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Abstract

This paper investigates a computational approach to
transfer: the ability to use previously learned knowledge
on related but distinct tasks. We study transfer in the
context of an agent architecture, Icarus, and we claim
that many forms of transfer follow automatically from
its use of structured concepts and skills. We show that
Icarus can acquire structured representations from do-
main experience, and subsequently transfer that knowl-
edge into new tasks. We present results from multiple
experiments in the Urban Combat Testbed, a simulated,
real-time, three-dimensional environment with realistic
dynamics.

Introduction

Many computational learning methods require far more
training instances than humans to achieve reasonable
performance in a domain. A key reason is that humans
often reuse knowledge gained in early settings to aid
learning in ones they encounter later. This phenomenon
is known as transfer in cognitive psychology, where it
has received far more attention than in AI and machine
learning. Much of this research has focused on transfer
of complex skills for tasks that involve action over time
(e.g., Kieras & Bovair, 1986; Singley & Anderson, 1988).
In this view, transfer primarily involves the reuse of cog-
nitive structures, where the amount of shared structure
has proved to be a good predictor for the degree of trans-
fer in humans.

This paper reports on a computational approach to
transfer that takes a similar perspective. We focus on the
acquisition of cognitive skills from experience and on how
transfer improves behavior on distinct but related tasks.
We share with many psychologists the idea that transfer
is mainly a structural phenomenon, rather than a conse-
quence of statistical summaries or value functions. This
suggests that transfer is linked closely to how an agent
represents knowledge in memory, how its performance
methods use these structures, and how its learning ele-
ments acquire this knowledge.

Theoretical commitments to representation, perfor-
mance, and learning are often associated with the no-
tion of a cognitive architecture (Newell, 1990). Thus, it
seemed natural for us to study transfer in the context
of Icarus (Langley & Choi, 2006), an architecture that
takes positions on each of these issues. We will main-
tain that Icarus’ commitment to relational, hierarchi-
cal, and composable knowledge structures, and to mech-

anisms for using and acquiring them, provide it with
basic support for effective transfer. Moreover, we make
the more radical claim that the architecture needs no ad-
ditional mechanisms to exhibit many forms of transfer.
We hold that most transfer requires no special processes
beyond those already needed for other purposes.

We elaborate on these ideas in the sections that follow.
First we present a virtual gaming environment that il-
lustrates the benefits of reusing learned knowledge struc-
tures. After this, we review Icarus’ assumptions about
representation, performance, and learning, along with
the ways in which they support transfer. Next we eval-
uate our claims through results of specific studies with
simulated physical agents. We conclude by reviewing
related efforts on structural transfer and stating our pri-
orities for future research on this topic.

An Example Domain
In this paper, we examine transfer between source and
target problems within a single domain. We have chosen
to phrase these problems in the Urban Combat Testbed1

(UCT), a virtual 3-D environment that simulates an ur-
ban landscape, with real-time behavior and realistic dy-
namics. UCT contains one intelligent agent (controlled
by Icarus) and, at the moment, no adversaries. Our
transfer tasks focus on navigation in the presence of
physical and conceptual obstacles.

Figure 1 illustrates one such transfer task. The source
problem calls on the agent to find a goal and surmount
obstacles encountered en route (here, to duck under and
climb over obstacles it has never seen). The target prob-
lem offers the agent the opportunity to reuse its knowl-
edge about obstacles in a different order, assuming it is
acquired and represented in a modular form. In addi-
tion, the agent can reuse learned knowledge about the
map. The agent exhibits (positive) transfer if it improves
its behavior in the target as a result of its exposure to
the source, and zero or negative transfer if it does not.

