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Abstract

In this paper, we review IcaruUs, a cognitive architecture that utilizes hierarchical skills and concepts for reactive execution in physical
environments. In addition, we present two extensions to the framework. The first involves the incorporation of means-ends analysis,
which lets the system compose known skills to solve novel problems. The second involves the storage of new skills that are based on
successful means-ends traces. We report experimental studies of these mechanisms on three distinct domains. Our results suggest that
the two methods interact to acquire useful skill hierarchies that generalize well and that reduce the effort required to handle new tasks.
We conclude with a discussion of related work on learning and prospects for additional research, including extending the framework to

cover developmental phenomena.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Research on cognitive architectures (Newell, 1990)
attempts to understand the computational infrastructures
that support intelligent behavior. A specific architecture
characterizes the aspects of a cognitive agent that remain
the same across time and over different domains, and typ-
ically makes strong commitments about the representation
of knowledge structures and the processes that operate on
them. Learning has been a central concern in most archi-
tectural research, with a variety of mechanisms having been
proposed to model the acquisition of knowledge from
experience. The learning methods embedded in most cogni-
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tive architectures are incremental, reflecting evidence that
humans acquire knowledge in this manner, but there have
been few accounts of the origin of hierarchical structures
that appear crucial to complex cognition.

In this paper we review Icarus (Langley & Choi, 2006),
a candidate architecture that diverges from its predecessors
on a number of dimensions. One important difference is
that traditional architectures handle conceptual knowledge
in a procedural manner, typically using production rules,
whereas our framework contains separate memories for
concepts and skills. Another distinctive feature is that most
architectures are based on production systems, which
encode knowledge as a ‘flat’ set of condition-action rules,
whereas 1caArRUs makes an architectural commitment to
the hierarchical organization of knowledge. One can cer-
tainly encode hierarchical structures in frameworks like
ACT-R (Anderson, 1993) and Soar (Laird, Rosenbloom,
& Newell, 1986), but this remains the modeler’s choice
rather than a strong theoretical claim. In addition, most
cognitive architectures evolved from theories of human
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problem solving, which has led to subordinate roles for
perception and action even in those frameworks that sup-
port them.® In contrast, IcARUS is primarily an execution
architecture that perceives and reacts to external environ-
ments, which we view as more basic than problem solving.

However, Icarus’ reliance on hierarchical structures
raises key questions about their origin. Moreover, the
architecture’s emphasis on execution does not mean that
mental activities like problem solving are unimportant,
since they can let an agent handle novel tasks for which
stored knowledge is unavailable. The central hypothesis
of this paper is that hierarchical skills arise, at least in many
cases, from problem-solving behavior, and that, once
learned, the agent can use these structures to support reac-
tive execution in the environment. Moreover, this acquisi-
tion occurs in an incremental manner, with new skills
being learned gradually as the agent encounters new prob-
lems it cannot handle without resorting to problem solving.

We refer to Icarus as a ‘cognitive architecture’ in the
same sense that the Soar community uses that expression.
Both frameworks aim for consistency with general knowl-
edge about human cognition and hope to support the same
broad range of abilities that people demonstrate. However,
our current research does not attempt to match at a fine-
grained level the results of psychological experiments, as
done with architectures like ACT-R. We may address such
issues in future research, but for now we are concerned
with coarse regularities that demand explanation, such as
the apparent hierarchical nature of human skills and their
incremental acquisition from experience.

In the sections that follow, we review IcArRUS’ representa-
tion and organization of concepts and skills, along with the
inference and execution processes that utilize them. After
this, we present a module that interleaves means-ends prob-
lem solving with execution when known skills are insufficient
to solve a task. Next we describe a mechanism for creating
generalized skills from traces of successful problem solving
that supports incremental, hierarchical learning. We report
experiments with this learning mechanism that demonstrate
its ability to generalize to novel situations and reduce effort
on new problems. In closing, we discuss earlier research on
learning for problem solving and execution, along with some
directions for future work. We have described this version of
IcArus in an earlier publication (Langley & Choi, 2006), but
here we describe it from the perspective of cognitive architec-
tures, and we report new experimental results that focus on
cumulative effects of experience.

2. Representation and organization

Like other cognitive architectures, IcaARus makes com-
mitments to its representation of knowledge, the manner
in which that knowledge is organized, and the memories

3 Recent extensions to Soar and ACT-R have provided them with
sensori-motor interfaces, but their emphasis on central cognition remains
strong.

in which it resides. Following most theories of human cog-
nition, the framework distinguishes between long-term
memories, which change only gradually due to learning,
and short-term memories, which change rapidly as the
agent revises its beliefs and goals. In this section, we discuss
Icarus’ memories and the formalisms used to encode their
contents.* We will take our examples from the Blocks
World (Langley & Choi, 2006), since many readers should
find this domain familiar. We have described these aspects
of the framework in more detail elsewhere, including their
use in other domains like urban driving (Choi, Kaufman,
Langley, Nejati, & Shapiro, 2004) and multi-column sub-
traction (Langley, Cummings, & Shapiro, 2004).

2.1. Long-term conceptual memory

One of Icarus’ long-term memories stores concepts that
describe generalized situations in the environment. These
may involve isolated objects, such as individual blocks,
but they can also characterize physical relations among
objects, such as the relative positions of blocks. Long-term
conceptual memory contains the definitions of these logical
categories. Each element specifies the concept’s name and
arguments, along with fields which describe perceptual
entities that must be present, lower-level concepts that
must match, lower-level concepts that must not match,
and numeric relations that must be satisfied. Table 1 pre-
sents some concepts from the Blocks World. For example,
the relation on describes a perceived situation in which two
blocks have the same x position and the bottom of one has
the same y position as the top of the other. The concept
clear instead refers to a single block, but one that cannot
hold the relation on to any other.

Definitions of this sort organize ICARUS categories into a
conceptual hierarchy. Primitive concepts are defined
entirely in terms of perceptual conditions and numeric
tests, but many incorporate other concepts in their defini-
tions. This imposes a lattice structure on the memory, with
more basic concepts at the bottom and more complex con-
cepts at higher levels. The resulting hierarchy is similar in
spirit to discrimination network models of human memory
like EPAM (Richman, Staszewski, & Simon, 1995), as well
as to frameworks like description logics (Nardi & Brach-
man, 2002). Structurally, this lattice bears a close resem-
blance to the Rete networks (Forgy, 1982) used for
matching in production-system architectures.

2.2. Long-term skill memory

Icarus also incorporates a second long-term memory
that stores knowledge about skills it can execute in the

4 Some previous versions of Icarus, reported by Langley, McKusick,
Allen, Iba, and Thompson (1991) and by Shapiro, Langley, and Shachter
(2001), have made substantially different assumptions. To distinguish the
current architecture from its predecessors, IcaruUs/3 would be a more
proper reference.
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Table 1

Some Icarus concepts for the Blocks World, with variables indicated by question marks. Percepts refer only to attribute values used elsewhere in the

concept definition.

