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Abstract

Human problem solving has long been a central topic
in cognitive science. We review the established theory
in this area and note some phenomena it does not ad-
dress. In response, we present an extended framework,
cast within a theory of the cognitive architecture, that
provides one account of these phenomena and that we
illustrate using the familiar Tower of Hanoi puzzle. We
conclude by discussing other extensions to the standard
theory and directions for future research.

Introductory Remarks

Research on human problem solving has a venerable his-
tory that played a central role in the creation of cognitive
science. Early studies of problem-solving behavior on
puzzles and other novel tasks led to many insights about
representation, performance, and learning that now un-
derpin the field. Moreover, computational models devel-
oped from these studies remain some of the most detailed
and precise accounts of human cognition.

However, the past decade has seen considerably less
attention paid to this important topic, presumably be-
cause many researchers believe that it is sufficiently well
understood. In contrast, we maintain that the standard
theory of problem solving, although basically accurate,
is still incomplete, and we need additional work, at the
level of both theoretical principles and specific computa-
tional models, to extend our understanding of this com-
plex cognitive activity.

In this paper, we review traditional accounts of prob-
lem solving and note some important omissions that re-
quire further effort. After this, we present an extended
framework that we have embedded in Icarus, a compu-
tational theory of the human cognitive architecture. We
then illustrate our points using a classic task, the Tower
of Hanoi. In closing, we discuss other variations on the
traditional theory and topics for future research.

The Standard Problem Solving Theory

The standard theory of problem solving, initially out-
lined by Newell, Shaw, and Simon (1958), focuses on
how humans respond when they are confronted with un-
familiar tasks. Early work focused on abstract problems
like proving theorems in propositional logic and solving
the Tower of Hanoi puzzle. Later research adapted the
framework to explain cognition in semantically rich do-
mains like solving word problems in physics and thermo-

dynamics, as well as addressing the observed behavioral
differences between domain experts and novices.

The theory makes a number of claims about hu-
man cognition. The most basic is that problem solv-
ing involves the mental inspection and manipulation of
list structures. Newell and Simon (1976) later refined
this into their physical symbol system hypothesis, which
states that symbolic processing is a necessary and suffi-
cient condition for intelligent behavior. Another central
claim, termed the problem space hypothesis, is that prob-
lem solving involves search through a space of candidate
states generated by operators.

A more detailed aspect of the theory is that, in
many cases, problem solvers utilize means-ends analysis
(Newell & Simon, 1972). This class of search methods
involves a combination of selecting differences between
the desired and current states, selecting operators that
will reduce the chosen differences, and either applying
the operators or creating subproblems to transform the
current states into ones in which they can apply. This
requires one to chain backward from aspects of the goal
state to find relevant operators and determine useful sub-
goals. However, with experience this novice strategy is
replaced in experts with forward chaining that leads di-
rectly to the goal (Larkin et al., 1980).

Nevertheless, closer analyses of human behavior on
novel tasks have suggested that this story is incomplete
and that the actual situation is more complicated. Here
we make some additional observations that are not ad-
dressed by the standard theory.

• Problem solving occurs in a physical context . Puz-
zles like the Tower of Hanoi are typically presented
in some physical form, with solutions relying on
manual actions and tests for legal moves requiring
visual inspection. This physical setting simplifies
the task by providing an external memory, but it
also introduces irrelevant features.

• Problem solving abstracts away from physical de-
tails, yet must return to them to implement the solu-
tion. For instance, when solving the Tower of Hanoi,
humans appear to search through an abstract prob-
lem space that describes states in terms of disk-peg
configurations and operators as transitions between
them. They ignore the details of grasping and mov-
ing required to demonstrate the solution, but they
can execute these actions when necessary.



• Problem solving is seldom a purely mental activity,
but rather interleaves reasoning with execution. In
the Tower of Hanoi, the problem solver may reason
backward to select an intended move, but typically
makes that move as soon as it is legal, without wait-
ing to make sure that he can solve the remainder of
the problem from that point.

• Eager execution of partial plans can lead the problem
solver into physical dead ends that require restarting
the task . For the Tower of Hanoi, initially moving
the smallest disk to the goal peg on an even-disk
problem means one cannot solve the puzzle without
later retracting this objective. However, once the
problem solver has made such an execution error,
he is unlikely to repeat it on later attempts.

• Learning from successful solutions transforms back-
ward chaining search into informed skill execution.
When a person first solves the Tower of Hanoi, he
resorts to means-ends analysis, but sufficient expe-
rience on the task replaces this with an automatized
execution procedure that involves no search.