We supply the Icarus agent with minimal background
to support transfer. On initialization, it has never en-
countered the specific objects or operators in the domain,
and it has no prior knowledge of the map. However, it
is initialized with useful concepts, such as a category for
obstacles in general, a relation for blocked paths, plus
categories for region centers and gateways (the UCT en-
vironment is divided into convex regions with passable

1
http://gameairesearch.uta.edu/UrbanCombatTestbed.html



Figure 1: A transfer task in Urban Combat Testbed.

and non-passable boundaries). The agent understands
the high-level goal (e.g., to find an item), and it pos-
sesses subgoals that organize search behavior. For ex-
ample, it knows to overcome an obstacle in order to get
a clear view of the destination, and to contain explo-
ration within the region of the goal, once seen.

UCT is a challenging domain for both human and arti-
ficial agents. It is partially observable because the agent
can only perceive nearby objects and regions, it involves
uncertain action (e.g., the agent can attempt to jump
over a wall but fall backwards into a ditch), and it is
real time (imposing a strong constraint on agent decision
making). This complexity demands a level of robustness
in the mechanisms that produce transfer.

Transfer in Icarus

Icarus achieves transfer using a hierarchical and rela-
tional representation, which encodes knowledge in a gen-
eral and composable way, a goal-driven and reactive exe-
cution mechanism, which allows flexible execution of the
learned knowledge structures, and a relational learning
mechanism, which acquires general knowledge from ob-
served solutions as well as background knowledge. We
will discuss each of these elements and describe in turn
how they contribute to transfer.

Representation of Concepts and Skills

The Icarus architecture makes several commitments in
its representation of knowledge. First, it supports two
different types of knowledge; concepts and skills. Con-
cepts describe state, while skills are methods an agent
can execute in the world under certain conditions. Both
have a hierarchical structure, meaning that Icarus can
employ multiple layers of abstraction in describing the
current state and the procedures for manipulating that
state, respectively.

As shown in Table 1, concepts in Icarus resemble
traditional Horn clauses in first-order logic with nega-
tions. Primitive concepts like in-region provide state de-
scriptions at the lowest level of abstraction using sym-
bolic and numeric information directly extracted from

Table 1: Example Icarus concepts.

(in-region ?self ?region)
:percepts (self ?self region ?region)

(climbable-gateway ?gateway ?object)
:percepts (gateway ?gateway) (object ?object)
:relations ((totally-blocked-gateway ?gateway

?object)
(feature-of-object ?object

CLIMBABLE))

Table 2: Primitive and non-primitive Icarus skills.

(clear ?gateway)
:percepts ((gateway ?gateway

dist1 ?dist1 angle1 ?angle1
dist2 ?dist2 angle2 ?angle2))

:start ((close-enough-to-jump-type ?gateway))
:actions ((*jump-cmd (maximum ?dist1 ?dist2))

(mid-direction ?angle1 ?angle2))

(crossable-region ?regionB)
:percepts ((self ?self) (region ?regionB))
:start ((connected-region ?regionB ?gateway))
:subgoals ((clear ?gateway))

(in-region-able ?me ?regionA ?regionB)
:percepts ((self ?me)

(region ?regionA)
(region ?regionB))

:start ((in-region ?me ?regionA))
:subgoals ((crossable-region ?regionB))

(in-region me region3004)
:subgoals ((in-region-able me region3003

region3004)
(in-region me region3004))

objects the agent perceives. Higher-level concepts, such
as stopped-in-region and climbable-gateway have their ba-
sis in other concepts as well as primitive facts. The con-
cept hierarchy provides relational, modular descriptions
of the current state. It can also be used to represent a
desired state, so concepts can express subgoals.

Taken together, Icarus skills for a given domain are a
specialized form of hierarchical task networks (Nau et al.,
1999). A skill’s head indexes it by the goals it achieves,
and since goals are naturally represented by desired con-
cept instances, skills are tied in to the concept hierarchy.
Some achieve low-level concepts, while others address
broad objectives. Table 2 shows some examples of skills
in Icarus. While primitive skills give simple methods
using basic actions executable in the world, higher-level,
non-primitive skills describe complex methods with mul-
tiple ordered subgoals. Since non-primitive skills specify
subgoals, not the details of how these goals are achieved,
an Icarus agent can select the most relevant method for
the given subgoal depending on the current situation.

