using standard Boolean matching, the

second conceptual rule would be satisfied when ?angle is 10 and false otherwise. In

contrast, taking the :pivot field into account can produce different degrees of match,

such as 0.9 when ?angle is close to 10 and 0.1 when it is far from this target. As a

result, the priorities for ICARUS’ top-level goals can vary over time, say as a function

of the distance between the agent’s vehicle and a pedestrian. This provides a variety of

adaptive response that modulates both reactive execution and problem solving.
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Table 4: Concepts for urban driving that let ICARUS calculate degrees of match, taken from Choi (2011).

((at-turning-speed ?self)

:percepts ((self ?self speed ?speed))

:tests ((>= ?speed 15)

(<= ?speed 20))

:pivot (?speed))

((at-steering-angle-for-right-turn ?self)

:percepts ((self ?self steering ?angle))

:tests ((= ?angle 10))

:pivot (?angle))

Example ICARUS Agents

Throughout the ICARUS research programme, we have used the architecture to con-

struct intelligent agents in a variety of domains. Most of these have involved simulated

environments, for the same reasons that Langley et al. (1981) outlined, but we have on

occasion used robotic testbeds. Experiments have examined classic problems like the

Blocks World, the Tower of Hanoi, multicolumn subtraction, and FreeCell solitaire,

although they always included an environment separate from the agent, which had to

perceive entities and carry out actions. However, we have also used more challenging

settings that include many objects, involve complex relations, and require agents to

pursue extended activities.

One such testbed requires an agent to drive a vehicle in a simulated urban environ-

ment.4 Choi et al. (2007b) developed a three-dimensional virtual city in which agents

can perceive street segments, lane lines, buildings, other cars, and pedestrians, and in

which they control a vehicle by accelerating, braking, and changing the steering wheel

angle. Typical goals included delivering packages to target addresses, picking up pas-

sengers, and simply driving around. ICARUS agents for this testbed included concepts

for being in the leftmost or rightmost lanes, going at the right speed, approaching a

pedestrian, and so on, along with skills that can achieve them.

Experimental runs with driving agents demonstrated not only teleoreactive execu-

tion using a knowledge base of hierchically organized concepts and skills, but also

4Shapiro et al. (2001) used simulated highway driving to evaluate an earlier version of the architecture.
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the ability generate, retract, and prioritize top-level goals in reaction to environmental

changes. For example, the agent would drive an ambulance cautiously, observing all

traffic signals, in normal situations, but it would also run red lights and ignore speed

limits in an emergency. Other driving runs showed that ICARUS could use problem

solving to handle unfamiliar tasks and learn hierarchical skills from successful search.

Another challenging testbed was Urban Combat, a simulated environment that is

similar to a first-person shooter game, but in which the agent must traverse the land-

scape to reach targets, find objects, and manipulate them (e.g., defuse explosive de-

vices) rather than fighting with enemies. This domain raised challenges of representing

and reasoning about both interior and exterior spaces, multi-level buildings, and unex-

pected blocks to paths. Choi et al. (2007a) reported an ICARUS agent that plays Urban

Combat using conceptual knowledge about object categories, pathways, and topolog-

ical connections, as well as skills that let it overcome obstacles and move between

connected regions. Experimental studies showed the system could use conceptual in-

ference to reason about spatial relation, problem solving to generate novel plans, tele-

oreactive execution to carry them out, and learning to construct new skills. Moreover,

the architecture transferred this acquired knowledge to different missions, reducing the

learning needed on them.

We have also demonstrated ICARUS’ ability to control a humanoid robot. Choi

et al. (2009) presented results in a realistic simulated environment on a set of blocks-

world tasks, such as building a tower and sorting objects based on color. Modules

outside the architecture handled perception and low-level manipulation, but tasks nev-

ertheless required substantial inference and execution of extended action sequences.

Kim et al. (2010) described a similar set of studies using a physical humanoid robot

that manipulated real-world objects. Here the agent had to move to a table, avoid ob-

stacles and take detours along the way, and then sort blocks on the table by their colors.