Naturally, because these facets of human problem solving
have not received attention as interesting phenomena,
computational models have also tended to ignore them.
In the next section, we present an expanded theory of
problem solving that begins to remedy these oversights.

We should clarify that do not we view our framework
as inconsistent with the standard theory, but rather as
augmenting it. Neither are we the first to raise the need
for such extensions, as we note below when we discuss
each issue at more length. However, we are the first
to address them in a consistent manner within a the-
ory of the human cognitive architecture. Moreover, we
note that the two best-known frameworks – Soar (Laird,
Rosenbloom, & Newell, 1986) and ACT-R (Anderson,
1993) – have been augmented to address some of these
issues, but we view these changes as retrofits rather than
deeper revisions at the architectural level.

An Extended Problem Solving Theory

We are now ready to present an extended theory of hu-
man problem solving that moves beyond the abstract
framework provided by the standard version. This forms
a key part of Icarus, an account of the human cogni-
tive architecture. We will present only those aspects
of Icarus relevant to problem solving, but we have pre-
sented more complete descriptions elsewhere (Choi et al.,
2004). We will use the phenomena listed above to orga-
nize our points.

Physical Setting of Problem Solving

First, Icarus is an architecture for physical, embod-
ied agents. Although the framework incorporates many
ideas from traditional work on cognitive modeling, it
maintains that cognition is closely tied to perception and
action, and one cannot build an Icarus model that is
not linked to some environment external to the agent.
For the Tower of Hanoi, we have developed a simulated
world that contains disks, pegs, and a hand. Each object

has attributes that describe its height, width, and posi-
tion, and the hand also has a status of open or closed.

Like other cognitive architectures, Icarus operates in
cycles, but processing involves more than cognitive ac-
tivity. On each cycle, the agent perceives objects in its
immediate environment and their descriptions are de-
posited into a short-lived perceptual buffer. The sys-
tem may also carry out actions associated with primi-
tive skills; for the Tower of Hanoi, these correspond to
grasping and ungrasping a disk, as well as moving the
hand up, down, left, or right. Naturally, we could model
both perception and action at a finer granularity, but
this level is sufficient to make our point about the em-
bodied nature of problem solving.

Of course, the situated cognition movement has also
argued that human behavior occurs in a physical setting,
with Zhang and Norman (1994) even reanalyzing behav-
ior on the classic Tower of Hanoi puzzle in these terms.
Newell and Simon (1972, pp. 800–803) were quite aware
that much of their subjects’ behavior occurred in this
context; they simply chose not to distinguish between
internal and external states in their models. However,
we have developed a cognitive architecture that treats
the physical side of problem solving as a central tenet, as
contrasted with frameworks like Soar and ACT-R, which
view embodiment as peripheral to cognitive processing.

Abstraction from Physical Details

As noted, although humans have the perceptual-motor
abilities necessary to execute solutions to tasks like the
Tower of Hanoi, their mental problem solving occurs at
a more abstract level. Icarus models this capability in
two ways. One involves a long-term conceptual mem-
ory that, on each cycle, recognizes instances of generic
situations and adds them to a short-term memory that
contains current beliefs about the agent’s environment.
For instance, our model for the Tower of Hanoi includes
concepts for noting when a peg is empty and when a disk
is the smallest on a peg.

The other involves a long-term skill memory that de-
scribes higher-level skills, like moving a disk, in terms of
subskills like grasping a disk, lifting it off a peg, carry-
ing it from one peg to another, lowering the disk onto a
peg, and ungrasping it. On each cycle, the architecture
selects for execution a path through the skill hierarchy
with application conditions that match. These skills are
durative, in that they may take many cycles to complete;
for example, this holds for carrying a disk from one peg
to another in our Hanoi environment. We assume the ex-
ecution of such complex skills occurs in an automatized
way that demands very few attentional resources.1

Thus, Icarus’ sensory-motor control cycle provides
both abstract descriptions of the environment and ways
to execute abstract operators. This lets much of prob-
lem solving occur at an abstract level, which verbal
protocols consistently suggest is how humans deal with
such tasks. However, our framework is more constrain-
ing than the physical symbol system hypothesis, in that

1Because Icarus’ hierarchical skills are interpreted reac-
tively, they are much less rigid than traditional hierarchies.



problem states are always grounded in real or imagined
physical states, and problem-space operators always ex-
pand to primitive skills with executable actions. We be-
lieve a more accurate claim is that cognition relies on a
symbolic physical system, which comes closer to Johnson-
Laird’s (1989) views on thinking with mental models.