(on (?blockl ?block?2)

:percepts ((block ?blockl xpos ?xposl ypos ?yposl)
(block ?block? xpos ?xpos2 ypos ?ypos2 height ?height2))
:tests ((equal ?xposl ?xpos?) (>= ?yposl ?ypos2) (<= ?yposl (+ ?ypos2 ?height2))))
(clear (?block)
:percepts ((block ?block))

:relations ((not (on ?other ?block))))
(unstack-able (?block ?from)

:percepts ((block ?block) (block ?from))

:relations
(pickup-able (?block ?from)

:percepts ((block ?block) (table ?from))

:relations

((on ?block ?from) (clear ?block) (hand-empty)))

((ontable ?block ?from) (clear ?block) (hand-empty)))

environment, including their conditions for application and
their expected effects. Each skill clause includes a head (a
name and zero or more arguments) and a body that speci-
fies the concepts that must hold to initiate the skill and one
or more components. A primitive skill clause indicates one
or more ordered, executable actions, along with those con-
cepts that, taken together, describe the situation the skill
produces when done. A primitive skill may also state con-
ditions that must hold throughout its execution, which may
require multiple cycles to complete. For example, Table 2
shows the skill pickup, which must satisfy the start condi-
tion, (pickup-able ?block ?from), defined in Table 1, and
invokes *grasp, which grasps a block, and *vertical-move,
which moves the hand in the vertical direction. The skill’s
only stated effect is to make (holding ?block) true.

In contrast, a nonprimitive skill clause specifies how to
decompose that activity further. For instance, Table 3
includes two clauses for the nonprimitive skill c¢lear. Each
indicates that executing the clause will achieve that goal,
but they differ in their start conditions and in their subs-
kills. Nonprimitive skill clauses do not specify either
required conditions or effects, but their heads always corre-
sponds to a concepts that the skill will achieve upon suc-
cessful completion. This representational assumption

Table 2

figures centrally in the learning mechanism we describe
later. Because IcarRus concepts and skills utilize a syntax
similar to that found in the programming language Prolog,
we have referred elsewhere to sets of these long-term mem-
ory structures as teleoreactive logic programs (Choi &
Langley, 2005). This phrase conveys both their structural
similarity to traditional logic programs and their ability
to behave reactively in a goal-driven manner, following
Nilsson’s (1994) notion of a teleoreactive system.

2.3. Short-term memories

In addition to long-term memories, which encode rela-
tively stable knowledge about a domain, IcAarus follows
standard psychological theory by incorporating short-term
stores that change more rapidly. These contain the agent’s
temporary perceptions and beliefs about the environment,
as well as its goals and intended activities. They include:

e a perceptual buffer that holds descriptions of physical
entities which correspond to the output of sensors; for
the blocks world, this includes structures like (block B
xpos 10 ypos 2 width 2 height 2), which specify the posi-
tion and size of individual blocks.

Primitive skills for the Blocks World. Each clause has a head that specifies the skill’s name and arguments, a set of typed percepts, a single start condition,

a set of effects, and a set of executable actions (marked by asterisks).

(unstack (?block ?from)
:percepts ((block ?block) (block ?from))
:start ((unstack-able ?block ?from))
ceffects ((clear ?from) (holding ?block))
cactions ((*grasp ?block)
(xvertical-move ?block)))
(stack (?block ?to)

:percepts ((block ?block) (block ?to))
:start ((stack-able ?block ?to))
ceffects ((on ?block ?to)

(hand-empty))
cactions ((*horizontal-move ?block ?xpos)

(xvertical-move ?block)
(xungrasp ?block)))

(pickup (?block ?from)

:percepts ((block ?block) (table ?from))
:start ((pickup-able ?block ?from))
ceffects ((holding ?block))

ractions ((*grasp ?block)

(xvertical-move ?block)))
(putdown (?block ?to)

:percepts ((block ?block) (table ?to))

:start ((putdown-able ?block ?to))

ceffects ((ontable ?block ?to)
(hand-empty))

ractions ((¥horizontal-move ?block)

(xvertical-move ?block)
(xungrasp ?block)))
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Table 3

Some nonprimitive skills for the Blocks World that involve recursion. Each skill clause has a head that specifies the goal it achieves, a set of typed percepts,
one or more start conditions, and a set of ordered subskills. Numbers after the head distinguish different clauses that achieve the same goal.

(clear (?B) 1

:percepts ((block ?C) (block ?B))
:start ((unstack-able ?C ?B))
:skills ((unstack ?C ?B)))

(hand-empty ( ) 2
:percepts ((block ?C) (table ?T))
:start ((putdown-able ?C ?T))
:skills ((putdown ?C ?T)))

(unstack-able (?B ?A) 3

:percepts ((block ?A) (block ?B))
:start ((on ?B ?A) (hand-empty))
:skills ((clear ?B) (hand-empty)))

(clear (?A) 4

:percepts ((block ?A) (block ?B))
:start ((on ?B ?A) (hand-empty))
:skills ((unstack-able ?B ?A)

(unstack ?B ?A)))

e a short-term conceptual memory that contains beliefs
about the environment which the agent infers from items
present in its perceptual buffer and long-term concept
memory; for instance, this might contain the literal (on
B (), which is an instance of the on concept in Table 1.

e a short-term skill memory that contains the agent’s goals
and associated skill instances it intends to execute; each
goal literal specifies a concept’s name and argumets, as
in (clear A), whereas each associated intention gives a
skill’s name and its arguments, as in (stack B C), which
is an instance of the skill stack in Table 2.

Unlike most cognitive architectures, every element in the
short-term conceptual and skill memories must be an
instance of some generalized structure in the long-term
conceptual and skill memory, respectively; they cannot be
arbitrary symbolic structures. We have discussed this
strong correspondence assumption at more length else-
where (Langley & Rogers, 2005).

3. Conceptual inference and skill execution

Like most cognitive architectures, IcArRUs operates in
distinct cycles. On each such iteration, the system updates
its perceptual buffer by sensing objects in its field of view,
with the specific sensors depending on the particular envi-
ronment in which the agent is operating. This process pro-
duces perceptual elements, which are are deposited in the
perceptual buffer and which initiate matching against
long-term concepts. The matcher checks to see which prim-
itive concepts (i.e., those defined entirely in terms of per-
cepts) are satisfied, adds each matched instance to
conceptual short-term memory, and repeats the process
on nonprimitive concepts to infer higher-level beliefs.

This process aims to infer all instances of concepts that
are implied by IcAarus’ conceptual definitions and the con-
tents of the perceptual buffer, but there are different ways
to achieve this effect. Earlier versions recomputed all infer-
ences from scratch on each cycle in an exhaustive manner,’
but the current system uses a more efficient mechanism.
Icarus stores inferred beliefs with the general concept of

5 Asgharbeygi, Nejati, Langley, and Arai (2005) report an alternative
mechanism that uses expected values to makes inferences more selectively.

which they are instances and retains these beliefs across
cycles until their perceptual support disappears, when it
removes them. The Rete networks (Forgy, 1982) used in
many production-system architectures rely on a very simi-
lar process; the main difference is that each node in the
Icarus hierarchy corresponds to a defined concept. This
update mechanism, which also shares features with truth-
maintenance systems (e.g. Doyle, 1979), greatly reduces
unnecessary calculations across cycles.

On each cycle, the architecture also examines the agent’s
goals and their associated intentions in short-term skill
memory to determine which, if any, apply to the current
situation.® For each intended skill instance, ICARUS accesses
all clauses of the general skill to see if they are applicable.
Since variables can be bound within a skill’s body, this set
may include multiple variants of each skill clause stored in
long-term memory. A primitive skill clause is applicable if,
for its current variable bindings, its effects do not yet hold,
its requirements are satisfied, and, if the system has not yet
started executing it, the start conditions match the current
situation. A higher-level skill clause is applicable if its head
is not satisfied, the start conditions are satisfied if it has not
been initiated, and at least one subskill is applicable.
Because this latter test is recursive, a skill is applicable only
when IcArus can find at least one acceptable path down-
ward to executable actions, which the architecture returns
for invocation.