Icarus’ relational and hierarchically composable rep-
resentation of skills is crucial to its ability to transfer
knowledge. In particular, the relational representation
increases generality of the encoded skills, since they can
apply in circumstances that are only qualitatively similar
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Figure 2: A schematic of memories and processes in the
Icarus architecture.

to the situations where the skills are acquired.
Moreover, a hierarchically composable representation

lets skills apply in new circumstances, even if they are
partially incorrect, inaccurate, or inapplicable. In these
cases, the undesired subskills will be either relearned
from new experience or dynamically replaced during ex-
ecution with other subskills. For example, Icarus can
use a learned alternative that achieves the same goal,
instead of an inapplicable subskill. We discuss how the
architecture uses and learns hierarchically composable
skills in the following sections.

Execution of Hierarchical Skills

The Icarus architecture operates in cognitive cycles,
spanning conceptual inference, skill selection, and phys-
ical execution (Figure 2). Icarus derives its beliefs via
a bottom-up matching process, initiated by objects that
arrive in the agent’s percepts. After it infers low-level
concept instances based on these objects, inference for
higher-level concepts follows to build a hierarchically or-
ganized belief structure for the time step. In contrast,
Icarus performs skill selection in a top-down manner,
starting with the current goal. On each cycle, it finds
a path from this goal through the skill hierarchy; each
skill along this path is applicable given the current be-
liefs, with the terminal node being a primitive skill that
Icarus executes in the environment. This differs from
traditional production systems, which require multiple
cycles and use of working memory to traverse levels of
an implicit goal hierarchy.

Since the architecture repeats this procedure on each
cycle, Icarus agents can react to their surroundings
while pursuing goal-driven behaviors. Also, they can
use new knowledge structures immediately, incorporat-
ing them for processing on the next execution cycle.
Given a choice between two skills, Icarus will prefer
the one more recently learned, so agents can start with
some knowledge but behave more intelligently as they
acquire experience. The spatial search in UCT is a good
example of this feature. Initially, the agent uses basic
exploration strategy to search the environment. As it
explores and discovers the geography of its world, it be-
gins to employ the new map knowledge to guide further
search towards the goal.

Icarus’ execution mechanism facilitates transfer by
flexibly employing previously learned skills in three ways.
First, it transfers learned skills to new problems by dy-
namically selecting and interleaving learned skills based
on observed situations and achieved goals. Second, it

combines skills learned from qualitatively different expe-
riences when a novel situation has elements from these
previous experiences. Finally, even if Icarus does not
have sufficient knowledge to directly solve a problem, it
can transfer partially applicable skills from previous so-
lutions and patch the knowledge gap by falling back on
its default search skills.

Icarus can achieve qualitatively different types of
transfer by reusing high-level or low-level skills. For ex-
ample, if a source and a target problem share abstract
goals, it solves the target faster by transferring high-
level skills. This occurs in UCT when the agent has
learned how to clear a set of obstacles that block a goal.
The agent uses the strategy acquired in the source (i.e.,
to approach the closest blocking object and overcome
it) to tackle a different set of obstacles in the target,
although the details depend upon the type of the ob-
stacles and their relative configuration. On the other
hand, Icarus also transfers low-level skills by compos-
ing them in novel ways to solve the target problem. For
example, if Icarus learns to overcome a climbable wall
in the source, it transfers that skill when it encounters a
climbable wall in service of an unfamiliar route planning
task, where the high-level goal might differ from that in
the source problem.

One important requirement in transfer is to use pre-
viously acquired skills that are not completely correct
or always applicable. This commonly occurs because
conditions in the environment differ between source and
target problems. For example, suppose the agent learns
skills for navigating to the goal location in a UCT source
problem. It partially executes those skills in the target,
then abandons them in favor of exploration when it en-
counters a non-surmountable obstacle blocking the path.
The agent reenters the skills when exploration brings it
to some later step along its original path. This type of
transfer results from Icarus’ reactive execution module,
which uses only the relevant skills in the current envi-
ronment.