Again, ICARUS called on external software to perceive the environment and handle

low-level motion, but these demonstrations offered compelling evidence that the archi-

tecture supports embodied intelligent agents, although we did not test problem solving,

skill learning, or goal reasoning in either testbed. Ongoing work focuses on agents that

control nonhumanoid robots, including drones.
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Extensions to the Architecture

We have described the primary path of ICARUS research, starting from early de-

signs through a mature architecture that incorporates conceptual inference, teleoreac-

tive execution, problem solving and skill acquisition, and goal processing. We have

also seen that more recent versions of the architecture have supported construction of

embodied agents that operate in complex external environments. However, we should

also examine, more briefly, some branches off the main trunk that have explored other

important abilities. We treat them separately here because they do not build on one

another, as have the central mechanisms already described.5

Temporal Reasoning

One of ICARUS’ core assumptions is that concepts, beliefs, and goals describe as-

pects of environment states, whereas skills and intentions describe activities that take

place over time. However, Stracuzzi, Li, Cleveland, and Langley (2009) noted that

this distinction does not support the recognition of activities themselves. In response,

they augmented the architecture’s representation to include temporal information in

both short-term and long-term structures. This included adding time stamps to beliefs

that indicated when they were adopted and later abandoned. The revised notation for

concepts, which also referred to time stamps, included a field specifying constraints on

temporal orders that matched elements must satisfy. These did not refer to actions and

so remained distinct from skills, but their difference was lessened.

Stracuzzi et al. modified conceptual inference in minor ways to take advantage of

the new representation. The module still processed concepts in a bottom-up manner,

but it examined time stamps and temporal constraints during matching. Moreover, al-

though ICARUS updated inferred beliefs’ end time stamps when they became false, it

retained them indefinitely, providing a simple form of episodic memory that recorded

past events. This let the system reason about temporal concepts using nearly the same

5Other extensions to ICARUS, which we do not have space to review here, include using learned values to
guide conceptual inference (Asgharbeygi et al., 2005), goal-directed analogical mapping to support transfer
(Könik et al., 2009), and learning new conceptual predicates from problem solving (Li et al., 2012).
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deductive process as that for simpler beliefs. They demonstrated the extended architec-

ture’s ability to encode complex football plays and to recognize them from perceptual

traces obtained from a game simulator.

Extended Problem Solving

We have seen that ICARUS’ problem solver focuses on goals, which drive the cre-

ation of new subproblems and serve to indicate their successful solution. Langley and

Trivedi (2013) observed that this keeps it from reasoning about interactions among dif-

ferent goals, which led them instead to organize the process around problems, that is,

tasks for transforming one state into another that satisfies a set of goals. This let the

revised framework distinguish among distinct formulations of a given problem, based

on different ways the initial state partially satisfies the specified goals.

Langley and Trivedi incorporated these representational extensions into a new means-

ends problem solver that took multiple goals into account when retrieving and selecting

skills. The module could also generate subproblems by chaining off unmatched skills

with negated conditions containing nonprimitive predicates. Both changes led this ver-

sion of ICARUS to search a larger space than its predecessor, which it mitigated with

domain-independent heuristics that favored skill instances whose conditions matched

more beliefs and whose effects would achieve more goals. The authors reported re-

sults on six domains, including puzzles like the Tower of Hanoi and common planning

tasks, although their studies examined mental problem solving apart from execution in

an external environment.

Learning from Failure

As described earlier, ICARUS acquires new skills whenever it solves a new prob-

lem or subproblem, but humans learn not only from problem-solving successes but

also from failures. Choi and Ohlsson (2010) developed an extended version of the ar-

chitecture that acquires new skills when execution leads to violations of constraints.

They encoded this new type of long-term knowledge as satisfaction–relevance pairs.

The former specified relations that should hold when the latter conditions are satisfied.

Table 5 presents two such constraints for a blocks world. The first states that if one
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Table 5: Some sample constraints for the Blocks World provided in Choi & Ohlsson (2010).

(color :relevance ((on ?a ?b))

:satisfaction ((same-color ?a ?b)))

(width :relevance ((on ?a ?b))

:satisfaction ((smaller-than ?a ?b)))

block is on another, then they should have the same color; the other indicates that the

upper block should be smaller than the lower one.

Choi and Ohlsson modified the architecture to take these new structures into ac-

count. After conceptual inference, it checked belief memory to determine which con-

straints were relevant and, if so, whether they were satisfied. Upon noting a constraint

violation, the extended ICARUS created specialized versions of the skill that produced

the undesirable situation. This ensured that it would only apply either when the sat-

isfaction conditions held or when the relevance conditions did not, thus avoiding con-

straint violations in the future. For example, if execution of a block-stacking skill led

to violation of the width constraint in Table 5, the system created a variant rule that

included the smaller-than relation, ensuring that, in later runs, the agent would sidestep

similar errors.