For example, suppose an Icarus agent has the goal
(clear A) in a situation where block A is on the table, block
Bis on A, block C is on B, and the hand is empty. Suppose
further that the agent has access to the primitive skills in
Table 2 and the nonprimitive ones in Table 3. In this case,
the system would find an applicable path through the skill
hierarchy that is relevant to its goal, as shown in Fig. 1:
[(clear A), (unstack-able B A), (clear B), (unstack C B)]. This
holds because the instantiated start conditions of each skill
along the path (e.g., (on B A) and (hand-empty) for the top-
most skill) are present in conceptual short-term memory. If
selected, (unstack C B) would alter the environment, mak-
ing the path [(clear A), (unstack-able B A), (hand-empty),
(putdown C T)] acceptable on the next cycle. This would

© Icarus’ first step in a run typically involves selecting a relevant and
applicable instance of a nonprimitive skill that it believes will achieve one
of its goals.
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preconditions:

4

(on B A), (hand-empty)

preconditions:

(unstack-able B A)
3

(on B A), (hand-empty)

1

precondition:

(unstack-able C B)

(unstack C B)

(hand-empty)
2

precondition:
(putdown-able CT)

Fig. I. An executable path through Icarus’ skill hierarchy for the Blocks World, when the top-level goal is (clear A). Ellipses denote the goals of the skills
at different levels, while the numbers associated with them show the skill labels from Table 3.

produce a belief state that enables the next step in the pro-
cedure, which would continue until the agent had satisfied
its top-level goal, (clear A).

During skill selection, IcArRUS incorporates two prefer-
ences that provide a balance between reactivity and persis-
tence. When confronted with a choice between two or more
subskills, it selects the first alternative for which the head is
not satisfied. This supports reactive control, since the sys-
tem reconsiders previously completed subskills and, if their
effects no longer hold for some reason, reexecutes them to
remedy the problem. On the other hand, when encounter-
ing two or more applicable skill paths, Icarus selects the
one that shares the most elements from the start of the path
executed on the previous cycle. This encourages the system
to continue executing a high-level skill it has already
started until that skill achieves its associated goal or until
it becomes inapplicable.

4. Means-ends problem solving

As just explained, Icarus can execute complex hierarchi-
cal skills in a reactive manner, but our initial studies (e.g.
Choi et al., 2004; Langley et al., 2004) assumed that these
skills are already present in long-term memory. Although
much human behavior appears to involve the application
of such routine skills, people can also solve novel tasks that
require the dynamic combination of existing knowledge
elements through some form of heuristic problem solving.

To model this capability in IcArus, we have introduced
a variant of means-ends analysis (Newell, Shaw, & Simon,
1960) that operates over the architecture’s knowledge
structures, including both long-term concepts and skills
provided by the programmer and short-term beliefs and
goals produced by the architecture. Traditional means-ends
problem solving selects some unsatisfied aspect of the goal
state to achieve, then selects an operator that would

achieve it. If that operator’s preconditions match the cur-
rent state, it is applied; otherwise, the method selects an
unsatisfied precondition to achieve, selects an operator that
would achieve it, and so on. Once a condition is met, the
process is repeated until the original goal description is
satisfied. This may require search, which is often pursued
in a depth-first manner. Means-ends analysis has been
implicated repeatedly in human problem solving on novel
tasks.

To support this mechanism, the current version of
Icarus augments the short-term skill memory with a goal
stack. Each element in this stack specifies a goal (a desired
concept instance), whether the agent intends to achieve it
by backward chaining off a concept definition or a skill
clause, and, in the latter case, the skill instance that, if exe-
cuted, should achieve it. Each goal element also specifies
subgoals that have already been achieved, along with skill
and/or concept instances that it has tried in reaching this
goal but that have failed. The first are needed to keep the
system from considering skills that would undo its previous
accomplishments, whereas the second ensures it does not
repeat earlier mistakes. We also assume that both the start
conditions of primitive skills and top-level goals must be
cast as single relational literals, which causes no loss in gen-
erality, since either may be defined concepts.

The Icarus interpreter takes advantage of these new
memory structures. On each cycle, the system takes the first
true alternative of the following five statements:

e If the current goal G of the goal stack GS is satisfied,
then pop G from GS and store information about the
success with G’s parent.

o If the goal stack GS does not exceed the depth limit and
there are applicable skill paths that start from a skill
instance with the current goal G as its head, then select
one such path and execute it.
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e If there is a nonempty set of primitive skill instances in
which the current goal G is an effect that have not
already failed, then select a skill instance from this set
and push its start condition (which we assume subsumes
any required conditions) onto the goal stack GS.

e If the current goal G is an instance of a complex concept
with unsatisfied subconcepts H and with satisfied sub-
concepts F, then if there is a subconcept I in H that
has not yet failed, push I onto the goal stack GS.

e Otherwise pop the current goal G from the goal stack
GS and store information about the failure with G’s
parent.

We assume that each of these activities takes a single cycle
of the architecture, with the initial situation being a special
case of the third item that triggers the process. Because rea-
soning about how to achieve an objective can require many
manipulations of the goal stack, it takes more cycles than
executing a stored hierarchical skill for that goal, even
when the agent finds a solution on its first attempt and does
not have to backtrack.

Fig. 2 shows a successful trace of the problem solver’s
behavior on a simple urban driving task when the goal is
to turn right and stop in the street segment on the right-
hand side, thus making (in-segment me g998) true. Initially,
the agent’s car is stopped in the leftmost lane, g/020, in a

in-intersection-for-right-turn
me g978

{ initial state s, \

in-intersection-for-right-turn
me g978

street segment, g994. In this situation, the system looks
for skills with the goal as its head but, when this fails, it
considers skills that have the goal as one of their effects.
In this case, invoking the primitive skill instance (steer-
for-right-turn me g978 g998) would produce the intended
result, but it cannot be applied because its instantiated start
condition, (in-intersection-for-right-turn me g978), does
not hold. In response, the problem solver stores the skill
instance with the initial goal and pushes the subgoal onto
the goal stack. Then the system looks for skills that will
achieve the subgoal and finds the skill instance, (in-inter-
section-for-right-turn me g978). However, it also has an
unsatisfied start condition, (in-rightmost-lane me gl1021),
and in turn the problem solver pushes the new subgoal
onto the goal stack.

Next, the problem solver attempts to retrieve skills that
would achieve (in-rightmost-lane me gl1021). However,
because it has no such skills in memory, it resorts to chain-
ing off the definition of in-rightmost-lane. This involves two
instantiated subconcepts — (driving-in-segment me g994
g1021) and (last-lane g1021) — but only the first of these
is unsatisfied, so the system pushes it onto the goal stack.
This in turn leads it to consider skills that would produce
this literal as an effect, but when it finds that there are no
such skills, it chains off the definition of driving-in-segment
again. Among the unsatisfied subconcepts, (centered-in-

steer-for-right-turn
me g978 g998

in-segment
me g998

goal state s,

in-segment

me g994

in-lane me g1020

in-lane
me g1021

lane-to-right
g1020g1021

ol

steering-wheel-straight

centered-in-lane
me g994 g1021
in-lane
me g1021
aligned-with-lane
me g1021

' in-rightmaost-lane l

me gl1021

driving-in-segment
me g994 g1021

me

last-lane g1021

0

I
N !

initial state s,

|

state s,

JHH

goal state s,

Fig. 2. A trace of successful problem solving in the urban driving domain, with ellipses indicating (sub)goals and rectangles denoting primitive skills.