Interleaved Cognition and Execution

In addition to modules for conceptual inference and skill
execution, Icarus includes a module for means-ends
analysis. As in traditional accounts, we assume the prob-
lem solver begins with a declarative goal that describes
aspects of the desired state. This must be stated as an
instance of some known concept, so that the agent can-
not even formulate a problem unless it has a long-term
structure that can recognize its solution. This assump-
tion is novel, but not a difference we will focus on here.

Skills contain not only application conditions and sub-
skills, but also descriptions of their expected effects. If
the agent has a skill in long-term memory that would
achieve the goal, it checks to see whether that skill can
be applied in the current setting. If so, then the agent
simply executes the stored solution in the environment.
But if it lacks such a skill, as it would for an unfamiliar
task, it resorts to means-ends problem solving.

In this case, two situations can arise. The agent may
know a skill that would achieve the goal concept, but
it cannot yet be applied. Here the module adds the in-
stantiated precondition of the skill, which is stated as
a single concept, to a goal stack, then repeats the pro-
cess by looking for skills that will achieve this subgoal.
Alternatively, the agent may have no skill that achieves
the goal concept, in which case it examines the concept
definition and adds one of its unsatisfied subconcepts to
the goal stack, making it the focus of problem solving.

This process follows the standard theory fairly closely,
but it diverges when the agent retrieves a skill that can
be applied in the current state. Unlike traditional mod-
els, Icarus does not apply the skill mentally and con-
tinue reasoning from the new internal state. Instead, it
executes the skill physically in the environment, inter-
rupting cognitive activity for as many cycles as needed,
then resumes internal problem solving in the context of
the new situation. This may lead to more execution, if
the precondition of the next skill on the stack is met, or
to more subgoaling, if more remains to be achieved.

As a result, Icarus never retains in goal memory a
complete plan about how it will solve the problem, but
only a single path backward through its concept and skill
definitions that would lead toward its initial goal. The
advantage of this scheme is that it places a much lighter
memory load on the problem solver by using the envi-
ronment as an external store.2 Again, this account does
not conflict with Newell and Simon, who never claimed
that problem solving took place entirely in the human
mind, but it does contrast with most follow-on efforts.

2We should note that humans can handle simple problems
mentally, so a compromise model like that reported by Gun-
zelmann and Anderson (2003) may offer a better account.

Problem Restarts

Of course, the disadvantage of this mixed strategy is
that the problem solver may make an incorrect choice,
such as which subgoal it should achieve first. Heuristics
can reduce the chances of this happening, but they can
seldom eliminate it entirely. Traditional systems, includ-
ing the General Problem Solver (Newell & Simon, 1972),
responded by backtracking in the problem space. This
produces a systematic strategy of depth-first search that
does not match the details of human problem solving.

Icarus engages in a limited form of depth-first search,
but only if it can accomplish this by pushing subgoals
onto, or popping them from, the current goal stack.3

Once it has made a physical move, the system will
not consider retracing this step as part of a system-
atic search. Moreover, the goal stack retains information
about subgoals the system has accomplished in pursuit
of higher-level goals, and it does not consider skills that
would undo them. Thus, the agent may find itself in sit-
uations where it has achieved some subgoals necessary
for a solution but where it has no actions available.

In such cases, the problem solver gives up on its cur-
rent attempt and starts the problem again. Anzai and
Simon (1979) note two instances of this strategy in their
protocols, and many readers will recall taking such steps
on complex or tricky tasks. Restarting on a problem re-
quires physically moving it to the initial configuration,
which can be viewed as a form of backtracking, but it
is certainly not the systematic version usually discussed
in the literature. Icarus assumes that this restarting
process plays a key role in human problem solving.

We should note one earlier model, reported by Jones
and Langley (1995), combined restarts with means-ends
analysis. However, their Eureka system carried out
purely mental problem solving and had limited access to
memories of previous solution attempts, which meant it
could make the same errors in choice repeatedly. Hu-
mans may retrace some errorful steps, but they also try
to avoid these choices on later attempts. To model this
tendency, Icarus stores the goal stack associated with
a move later judged to be mistaken and uses it to elim-
inate the move from consideration on successive trials.
One might view this as systematic search across problem
attempts, but it still differs from most models of problem
solving and, we hold, comes closer to human strategies.