Danielescu, Stracuzzi, Li, and Langley (2010) reported a complementary approach

to learning from failure. They focused on situations in which the agent selects and ex-

ecutes a skill to achieve a low-priority goal but, in the process, unintentionally undoes

a higher-priority one that was previously satisfied. When the extended architecture

detected such a situation, it defined a new concept that combined the two interacting

predicates and attempted to find some way to achieve one without undoing the other.

Using counterfactual reasoning over an episodic trace, the extended architecture revis-

ited past belief states and invoked problem solving to find a solution that would achieve

the new, conjoined concept. The system then constructed a new skill that, because its

head referred to this more specific concept, it would prefer over the more generic skill

that caused the interaction. The authors demonstrated this extension on a lane-changing

scenario from the urban driving domain.
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Learning from Observation

Another of ICARUS’ limitations has been that it learns only from its own behavior,

which requires either extensive search during problem solving or making errors during

execution. Nejati, Langley, and Könik (2006) explored another alternative – learning

skills from worked-out solutions – that avoids these two issues. Their approach re-

quired no changes to the representation of concepts or skills, and it relied on standard

mechanisms for inference and execution. However, they introduced a new learning

module that attempted to generate an explanation, in terms of background knowledge,

for how an observed sequence of skill instances achieved a given goal. Explanations

took a hierarchical form, with primitive skills as terminal nodes, that translated directly

into a set of learned hierarchical skills, with conditions determined in the same way

as earlier. The extended architecture acquired a set of skills in this manner from each

solution sequence.

A later version of the module (Nejati, 2011) included augmented abilities for ignor-

ing irrelevant actions, which it simply omitted from explanations and learned skills. A

related mechanism also let the system handle traces that involved interleaved solution

to different problems, from which it acquired distinct sets of skills. An alternative sys-

tem, described by Li, Stracuzzi, Langley, and Nejati (2009) instead adapted ICARUS’

means-ends problem solver to explain observed solution traces. This had the advan-

tage of using an existing architectural module, including its associated learning process,

rather than introducing another one, but the system did not include the ability to handle

interleaved solutions.

Intellectual Precursors

We have already noted some features that ICARUS shares with alternative cognitive

architectures and others that make it distinctive, but we should also discuss additional

intellectual influences from which it borrows. Like Soar, ACT-R, and Prodigy, our

framework draws heavily on two ideas championed by Newell and Simon (1976). The

physical symbol system hypothesis states that the ability encode and manipulate sym-

bol structures – organized sets of persistent patterns – provide the means for building
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general intelligent systems. The heuristic search hypothesis claims that problem solv-

ing involves search through a space of states generated by operators, both symbolic

structures, and guided by heuristics. These ideas have constrained the ICARUS design

in major ways, although, as we have noted, problem-space search is more fundamental

to Soar and Prodigy than to our framework.

Another important, historically more recent, influence comes from symbolic ap-

proaches to reactive control, often associated with robotics. ICARUS’ original concern

with embodied agents dates back to the mid-1980s, but Nilsson’s (1994) notion of

teleoreactive programs played a central role in the architecture’s design starting with

Langley (1997). Research on integrating planning with reactive control, such as Bonas-

son et al.’s (1997) 3T framework, has also influenced our efforts over the past 20 years.

However, ICARUS’ specific problem solver, and its method for interleaving this pro-

cess with execution, comes directly from Newell, Shaw, and Simon’s (1960) General

Problem Solver, which introduced means-ends analysis, an approach that lends itself

naturally to such integration.

ICARUS also incorporates more ideas from the logic and planning communities

than other cognitive architectures. We have seen that its representation for conceptual

knowledge takes a form similar to the rules in Prolog (Clocksin & Mellish, 1981), al-

though its mechanism for using these structures differs substantially. Also, its notation

for skill knowledge has much in common with Nau et al.’s (2003) SHOP2 formalism

for hierarchical task networks. However, they were developed independently, and the

latter uses hierarchical knowledge to guide planning, whereas our architecture uses it

primarily during teleoreactive execution.