322 P. Langley et al. | Cognitive Systems Research 10 (2009) 316-332

lane me g994 g1021), (in-lane me g1021), and (aligned-with-
lane me g1021), the problem solver chooses the second one,
possibly after some search. It then retrieves the correspond-
ing skill instance (in-lane me gl1021), whose start condi-
tions, (in-lane me g1020) and (lane-to-right g1020 gl021)
already hold, and executes the selected skill. The associated
actions alter the environment over several cycles and cause
the agent to infer (in-lane me g1021) from its percepts. In
response, the system pops this goal from the stack and
reconsiders its parent, (driving-in-segment me g994 gl1021).

However, this has not yet been achieved because two
other subconcepts, (centered-in-lane me g994 gl021) and
(aligned-with-lane me g1021), are still not satisfied in the
environment. Moreover, executing the previous skill has
caused another of its component concept instances, (steer-
ing-wheel-straight me), to become false. Thus, the system
pushes one of these onto the stack and continues working
at this level in a similar fashion until all the instantiated
subconcepts are satisfied. Once all the components, (in-seg-
ment me g994), (centered-in-lane me g994 gl021), (in-lane
me gl1021), (aligned-with-lane me gl1021), and (steering-
wheel-straight me) are achieved, their parent (driving-in-seg-
ment me g994 g1021) becomes true in the environment, and
the system pops it from the goal stack.

This step also achieves the subgoal (in-rightmost-lane me
g1021), thanks to the other component, (last-lane gl021)
being true from the beginning of execution. Thus, the prob-
lem solver pops this element from the goal stack and exe-
cutes the skill instance it had originally selected, (in-
intersection-for-right-turn me g978), in the new situation.
Upon completion, the system perceives that the altered
environment satisfies the start condition for the skill,
(steer-for-right-turn me g978 g998), which it selected for
its goal, (in-segment me g998). After executing this skill, it
then detects that it has solved the problem by achieving
the top-level goal and halts.

For the sake of clarity, we have presented the trace of
successful problem solving, but finding such a solution
may involve search. When backward chaining off skills that
would achieve the objective of the current stack entry,
Icarus considers only skill instances that have not yet
failed. The system also prefers candidates that have the
fewest expanded start conditions that are unmet by the cur-
rent environmental state, with fully matched conditions
being most desirable. If candidates tie on this criterion, it
selects an alternative at random. When backward chaining
off the unmatched elements of a concept definition, the sys-
tem selects subgoals at random after eliminating those
which have failed in the past.

Taken together, these biases produce a heuristic version
of means-ends analysis. However, this problem-solving
method is tightly integrated with the execution process.
Icarus backward chains off concept or skill definitions
when necessary, but it executes the skill associated with
the top stack entry as soon as it becomes applicable. More-
over, because the architecture can chain over hierarchical
reactive skills, their execution may continue for many

cycles before problem solving is resumed. In contrast, most
models of human problem solving and most Al planning
systems focus on the generation or the execution of plans,
rather than interleaving the two processes.

Of course, executing a component skill before construct-
ing a complete plan can lead an agent into difficulties, since
one cannot always backtrack in the physical world. This
strategy may well lead to suboptimal behaviors, but human
intelligence is more about satisficing than optimizing, and
interleaving problem solving with execution requires far
less memory than constructing a full plan before executing
it. However, it can produce situations from which the agent
cannot recover without starting the problem over.

In such cases, Icarus stores the goal element for which
its executed skill caused a problem, along with everything
below it in the stack. The system begins the problem again,
this time avoiding the skill and selecting another option. If
it makes a different execution error this time, it again stores
the problematic skill and its context, then starts over once
more. [cArRUS also starts over if it has not achieved the top-
level objective within a specified number cycles. Such
repeated attempts at solving a task, with selected memory
about previous passes, seems a better model of human
problem solving than systems that construct a complete
plan before execution. Jones and Langley’s (2005) model
of means-ends problem solving, EUREKA, used a similar
restart strategy, but it kept no explicit record of previous
failed paths.

5. Learning hierarchical skills from problem solving

In the previous pages, we described two facets of Icarus:
its execution of hierarchical skills on familiar tasks and its
use of problem solving to handle novel ones. The first lets
the system operate efficiently, but skills are tedious to con-
struct manually, whereas the second gives the system flexi-
bility but requires reasoning and means-ends search. We
believe that humans also have both capabilities, but that
they use learning to transform the results of successful
problem solving into hierarchical skills. We would like to
incorporate a similar capability into Icarus.

However, we want our learning mechanisms to reflect
certain properties that appear to hold for human skill
acquisition. One is that learning should take advantage
of existing knowledge, such as the definitions of current
skills and concepts. In addition, acquisition should be
incremental, in that it learns from each new experience,
and interleaved with the problem-solving process. The
recent literature on computational learning contains few
cases of such knowledge acquisition, although in Section
7 we discuss some older work that has this character.

Our extension of IcArus achieves this effect through a
form of impasse-driven learning that is tied closely to its
problem-solving and execution processes. For this reason,
the learning mechanisms require no additional inputs
beyond those required for these basic performance pro-
cesses. As in Soar (Laird et al., 1986), the purpose of skill
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Table 4

Four skill clauses learned for urban driving, along with a primitive skill that is used in a learned skill recursively.

; skill clause for situations that require a lane change
(driving-in-segment (?me ?g994 ?gl021) 20
:percepts
istart
:ordered

((segment ?g994) (lane-line ?gl021) (self ?me))
((in-segment ?me ?g994) (steering-wheel-straight ?me))
((in-lane ?me ?gl021) (centered-in-lane ?me ?g994 ?gl021)

(aligned-with-lane-in-segment ?me ?g994 ?gl021)

(steering-wheel-straight ?me)))
; skill clause that prepares the agent for a right turn
(in-rightmost-lane (?me ?gl021) 21

:percepts ((self ?me) (lane-line ?glO021))
:start ((last-lane ?gl021))
:ordered ((driving-in-segment ?me ?g994 ?gl021)))

; recursive skill clause that takes first step needed for right turn

(in-intersection-for-right-turn (?me ?g978) 22

:percepts ((lane-line ?glO21) (self ?me) (intersection ?g978))
istart ((last-lane ?gl021))
:ordered ((in-rightmost-lane ?me ?gl021)

(in-intersection-for-right-turn ?me ?g978)))

; 8skill clause for handling right turns
(in-segment (?me ?g998) 23
:percepts
:start
:ordered

((last-lane ?gl021))

(steer-for-right-turn ?me ?g978 ?g998)))

((in-intersection-for-right-turn ?me ?g978)

((self ?me) (intersection ?g978) (segment ?g998))

; primitive skill that is called recursively by learned clause

(in-intersection-for-right-turn (?self ?int) 1
:percepts
(lane-line ?lane segment ?sg))

((self ?self) (segment ?sg) (intersection ?int)

:start ((in-rightmost-lane ?self ?lane))

:requires ((in-segment ?self ?sg) (intersection-ahead ?int)
(last-lane ?lane))

ractions ((xcruise))

:effects ((in-intersection-for-right-turn ?self ?int)))

learning is to avoid such impasses in the future. Thus,
whenever the architecture achieves an objective that is
associated with an entry in the goal stack, this success pro-
vides an opportunity for learning. The system acquires two
distinct forms of skill that are tied to different aspects of
problem solving.