Learning Hierarchical Skills

Icarus acquires structured skills via an analytical learn-
ing mechanism that it invokes whenever the agent
achieves a top-level goal. This mechanism inputs the
goal plus a solution trace that achieves it, described as a
sequence of observed states and selected actions. Icarus

generates an explanation of how the goal was achieved
by interpreting this solution traces in the context of con-
ceptual knowledge and action models. It does so by re-
cursively examining goals, either decomposing them into
subgoals using conceptual knowledge or explaining them
in terms of the effects of primitive skills. The archi-
tecture converts the resulting explanation structure into
hierarchical skills and add them to its skill memory. We
have described this process elsewhere (Nejati et al., 2006)
in more detail.

One distinctive property of this method is that it
learns the structure of a skill hierarchy as well as the
goals and conditions associated with each skill. This
method is related to previous work on explanation-based



learning (Mitchell et al., 1986), but differs in that it does
not compile away the explanation structure, but rather
uses it to determine the structure of the skill hierarchy.

This learning mechanism facilitates transfer by asso-
ciating a hierarchy of learned skills with the goals they
achieve. As a result, the component skills can be used
independent of the top-level goal that motivated their
construction. For example, an Icarus agent tasked to
enter a building may find a solution where it jumps over
a fence and then enters the building, viewed as sequence
of primitive skills. The analytical learner creates a new
skill to climb over a fence, as well as a higher-level skill
that uses it along with primitives to reach the goal from
the start location. The system associates the low-level
skill (for fence climbing) with the goal for reaching a
parameterized location, and it considers the component
whenever a fence blocks a local goal.

The learning system also facilitates transfer by using
relational background knowledge. It acquires skills that
reference the agent’s conceptual vocabulary, which pro-
vides flexibility in retrieving the skills. For example, an
Icarus agent in UCT may acquire a skill for reaching a
goal it recognizes as collectively blocked (a built-in con-
cept that matches when multiple objects impede a path).
As long as the concept is true in a situation, the agent
can apply the resulting skill regardless of the actual con-
figuration of obstacles.

Evaluating Icarus’ Account of Transfer

The basic claim in this paper is that Icarus’ assump-
tions about representation, performance, and learning
support transfer without need for any additional mecha-
nisms. Moreover, both learning and transfer should oc-
cur at roughly the levels observed in humans, although
we will not compare the architecture’s behavior directly
to the results of psychological studies here. We have
already explained the ways in which Icarus should pro-
duce such transfer, but this is different from demonstrat-
ing such effects.

To this end, we designed and ran a controlled exper-
iment in the Urban Combat testbed. Our dependent
variable was the time taken to solve a target problem
that involved achieving a physical goal in the domain,
and we studied the effects of two independent factors.
One concerned whether the agent had experience solving
five source problems (the transfer condition) or had no
such experience (the nontransfer condition). The other
involved the relationship between the source and target
problems, which we discuss at more length below.

Source-Target Relationships

Analysis suggested a number of relationships between
source and target problems that should support transfer
of learned knowledge, six of which we focus on here. We
consider two of these forms in detail and then briefly
summarize the other four.

One source-target relationship, abstracting, involves
sharing hierarchical solution structure, as the UCT sce-
narios in Figure 3 illustrates. Here the source and target
problems involve the same start and goal locations, but

Figure 3: Two source-target pairs for abstracting.

the target requires solving a different subproblem to en-
ter the chosen building. The problems can take advan-
tage of the same route knowledge for navigating from
start to goal, as well as the high-level solution structure
composed of an initial route segment, an entry task, and
a final approach. Other source-target pairs of this type
require the agent to break into a building via different
means or clear unfamiliar obstacles from its path. Prob-
lem pairs share the start and goal locations but exercise
largely distinct sections of the UCT map.