One of ICARUS’ key abilities is acquisition of such hierarchical skills from success-

ful problem solving. This bears similarities to the analytical learning methods in Soar

and Prodigy, although they create search-control rules rather than hierarchical struc-

tures. On this dimension, ICARUS is closer to Ruby and Kibler’s (1991) SteppingStone,

Marsella and Schmidt’s (1993) PRL, and Reddy and Tadepalli’s (1997) X-Learn. Each

system constructed problem-decomposition rules from the results of successful search,

although we believe our approach interleaves learning with problem solving in a more

natural way.
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The architecture’s approach to goal processing also has deep roots. Simon (1967)

argued the need for an interruption mechanism that shifts and focuses an agent’s atten-

tion in a complex environment, whereas Sloman (1987) noted that conflicting goals re-

quire a means for resolving them, for which he proposed motivational processes. More

recent efforts by Hanheide et al. (2010), Molineaux et al. (2010), and Talamadupula

et al. (2010) have explored similar ideas, although these were developed in parallel

with the ICARUS approach to goal processing.

Limitations and Plans for Future Work

Despite ICARUS’ theoretical attractions and its usefulness for developing intelli-

gent agents, the framework still has important limitations that we should address in

future research. The most basic extension would introduce a hybrid representation and

processes that operate over it. The current architecture distinguishes between percepts,

which describe perceived objects in terms of numeric attributes, and beliefs, which

denote symbolic relations among these objects. A more balanced approach would as-

sociated both symbolic and numeric information at all levels, with percepts becoming

beliefs about individual objects. Langley et al. (2016a) report a new architecture that

adopts this idea, along with inference mechanisms that derive higher-level attributes

from lower-level ones, and we should incorporate similar ideas into our framework.

Another drawback is that ICARUS’ conceptual inference module is both deductive

and exhaustive. This means it cannot introduce plausible default assumptions to explain

observations, and inference time can grow exponentially with the number of visible

objects. Future versions should support an abductive form of inference, as reported

by Meadows, Langley, and Emery (2014), and should produce reasonable results even

when time constraints require early termination. We should also explore a return to

probabilistic approaches to conceptual representation, inference, and learning, as in

the earliest architectural design (Langley et al., 1989).

A third limitation is ICARUS’ fixed strategies for both problem solving and for

interleaving it with execution. Humans often exhibit means-ends analysis, but they

sometimes use other methods, such as forward search. Similarly, they may initiate exe-

cution when they solve a subproblem, but they may instead start acting before they find
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a complete subplan, as in game playing. This variability suggests that humans adapt

their problem-solving and execution strategies to their situation, which means that fu-

ture versions of ICARUS should support a range of methods under its control. One

approch, reported by Langley et al. (2016b), uses modifiable parameters that deter-

mine aspects of problem solving, including methods for selecting among alternatives,

criteria for success and failure, and responses to each case.

Another promising direction for future work involves adding a memory for episodic

traces and mechanisms that operate over it, as Laird (2012) has reported for Soar. This

would store and retrieve information not only about beliefs generated by conceptual

inference, as described by Stracuzzi et al. (2009), but also about decisions made during

problem solving and actions carried out during execution. Such an episodic mem-

ory could support not only question answering, but also explanation of agent behavior

and analogical reasoning. Along with the extensions outlined earlier, this would bring

ICARUS much closer to reproducing the broad range of abiities we associate with hu-

man intelligence.

Concluding Remarks

In this article, we reviewed the history and developed of the ICARUS cognitive ar-

chitecture. The saw that it shares core theoretical tenets with other unified theories of

the mind, like Soar and ACT-R, but that it also takes distinctive positions on key issues.

The latter include architecture-level commitments to grounding cognition in percep-

tion and action, separating conceptual knowledge from skills, organizing memory in a

hierarchical manner, and supporting problem solving with more basic mechanisms of

inference and execution.

We discussed two early versions of ICARUS that incorporated most, but not all,

of these assumptions, and then described in more detail a third incarnation that has

been stable over the past 12 years. This includes modules for perceptually-driven con-

ceptual inference, goal-driven reactive execution, problem solving with means-ends

analysis, skill acquisition from novel solutions, and generation of top-level goals. We

also mentioned some variants off this main branch that support additional functional-
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ity. In closing, we examined ICARUS’ many intellectual precursors and some important

directions for future work.

Over the past 30 years, the ICARUS research programme has introduced important

ideas into the literature on cognitive architectures and broadened discussion about the-

ories of intelligence in humans and machines. We will not claim that it has produced a

unified theory of the mind, as many high-level phenomena remain unexplained, but we

will argue that ICARUS provides an interesting and coherent account of many abilities

associated with human intelligence, and that it offers a fertile framework for further

research in this challenging arena.
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