The first class of skills result from situations in which the
problem solver cannot find a skill to achieve a goal G, and
thus pursues subgoals based on the unsatisfied conditions
of G’s conceptual definition. If the agent achieves these
subgoals in the order {G, G,,...,G,}, thus satisfying the
parent goal G, Icarus constructs a new skill clause that
has G as its head and that has {G|,G,,...,G,} as its
ordered subskills.” The start conditions of the new clause
are simply those subconcepts of G that were satisfied when
it was pushed onto the goal stack. The head, conditions,
and subskills have their arguments replaced by variables
in a consistent manner, ensuring applicability to analogous
situations that involve different objects.

For example, upon achieving the subgoal (driving-in-seg-
ment me g994 g1021) in Fig. 2, the system constructs the

7 Note that the system refers to subskills by the goals they achieve,
rather than to specific clauses, which lets the parent skill take advantage of
other clauses for these goals that are learned later.

driving-in-segment skill clause labeled 20 in Table 4. The
head (driving-in-segment ?me ?g994 ?g1021) is a generalized
version of the goal (driving-in-segment me g994 gl021),
whereas the ordered subskills (in-lane ?me ?gl1021), (cen-
tered-in-lane ?me ?g994 ?g1021), (aligned-with-lane ?me
2g1021), and (steering-wheel-straight ?me) are generalized
versions of its four subgoals. The start conditions are (in-
segment ?me ?¢g994) and (steering-wheel-straight ?me),
which are generalized versions of the subconcepts that held
when the goal was established. Finally, the :percepts
field specifies the types for objects that serve as the head’s
arguments. This mechanism constructs different variants
of a skill, with separate start conditions and distinct subgo-
als, from subproblems that involve different initial
conditions.

The second category of skills results from situations in
which IcArus has selected a primitive skill instance S2 in
order to achieve a goal G, but found its single start condi-
tion G2 unsatisfied and selected another skill instance, S1,
to achieve it. Once the agent has executed both skills suc-
cessfully and it has reached the goal, the system constructs
a new skill clause that has G as its head and that has G2
(rather than the specific clause S1) and S2 as ordered subs-
kills. The start conditions are simply the start conditions of
the S1 clause used in the subproblem solution, which are
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sufficient because the problem solver S1 selected it to
achieves the start condition of S2, which in turn achieves
the goal G. Again, specific arguments are replaced consis-
tently by variables.

For instance, upon achieving the top-level goal (in-seg-
ment me g998) in Fig. 2, IcARUS creates the in-segment skill
clause labeled 23 in Table 4. This incorporates a general-
ized version of (in-segment me g998) as its head, along with
variablized versions of (in-intersection-for-right-turn me
g978) and (steer-for-right-turn me g978 g998) as its two
ordered subskills. The start condition, (last-lane ?g1021),
is the same as that for in-right-most-lane clause 21, since
the latter was created to achieve the start condition of in-
intersection-for-right-turn, which in turn satisfies the start
condition of steer-for-right-turn that is used to achieve
the top-level goal.

Both learning mechanisms are fully incremental, in that
each learning event draws on a single problem-solving
experience and thus requires no memory of previous ones.
They support within-trial learning, since skills acquired on
one subproblem may be used to handle later subproblems.
The processes also build on existing knowledge, since the
construction of new skill clauses involves the composition
of those used in a training problem’s solution. Taken
together, these support a form of cumulative learning, in
which Icarus learns skills on one problem, uses them to
solve a later problem, and incorporates them into still
higher-level structures.

As suggested by our examples, these learning methods
can acquire both disjunctive and recursive skills. The key
to this ability lies in the assumption that acquired skill
clauses which achieve the same goal should be given the
same head. By indexing skills in this manner, Icarus knows
when two or more clauses should be stored together, which
leads in turn to the creation of skills that call on them-
selves, either directly or through intermediate skills. This
makes the architecture’s learned skills considerably more
flexible and general than traditional ‘macro-operators’
(e.g., Iba, 1989) or composed production rules (e.g., Neves
& Anderson, 1981).

Of course, the creation of disjunctive and recursive struc-
tures has potential for overgeneralization, as demonstrated
by research on the induction of context-free grammars
(e.g., Langley & Stromsten, 2000). Our technique for deter-
mining the start conditions on new skill clauses is much sim-
pler than standard techniques for analytical learning or rule
induction. In fact, at first glance, the learned clauses in
Tables 3 and 4 appear highly overgeneral, but this ignores
the fact that Icarus does not interpret skills in isolation.
Recall that the architecture must find an entire path through
the skill hierarchy before it can execute the primitive skill at
its terminus. This means the system collects conditions
dynamically, as it descends the hierarchy, guarding against
overgeneralization by carrying out limited analysis at per-
formance time rather than doing it all at learning time.

Unlike some approaches to incremental learning,
Icarus’ methods require no additional mechanisms for skill

refinement. Each skill clause is generalized when the archi-
tecture constructs it, and its start conditions are assumed to
be accurate. The knowledge it acquires from solving a
given problem may well be incomplete, but this will simply
lead to further impasses that produce additional learning.
Skill clauses acquired later complement, but do not com-
pete with, those learned earlier because they cover different
situations or the older clauses would have avoided the
impasse. Thus, learning is purely monotonic, as in frame-
works like Soar.

We should note that our current implementation
restricts the use of learned skills in future problem solving.
In particular, we have adopted Mooney’s (1989) idea that
one should not chain off the preconditions of learned skills.
This does not restrict their use by the execution module,
but it does mean that the problem solver considers a
learned skill only when its start conditions are already sat-
isfied. As a result, clauses acquired from chaining off skills
always have a left-branching structure in which the second
subskill is primitive. This assumption may seem restrictive,
but, like Mooney, we believe it provides an effective guard
against the utility problem (Minton, 1990), in which the
creation and use of complex structures reduces search but
actually slows performance.

6. Experimental studies of skill learning

Although these methods for learning hierarchical skills
seem plausible, whether they improve an Icarus agent’s
performance is an empirical question. In this section, we
report the results of basic tests of these mechanisms on
three distinct domains: urban driving, the Blocks World,
and FreeCell solitaire. After this, we report more system-
atic experiments with the domains that examine the effects
of learning in more detail. As one measure of performance,
we used the number of recognize-act cycles required to
solve the problem in the simulated environment, including
both problem solving and execution steps. However, we
also measured the CPU time required to solve each prob-
lem, to determine whether Icarus suffers from the utility
problem.

6.1. Domains and basic demonstrations

To ensure that our approach to learning hierarchical
skills operated as intended, we developed IcArus programs
for the three domains. In each case, we provided a set of
primitive skills sufficient for solving problems with
means-ends analysis and a set of hierarchical concepts suf-
ficient for recognizing situations that were relevant to exe-
cuting those skills. For example, we devised some 41
concepts and 19 skills for the urban driving domain, 11
concepts and four skills for the Blocks World, and 24 con-
cepts and 12 skills for FreeCell solitaire. The Appendices
A, B, and C give the names of the primitive concepts,
nonprimitive concepts, and primitive skills provided for
each domain, which should also suggest their functions.
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In addition, we also provided the architecture with a set of
sensors and effectors for each simulated environment.

We have already discussed the Blocks World, but both
urban driving and FreeCell merit some explanation. The
first domain involves a dynamic simulation of a downtown
driving environment. The city contains objects represented
as rectangles of different sizes, including buildings and side-
walks organized into square blocks that are divided by
street segments and intersections. Each segment includes
a yellow center line and white dotted lane lines, and it
has a marked street name and speed limit. Each building
has a unique street address to help the agent navigate
through the city and to support tasks like package delivery.
The city configuration used in our experiments has nine
blocks with four vertical streets and four horizontal streets.
The Icarus agent must operate under physical laws and
follow the rules of driving, such as staying on the right side
of the street and turning from the proper lane. We provide
the agent specific with goals to achieve, such as getting
onto another street segment or delivering a package to a
certain address.