Learning from Problem Solutions

Icarus’ storage of long-term structures about what
moves to avoid constitutes a simple form of learning, but
the traces are highly specific and meant only to avoid
previous errors. However, people can also acquire more
general knowledge about how to solve a class of prob-
lems, and the architecture incorporates a mechanism
with this capability. This learning method is interleaved
with performance, it operates in an incremental man-
ner, and it is cumulative in that it builds on knowledge
acquired earlier, all characteristics of human behavior.

3We are also exploring memory-limited goal stacks that
are more consistent with recent studies of problem solving.



The learning process is driven by impasses that occur
during execution and problem solving, which in turn lead
to pushing entries onto the goal stack. Because Icarus

aims to avoid such impasses in the future, the archi-
tecture creates a new skill whenever it pops the stack
upon achieving its current goal. However, recall that the
means-ends module creates two distinct types of subgoal
that require slightly different forms of learning.

One type occurs when the agent selects a skill instance
S2 to achieve a goal G, but, upon finding its start con-
dition unsatisfied, selects another skill instance S1 so as
to achieve it. When the agent has executed both skills
successfully and reached the goal, Icarus constructs a
new skill that has the same name and arguments as the
goal concept G, the two skills S1 and S2 as ordered sub-
skills, and a start condition that is the same as that for
S1. In addition, arguments and other peceived objects
are replaced by variables in a consistent manner.

The other form of learning occurs when the agent finds
no skill to achieve a goal G, and thus creates subgoals
for the unsatisfied conditions of G’s concept definition.
If the agent achieves each subgoal in turn, the architec-
ture constructs a new skill that has the same name and
arguments as the goal concept G, the subgoals that are
achieved as ordered subskills, and a start condition based
on the subconcepts of G that held initially. Both mecha-
nisms name new skills after the goals they achieve, which
leads naturally to disjunctive and recursive definitions.

After learning, when the agent encounters a problem
that is isomorphic to one it has solved before, it avoids
an impasse by accessing the stored skill. The architec-
ture instantiates this skill and executes it, continuing
until achieving the goal that led to its retrieval. Similar
events transpire if the system encounters any subprob-
lem it has solved previously, which can produce transfer
to new tasks with familiar subtasks. Note that the agent
transitions from the backward-chaining search of means-
ends analysis to forward execution. This is consistent
with observations of novice-expert shifts (Larkin et al.,
1980), but clarifies that the “forward chaining” occurs
in the environment, rather than in the agent’s mind.

A Model for the Tower of Hanoi

To illustrate these ideas further, we will consider an
Icarus model for the Tower of Hanoi puzzle. The sys-
tem begins with some 14 concepts that describe config-
urations of disks and pegs, organized in a hierarchy that
has five levels. We also provide the system with five
primitive skills for manipulating disks, along with four
higher-level skills that correspond to problem-space op-
erators,4 some of which appear in Table 1. In addition,
we embed the system in a simulated environment with
three disks and three pegs, which it perceives on each cy-
cle and can alter using the actions in its primitive skills.

The agent begins by perceiving three disks stacked on
the leftmost peg, along with two other empty pegs, and
inferring a number of higher-level concepts from these

4The system requires four operators because it must dis-
tinguish between cases in which the moved disk is/is not alone
on the ‘from’ peg and between similar cases for the ‘to’ peg.

Table 1: Some Icarus skills for the Tower of Hanoi.

(pickup-putdown (?disk ?from ?to)
:start ((pickup-putdownable ?disk ?from ?to))
:ordered ((grasp-disk ?disk)

(lift-disk ?disk)
(carry-disk ?disk ?from ?to)
(lower-disk ?disk ?to)
(ungrasp-disk ?disk))

:effects ((no-disk-on ?from)
(on-peg ?disk ?to)
(only-disk-on ?disk ?to)))

(unstack-putdown (?d1 ?d2 ?from ?to)
:start ((unstack-putdownable ?d1 ?d2 ?from ?to))
:ordered ((grasp-disk ?d1)

(lift-disk ?d1)
(carry-disk ?d1 ?from ?to)
(lower-disk ?d1 ?to)
(ungrasp-disk ?d1))

:effects ((on-peg ?d1 ?to)
(top-disk-on ?d2 ?from)
(only-disk-on ?d1 ?to)))

(lift-disk (?disk)
:start ((on-peg ?disk ?from)

(no-smaller-disk-on ?disk ?from)
(grasped ?disk))

:actions ((*vertical-move ?disk 1))
:effects ((above-peg ?disk ?from)))

(carry-disk (?disk ?from ?to)
:percepts ((peg ?from xpos ?fxpos)