FreeCell solitaire involves eight stacks of cards, the first
four of which contain seven cards and the last four of
which contain six cards. All 52 cards are dealt face up,
making them visible to the player. In addition, there are
four free cells, which can serve as temporary holding spots
for one card each during the game, and one foundation cell
for each suit. The goal in FreeCell is to get all cards on the
foundation cells in ascending order (where the ace is one
and the king is thirteen) grouped by suit. Once on its foun-
dation cell, a card cannot be removed. Only fully-exposed
cards at the top of each stack and card in the free cells
are in play. The agent can move one card at a time to an
available free cell, to the appropriate foundation cell, to
an empty stack, or to a stack in which the top card has a
different color and value one higher than the moved card.

Sample runs with the urban driving domain, the Blocks
World, and a reduced version of FreeCell indicated that the
extended version of 1CARUS was able to solve problems in
their respective domains with some search and, from their
respective traces, learn hierarchical skills in the manner
described earlier. We found that, when given the same task
to solve a second time, the system utilized this knowledge
to handle it without problem solving. Moreover, because
the system generalizes its learned structures beyond the
specific instances on which they are based, they transfer
fully to any tasks that are isomorphic to those it has
already solved. The only constraint is that this isomor-
phism must involve the same goal and have the same con-
cepts satisfied or unsatisfied in the initial environment.

However, we should note this ability does not mean that
the system can complete a familiar problem in a single
cycle. Recall that, unlike traditional work on cognitive
architectures, IcArRUS resorts to problem solving only to
enable action, and it must still execute its acquired skills
to achieve a goal. Thus, for a problem that requires four
primitive steps, the system takes six cycles on the second

encounter, with one to retrieve the hierarchical skill and
one to realize it has finished. However, the agent requires
neither search or backward chaining over skills or concepts
to complete any problem it has solved previously.

6.2. Experiment with urban driving

Although some sample runs were encouraging, we
desired more than anecdotal demonstrations that the new
mechanisms supported incremental learning of hierarchical
skills. We also wanted evidence from systematic experi-
ments that this learned knowledge produces more effective
behavior. Our first study along these lines focused on urban
driving, which is the most dynamic of the three settings and
thus the one most appropriate for evaluating our methods
for learning skills that support reactive execution.

As noted above, we provided Icarus with 41 concepts
and 19 primitive skills relevant to this environment. With
the basic knowledge, the agent can characterize its situa-
tion at multiple levels of abstraction and perform actions
for accelerating, decelerating, and steering left or right at
realistic angles. Thus, it can operate a vehicle, but this is
not sufficient to drive safely in a city environment. The
agent must still learn skills for staying aligned and centered
within lane lines, change lanes, increase or decrease speed
for turns, and stop for parking.

To encourage such learning, we presented the agent with
the goal of driving on a different street segment than its
current one. To achieve this objective, it resorted to prob-
lem solving, which found a solution path that involved
changing to the rightmost lane, staying aligned and cen-
tered until the intersection, steering right into the target
segment, turning the corner, and finally aligning and cen-
tering in the new lane. We let the IcarRUs agent practice this
task for five trials to examine its improvement with experi-
ence. We repeated this procedure ten different times with
slightly different starting positions, collected performance
measures for each run, and averaged the results.

Fig. 3 shows the cumulative number of cycles used for
problem solving as a function of the number of trials to
achieve the goal. As the agent accumulates knowledge
about this task, problem solving disappears almost
entirely, which results in the flat curves for the learning
case. However, it is notable that the total number of cycles
required to complete the task, which is not shown here,
reveals a reduced effect. This is due to the fact that this
problem is dominated by execution time, as the agent must
actually drive the vehicle to its destination in the city. Thus,
the benefit of learning is diminished when one takes the
total number of cycles into account.

Table 4 shows the four skill clauses acquired during one
of these runs. The clause for in-segment specifies a decom-
position the system found for achieving this top-level goal.
It refers to the learned subskill for in-intersection-for-right-
turn and the primitive skill steer-for-right-turn. The former
refers to in-rightmost-lane, which invokes another learned
skill for driving-in-segment, but it also calls on itself recur-
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Fig. 3. Cumulative number of cycles and CPU times required to plan for a particular right-turn task in the driving domain, as a function of the number of
trials. Each learning curve shows the mean over ten sets of trials and 95% confidence intervals.

sively, at which point a primitive skill clause with the same
head is used as a base case. For clarification, the table also
presents this primitive clause for in-intersection-for-right-
turn, which the system was given as background
knowledge.

Fig. 4 shows a trace of the agent’s behavior on the task
during learning, in a situation that involves a street with
two lanes, and afterwards, in a setting that instead involves
three lanes. The trace of the vehicle’s movement demon-
strates that the learned skills generalize to cases that
involve more lanes than were present during training. This
ability follows directly from the recursive structure of the
learned in-intersection-for-right-turn clause. Behavior after
learning is also smoother, presumably because the agent
need not engage in problem solving when it overshoots
slightly after getting into the target lane in preparation
for the right turn.
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Fig. 4. A trace of the Icarus driving agent’s behavior, during and after
learning, on a task that required changing to the rightmost lane and
turning at the intersection. The trace demonstrates generalization to a new
setting with a different number of lanes.

6.3. Experiment with the Blocks World

Although the Blocks World is far less dynamic than
urban driving, it lends itself to scaling studies that involve
generalization to tasks with varying numbers of objects.
For this domain, we provided Icarus with the four primi-
tive skills in Table 2 and 11 concepts that were sufficient, in
principle, to solve any problem. We then presented the
agent with the problems in sequence, using each task as a
training problem but also recording the number of cycles
and CPU time required to complete it. Because misguided
search combined with execution can lead the problem sol-
ver into undesirable physical states, we told it to halt if it
had not finished a run within 100 cycles and to start over
from the initial state. However, the agent could attempt a
given problem only five times, and thus spend at most
500 cycles before giving up entirely. We also limited the
stack depth to ten goal elements. We enforced these con-
straints for reasons of practicality and because we think
they reflect the manner in which humans tackle novel
problems.

We generated randomly a set of Blocks World tasks that
involved settings with 5, 10, 15, 20, 25, and 30 blocks. Each
complexity class had 67-69 distinct problems, and we
ordered the classes by difficulty (five-block tasks first and
30-block tasks last). The intuition was that the system
would learn more effectively if we presented it first with
simpler problems, which it could then use in solving more
difficult ones. To this end, Icarus retained skills acquired
on successful runs for use in later tasks. We provided the
system some 400 randomly generated problem orders and
recorded the number of cycles and CPU times needed for
each task. As a control, we also ran the system with its
learning mechanisms off for another 400 problem sets that
were ordered randomly within difficulty classes. Because
the problems require different amounts of effort, traditional
learning curves are not very informative. Instead, following
Minton (1990), we report cumulative cycles and CPU times
as a function of the number of training problems.
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shifts in problem complexity.