(peg ?to xpos ?txpos))
:start ((above-peg ?disk ?from)

(grasped ?disk))
:actions ((*horizontal-move ?disk ?fxpos ?txpos))
:effects ((above-peg ?disk ?to)))

(lower-disk (?disk ?to)
:start ((above-peg ?disk ?to)

(no-disk-on ?to)
(grasped ?disk))

:actions ((*vertical-move ?disk -1))
:effects ((on-base ?disk ?to)))

(lower-disk (?disk1 ?to)
:start ((above-peg ?disk1 ?to)

(on-peg ?disk2 ?to)
(no-smaller-disk-on ?disk1 ?to)
(no-smaller-disk-on ?disk2 ?to)
(grasped ?disk1))

:actions ((*vertical-move ?disk1 -1))
:effects ((on-disk ?disk1 ?disk2)))

percepts. These do not satisfy its goal of having a tower
composed of the same disks on the rightmost peg, so it
attempts to retrieve a skill that will transform its current
state into the desired one. Failing to retrieve such a skill,
it decomposes the tower goal into three subgoals, each of
which involves getting a separate disk on the rightmost
peg, and selects among them.

Because the model knows it can move the smallest
disk to the goal immediately, it selects this alternative,
although the choice causes problems later. The agent
selects a skill that will achieve this subgoal and, since its
conditions are satisfied, executes it in the environment.
This skill invokes subskills for grasping, lifting, carrying,
lowering, and ungrasping the disk, most of which take
multiple cycles to complete. When it has finished the
move, it pops the subgoal from the goal stack.



The system next selects the subgoal of getting the sec-
ond smallest disk on the goal peg, along with the skill in-
stance that would move it there. However, the start con-
dition for this skill is not matched, so the model pushes
a subgoal onto the stack to achieve it. But it cannot find
any skill that would accomplish it and not undo the sub-
goal regarding the smallest disk it has already achieved.

As a result, it pops the goal stack and marks the pro-
posed skill as failed, then selects another that it hopes
will move the second smallest disk to the rightmost peg.
However, it finds that this skill leads to the same prob-
lem and abandons it as well. Thus, the system pops the
subgoal for the second smallest disk and replaces it with
the subgoal of moving the largest disk to the goal peg.
But this encounters the same problems as before, which
eventually causes it to abandon this subgoal.

Lacking any further options, the model realizes its first
subgoal was an error, so it stores the context in which it
made this selection in order to avoid the subgoal in future
attempts. The agent then resets the environment to the
initial configuration and tries the puzzle again. This time
it avoids the previous mistake but instead attempts to
get the second smallest disk onto the goal peg, which
leads to similar problems. After some effort, it decides
to abandon this attempt and restart the problem again.

The model continues in this fashion, chaining back-
ward to select subgoals and skills and executing the lat-
ter whenever they are applicable. On its eighth attempt,
the agent selects the subgoal involving the largest disk
first, followed by the second largest disk, which together
let it solve the problem successfully. Along the way, the
system creates a new skill whenever it achieves a subgoal
that requires executing two or more component skills.

For the three-disk puzzle, the model acquires 13 skills
that build on initial hierarchy. When given the same
problem, the agent retrieves the relevant learned skill
and executes it without invoking means-ends analysis.
There are two ways to instantiate this skill, one that
moves disks to the goal peg and another that moves them
to the other peg. The model makes the right choice half
the time, in which case it makes the correct sequence of
moves in a reactive manner. When it makes the wrong
choice, the model fails and restarts, either to repeat its
error or make the right one on the next round. Humans
often make similar errors even after practice on the task.

We have included this example to illustrate the ways in
which Icarus’ behavior is qualitatively consistent with
the phenomena discussed earlier. Other researchers have
presented models of behavior on the Tower of Hanoi,
including some (e.g., Anderson, 1993) that match closely
the timing observed on the task. Such detailed modeling
has benefits, but it should not be expected in the early
stages of developing a unified theory that covers new
phenomena, when qualitative evaluation is appropriate.

Related Theoretical Extensions

We are hardly the first to propose extensions to the stan-
dard theory of problem solving. For example, Icarus’
learning mechanisms are closely related to the chunk-
ing process in Soar (Laird et al., 1986) and to knowl-

edge compilation in ACT-R (Anderson, 1993). All three
create new structures that reduce an agent’s efforts on
future tasks. A key difference is that the older architec-
tures determine conditions on learned rules by analyz-
ing dependencies in reasoning traces, whereas Icarus

simply stores generalized elements from its goal stack.
Moreover, their learning mechanisms eliminate interme-
diate structures to reduce internal processing, whereas
Icarus’ mechanisms operate in a cumulative manner
that leads to the creation of hierarchical structures.