Fig. 5 shows the resulting curves, including 95 percent
confidence intervals around each mean. As expected, the
curves mainly take the form of superlinear functions whose
slopes increase with problem difficulty. Although the large
scale of plots made the learning and non-learning curves
look similar for early parts of the curves, there was some
benefit for learning even from the beginning, but the differ-
ence grows substantially as the systems encounter harder
problems. Clearly, prior experience reduces search substan-
tially when it reaches problems with many blocks, and
there is no evidence that learning produces a utility prob-
lem. Remember that we have made the transfer of learned
knowledge challenging in that none of the problems are
isomorphic, although they may involve isomorphic sub-
tasks. The results indicate that Icarus can take advantage
of this similar substructure to reduce its effort on later
problems.

6.4. Experiment with FreeCell solitaire

To ensure that our conclusions held for more than the
Blocks World, we carried out a similar experiment with
FreeCell solitaire, which we described earlier in this sec-
tion. We gave the Icarus agent only the 12 basic skills
needed to move cards and the top-level goal of getting all
cards into foundation cells, along with 24 concepts for
describing situations. Unlike the Blocks World, this
domain has only one goal condition, but it still has many
possible starting states.

For this study, we randomly generated 20 problems each
that involved 8, 12, 16, 20, and 24 cards.® We ran the sys-
tem on 300 different sequences of tasks, with simpler prob-
lems being presented earlier but ordered randomly within
each of the five difficulty classes. As before, we expected

8 Icarus’ problem solver has difficulty with FreeCell tasks that involve
30 or more cards, apparently because they involve goal interactions that
basic means-ends analysis cannot handle.

that the agent would learn skills from the easier problems
that would assist on the harder ones, thus reducing prob-
lem-solving effort. For comparison, we presented another
300 random sequences to a non-learning system with the
same initial skills and concepts.

Fig. 6 presents the cumulative results for this experi-
ment, with error bars that indicate the 95% confidence
intervals. As in the Blocks World, the difference between
the learning and non-learning conditions is substantial.
However, problems with 20 cards or more require a differ-
ent class of skills that involve column-to-column moves,
which caused the lessened gap between the two conditions
around the 80th problem. However, once they have been
acquired, these skills provide some advantage, as evidenced
by the downturn in the curve for the learning system on the
far right of the graphs. Again, we detected no sign of a util-
ity problem as the agent accumulates knowledge in this
domain.

7. Related research

Research on learning cognitive skills from problem solv-
ing has a long history within both Al and cognitive science.
For example, work on explanation-based learning often
aimed to improve efficiency on problem-solving tasks and
combined experience with a domain theory to create new
cognitive structures. Some techniques focused on the acqui-
sition of search-control rules to guide problem solving, but
other efforts dealt instead with the construction of macro-
operators from primitive operators (e.g., Iba, 1989; Moo-
ney, 1989; Shavlik, 1989). Our approach to skill learning
comes closer to the second paradigm, since both involve
composing knowledge elements into larger structures.
However, Icarus adapts this idea to the creation of dis-
junctive and even recursive skill hierarchies, whereas tradi-
tional methods emphasized the creation of ‘“fixed-sequence’
macro-operators that were far less flexible.

IcArRus also bears some similarity to other cognitive
architectures that incorporate varieties of analytical or
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Fig. 6. Cumulative number of cycles and CPU times required by Icarus to solve a FreeCell task as a function of the number of problems encountered,

averaged over 300 runs and with problems ordered by difficulty.

explanation-based learning. For example, Laird, Rosen-
bloom, and Newell’s (1986) Soar revolves around a prob-
lem solver that proceeds until the system encounters an
impasse, in which case it creates a subgoal to resolve it.
This resolution may require search and take some time to
produce the information necessary. Once the impasse has
been handled, Soar creates a chunk that encodes a general-
ized explanation of the result in terms of the original goal
context. Intermediate steps from the solution are lost, but
the acquired chunk lets the system sidestep similar impasses
in the future.

Anderson’s (1993) ACT-R employs a related mecha-
nism, called compilation, which creates new production
rules from ones that are involved in the same reasoning
chain. This scheme produces very specific rules that replace
variables with the declarative elements against which they
matched, rather than forming generalized structures, as
do Icarus and most other systems that learn macro-opera-
tors or search-control rules. In fact, our approach is more
akin to the composition process that played a role in earlier
versions of ACT (Neves & Anderson, 1981), though this
mechanism produced fixed behavioral sequences rather
than flexible skill hierarchies.

Icarus’ closest architectural relative is PRODIGY (Minton,
1990), which invokes means-ends analysis to solve prob-
lems and uses an analytical method to learn either
search-control roles or macro-operators from problem-
solving traces. Veloso and Carbonell (1993) also describe
an extension that records these traces in memory and solves
new problems by derivational analogy with earlier ones.
None of these mechanisms generates explicit hierarchical
structures, but Veloso and Carbonell’s approach provides
flexibility similar to that found in Icarus, and the two sys-
tems record and utilize very similar information in their
goal stacks.

Some other systems support learning in problem-solving
domains without making strong architectural commit-
ments. Ruby and Kibler’s (1991) SteppingStone learns gen-
eralized rules for decomposing complex problems into
simpler ones, which it obtains through mixed use of exist-

ing problem-reduction rules and forward-chaining exhaus-
tive search when it reaches an impasse. Marsella and
Schmidt’s (1993) PRL system also acquires task-decompo-
sition rules that incorporate partial orderings among com-
ponents. Their system combines forward and backward
search to identify candidate state pairs, which in turn pro-
duce hypothesized problem-reduction rules that are revised
based on further experience.’

Perhaps the closest relative to our approach is Reddy
and Tadepalli’s (1997) X-Learn, which acquires goal-
decomposition rules from a sequence of training problems.
Their system does not include an execution engine, but it
generates recursive hierarchical plans in a manner that also
identifies declarative goals with the heads of learned
clauses. However, because it invokes forward-chaining
rather than backward-chaining search to solve new prob-
lems, it relies on the trainer to determine hierarchical struc-
ture. X-Learn also uses a quite sophisticated mixture of
analytical and inductive techniques to determine conditions
on skills, rather than the much simpler method that Icarus
incorporates.

Another key difference from X-Learn, PRL, and Step-
pingstone is that Icarus learns skills for use in reactive exe-
cution rather than for use in planning. There has been
other work on this topic, but it has emphasized the acqui-
sition of flat controllers rather than hierarchical structures.
For instance, Benson’s (1995) TRAIL learns teleoreactive
controllers for physical agents, but it invokes inductive
logic programming to determine rules for individual
actions. Fern, Yoon, and Givan (2004) report an approach
to learning reactive controllers that trains itself on increas-
ingly complex problems, but that also acquires decision
lists for action selection. Khardon (1999) considers the
related task of learning hierarchical controllers, but his

? Tlghami, Nau, Munoz-Avila, and Aha (2002) present another system
that organizes plan knowledge in a hierarchical manner, but it learns
conditions for clause selection rather than the structure of the hierarchy
itself.
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formal analysis assumes the agent is provided with anno-
tated sample solutions rather than being generated through
problem solving.

Other researchers have built systems that support cumu-
lative learning outside the context of problem-solving
tasks. One early example was Sammut and Banerji’s
(1986) Marvin, which learns increasingly complex logical
concepts that are composed of ones it has mastered previ-
ously. Stone and Veloso (2000) take a similar approach to
learning concepts and controllers for playing robotic soc-
cer, although their system acquires quite different types of
structure at each level of description. Utgoff and Strac-
uzzi’s (2002) STL algorithm receives training cases about
many concepts in parallel, but it learns complex ones only
when it has acquired simpler structures that let it master
them with little effort. Pfleger (2004) describes another sys-
tem that acquires hierarchical patterns in an on-line setting,
in this case from unsupervised data. Like Marvin and STL,
it learns conceptual structures from the bottom up, so that
more complex patterns are apparent after simpler ones
have been acquired.

8. Discussion

In the preceding pages, we presented IcARUS, a cognitive
architecture for physical agents that uses stored concepts
and skills, both organized in hierarchies, to recognize
familiar situations and control behavior. We described a
new module that supports means-ends problem solving
on novel tasks, along with a learning mechanism that pro-
duces new skills from traces of problem solutions. This
method operates in an incremental manner, creating hierar-
chical structures that refer to others learned earlier. In
addition, we reported experiments with urban driving, the
Blocks World, and FreeCell that showed such learning
enables more effective behavior on unfamiliar problems
than solving them with only basic knowledge about the
domain.

We have focused on skill learning, which in humans
occurs continuously throughout life, but which plays an
especially important role early in development, when chil-
dren are first learning to interact with their environments.
There is a long tradition of using learning mechanisms to
explain developmental phenomena that occur over
extended periods. For example, Sage and Langley (1983)
model development on the Piagetian balance scale task in
terms of discrimination learning, whereas Jones and Van-
Lehn (1994) model long-term changes in addition strategies
using a form of probabilistic learning. There seems no rea-
son, in principle, why our learning mechanisms cannot
explain key aspects of cognitive development, but we can-
not claim to account for them all.

For example, our framework relies on accurate models
of the actions’ effects, cast as primitive skills, while children
clearly acquire such models from experience. However,

Benson (1995) reports one approach to learning action
models that can be used to acquite teleoreactive controllers,
so extensions seem possible. We have also assumed the
ability to carry out means-ends problem solving, which
appears fairly late in childhood. But elsewhere (Nejati,
Langley, & Konik, 2006), we have reported an alternative
mechanism that learns hierarchical skills from traces of
successful exploration in the environment. This carries
out a form of goal regression over the solution trace, much
as in means-ends analysis, but without relying on conscious
problem solving, providing a more plausible mechanism
for early skill acquisition.

Nevertheless, our work on learning and development in
Icarus is still in its early stages. We should demonstrate its
ability to acquire hierarchical structures on additional
domains that include both cognitive tasks like multi-col-
umn subtraction and on dynamic domains that, like urban
driving, require the integration of cognition with reactive
control. One promising class of cognitive domains involves
games like chess, which seem certain to introduce new chal-
lenges because of their extended duration. Future work on
driving should show that our methods are sufficient to
acquire more complicated skills that involve extended tasks
like package delivery and complex settings that include
other vehicles.

We are also interested in connecting the architecture to
humanoid agents. We have taken initial steps in this direc-
tion by creating an Icarus agent for Urban Combat, a first-
person shooter game in which the player must move
around in a three-dimensional setting, overcome obstacles,
and capture a flag. The system uses the same representa-
tion, inference, and control methods we have described ear-
lier, but it does not utilize means-ends problem solving and
it learns hierarchical skills from execution traces, as out-
lined above. In the longer term, we hope our experience
in this domain will let us connect the architecture to phys-
ical robots.

In addition, Icarus’ methods for problem solving and
hierarchical learning would benefit from new capabilities.
We noted earlier that the current system does not chain
backward from the start conditions of learned skill clauses.
Extending the problem solver to support this ability would
mean defining new concepts that characterize the situations
in which learned skills are applicable. This addition would
also remedy another limitation of the current system,
namely its inability to account for the origin of concept
hierarchies, which it assumes are given. Such an extension
would be straightforward for some tasks, but others will
require the ability to acquire recursive concepts. Augment-
ing the system in this manner may also lead to a utility
problem, not during execution of learned skills but during
the problem solving used for their acquisition, which we
would then need to overcome.

Another drawback is the architecture’s reliance on
purely deductive inference, which differs markedly from
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the probabilistic approach taken by its earliest ancestor
(Langley et al., 1991). Future versions of the framework
should extend the representation of concepts and skills to
incorporate probabilities, replace deductive processes with
abductive methods that make plausible default inferences,
and augment problem solving to operate over skills with
uncertain outcomes. We hypothesize that the current mech-
anisms for learning the structure of skills can be adapted
easily to this setting, but we should also introduce methods
for estimating the probabilities that annotate the symbolic
structures.

We should also note that, although our approach learns
skills that generalize to situations with different numbers of
objects, its treatment of goals is less flexible. For example,
IcArus can acquire a general procedure for clearing a block
that does not depend on the number of blocks above it, but
it cannot learn a procedure for constructing a tower with
arbitrarily specified components. Extending the method’s

Appendix A

ability to learn about such recursive goal structures is
another important direction for future research that will
bring the architecture into closer alignment with the abili-
ties observed in human cognition.
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Appendix: Concepts and skills provided in experiments

Concepts and skills provided to Icarus for the urban driving domain, with parentheses indicating the number of clauses for

disjunctive skills.

Primitive concepts (15)

Nonprimitive concepts (26)

Primitive skills (19)

stopped

moving

in-segment
in-intersection-for-right-turn
in-intersection
intersection-ahead
segment-to-right
on-right-side-of-road-in-segment
in-lane
steering-wheel-straight
at-speed-for-cruise
slow-for-right-turn
fast-for-right-turn

first-lane

last-lane

parked
aligned-with-lane-in-segment
centered-in-lane
steering-wheel-not-straight
driving-in-segment
at-speed-for-right-turn
ready-for-right-turn
in-leftmost-lane

lane-to-right

lane-to-left

in-rightmost-lane
in-right-turn-lane
off-centered-to-right-in-segment
off-centered-to-left-in-segment
building-on-right
building-on-left
current-building
start-aligned-with-lane-in-segment
start-centered-in-lane (2)
start-adjust-speed-for-cruise
start-cruise-within-segment
start-change-lane-to-right
start-change-lane-to-left
start-in-lane (2)

in-intersection-for-right-turn
aligned-with-lane-in-segment
steering-wheel-straight
centered-in-lane (2)

in-lane (2)

stopped

moving
adjust-speed-for-cruise
adjust-speed-for-right-turn (2)
get-on-right-side-of-road
cruise-within-segment
steer-for-right-turn
change-lane-to-right
change-lane-to-left
cruise-into-intersection
cruise
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Appendix B

Concepts and skills provided to Icarus for the Blocks
World, with goal concepts in italics.

Primitive Nonprimitive Primitive
concepts (4) concepts (7) skills (4)
on clear unstack
ontable three-tower pickup
holding two-tower-one-on-table stack
hand-empty unstack-able putdown

pickup-able
stack-able
putdown-able

Appendix C

Concepts and skills provided to Icarus for FreeCell soli-
taire, with goal concept in italics.

Primitive Nonprimitive Primitive
concepts concepts (14) skills (12)
(10)
starthome highest column-to-home
successor game-won column-to-
newhome
colcolpair column-to-home-able  column-to-freecell
available-cell column-to-newhome- lastcolumn-to-
able home
available- column-to-freecell- lastcolumn-to-
column able newhome
clear lastcolumn-to-home-  lastcolumn-to-
able freecell
on lastcolumn-to- freecell-to-home
newhome-able
bottom lastcolumn-to-freecell- freecell-to-
able newhome
incell freecell-to-home-able  freecell-to-column
home freecell-to-newhome-  column-to-column
able
freecell-to-column- freecell-to-new-
able column
column-to-column- column-to-new-
able column
freecell-to-new-
column-able
column-to-new-
column-able
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