We have also mentioned Jones and Langley’s (1995)
Eureka, which incorporated a modified means-ends
problem solver that combined search down a single path
with restarts upon failure. Their model did not learn
either generalized chunks or hierarchical skills, but it
did include a form of analogical search control based on
problem-solving traces accessed through spreading acti-
vation. Icarus stores instances of specific failures, but
uses them in a more limited way to keep from repeat-
ing mistakes. Eureka also utilized a flexible version of
means-ends analysis which preferred operators that re-
duced more differences and fell back on forward-chaining
search when no other choices were available. We intend
to incorporate this idea into future versions of Icarus.

Jones and Langley also used their model to account
for insight in problem solving, a topic which Ohlsson
(1992) has discussed at more length. In his treatment,
problem solving sometimes leads to impasses that can-
not be overcome in the initial problem space. Insight
occurs when the problem solver restructures the space
in some manner that makes a solution possible. Ohlsson
suggested three distinct restructuring mechanisms that
can produce this effect. In some ways, his proposal con-
stitutes a more radical extension to the standard theory
than our own, but it also expands on Newell et al.’s orig-
inal analysis without rejecting its basic contributions.

Other researchers have extended the standard frame-
work to explain the benefits of diagrams in problem solv-
ing. For example, Larkin and Simon (1987) have argued
that, besides serving as external memories, diagrams re-
duce search by grouping elements that are used together,
utilize location to group information about a given ele-
ment, and support perceptual inferences that are easy
for humans. This extension seems closely related to our
concern with the embodied context of problem solving,
although diagrams have a somewhat different character
from the physical structures in many puzzles and games.

Concluding Remarks

Although our extended theory of problem solving is
roughly consistent with the phenomena we presented
earlier, our framework would clearly benefit from further
evaluation and refinement. There remain many ques-
tions about how much humans abstract away from the
physical details of the problem setting, how often they re-
turn to this setting during their search, how tightly they
integrate cognition with execution, exactly when they
restart on difficult problems, and how rapidly learning
lets them acquire automatized strategies. Icarus makes



specific predictions about these issues, but testing them
will require carefully studying traces of problem-solving
behavior with them in mind.

We also know the current theory remains incomplete
in some ways. For instance, when humans first encounter
a novel problem, they appear to spend time observing
and manipulating the objects involved, presumably to
construct an abstract representation of the task. Icarus

does not model this early learning process, although Go-
bet and Simon’s (2001) work on the role of discrimina-
tion learning in game playing suggests one promising av-
enue. Moreover, people seem to form generalizations not
only about what steps to take in solving problems, but
about what steps to avoid. Icarus stores specific mem-
ories to avoid repeating errors, but, unlike Soar and
Prodigy, it does not form generic rejection knowledge.

Modeling these aspects of learning is important, but
we should also remedy some drawbacks of our perfor-
mance framework. Although Icarus cannot backtrack
over execution errors, it does carry out depth-first search
within each problem-solving attempt, whereas humans
seem far less systematic. Future versions should incor-
porate the memory-limited strategy used by Eureka,
which seems closely related to the progressive deepen-
ing scheme observed in chess players. Finally, although
means-ends analysis has been widely implicated in prob-
lem solving, it is not the only method that humans use
to solve problems. Forward-chaining search appears to
dominate on complex tasks like chess in which backward
chaining from the goal is impractical. We should add this
ability to Icarus and specify when this form of search is
invoked and how it interacts with means-ends analysis.

In summary, our extensions to the standard theory
have added some important items to our store of knowl-
edge about human problem solving. These include the
claims that problem solving typically occurs in a physi-
cal context yet abstracts away from physical details, that
problem solving interleaves mental reasoning with exe-
cution, that this interaction can lead to dead ends which
require problem restarts, and that learning transforms
backward chaining into informed execution. Moreover,
we have embedded these ideas in Icarus, a cognitive
architecture that we have used to develop models for
behavior on the Tower of Hanoi and other domains.

However, we should remember that the scientific pro-
cess itself involves problem solving. The extensions we
have reported here are simply further steps toward a
full understanding of human cognition. These must be
followed by the heuristic application of additional op-
erators, and possibly even by backtracking, before we
achieve this worthwhile but challenging goal.
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