We expect Icarus to transfer the overall decomposi-
tion of a source problem’s solution into the correspond-
ing target. This capability also lets the agent reuse route
information between non-corresponding sources and tar-
gets, as well as between target problems, to the extent
it explores overlapping terrain while solving tasks. How-
ever, the system cannot share solutions for new subprob-
lems introduced into target tasks, since they do not re-
occur. Those component solutions (e.g., using ammuni-
tion to enter the building vs. a key) must be discovered
in each target task, so they act to increase solution time
and decrease performance.

Another type of relationship between source and tar-
get problems, restructuring, illustrated in Figure 1, re-
quires the agent to use solutions to subproblems in dif-
ferent orders. Successful transfer lets the agent solve the
target problem more rapidly because it has learned how
to duck under a wall and climb over a wall in the source
problem, independently of when those subtasks arise in
the target. Other source-target pairs of this type – sur-
rounding the start and end states with jumpable vs. un-
climbable walls, boxes vs. pits, button operated vs. push
doors, and water vs. electrical hazards – follow the same
pattern.

We also examined four additional relationships be-
tween source and target problems:

• reuse partial solutions from a common start state in
source and target problems, despite differing goals (ex-
trapolating);



• repeatedly reuse solutions to subproblems from the
source problem when working on the target problem
(extending);

• dynamically compose solutions to problems from
source problems to solve a more complex target prob-
lem (composing); and

• reuse the skills learned on the source task to solve a
target problem, but apply different operators to novel
objects that occur in the target (generalizing).

Our experiment examined Icarus’ ability to transfer
learned skills from source to target problems that in-
volved each of these six relationships. We felt that, if
transfer occurred, it would provide evidence for the gen-
erality of the architecture’s mechanisms.

Experimental Design and Results
Our experimental method involves presenting the
Icarus agent with a collection of source-target problem
pairs. Each pair provides a known opportunity for trans-
fer, while the set (called a scenario) supports some cross
talk: a single source problem can enable transfer into
multiple targets and the set of source problems supports
transfer into any target.

As noted above, we ran the agent in both a transfer
condition, in which it first solved a set of five source
problems and then solved five target tasks, and a non-
transfer condition, in which it solved only the five tar-
get problems. We ran the agent on six different sets of
source-target pairs that reflected the relationships dis-
cussed above. We randomly varied the presentation or-
der of the target problems to guard against effects of
training order.

Figure 4 summarizes the results of the experiment by
plotting the problem solution time for the nontransfer
condition against the time for the transfer condition.
Each x and y value represents the average score over
20 runs of the Icarus agent, with different icons depict-
ing distinct forms of source-target relationship. Entries
above the diagonal line indicate that positive transfer
occurred, while entries below the line reflect negative
transfer. The figure shows that Icarus generally ex-
hibits positive transfer for most problems in each type
of relationship. Moreover, this transfer occurs after ex-
perience with only five source problems, meaning that
the rate of learning is roughly comparable to that ob-
served in humans.

The key point is that Icarus produces this transfer
without any mechanisms above those required to draw
inferences, execute skills that are indexed by goals, and
acquire those skills from problem solutions. It does
not require any additional processes to explain transfer
across a variety of different source-target relationships.
Our experimental study generally supports this claim
about the emergent nature of transfer effects within the
Icarus architecture.

Related Research
Researchers in psychology have shown considerable in-
terest in transfer, but their research has emphasized ex-
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Figure 4: Solution times in seconds for transfer case plot-
ted against those for non-transfer cases. Note that the
axes are inverted so that higher scores indicate better
performance.

perimental studies. There have been a few computa-
tional models of this phenomenon, Kieras and Bovair
(1986) and Singley and Anderson (1988) being two ex-
amples. Their models provided very accurate predic-
tions for the degree of transfer in terms of the number
of shared knowledge elements, but these were not cou-
pled with learning mechanisms that could acquire the
knowledge.

In contrast, there have been several efforts on transfer
in the machine learning literature. For example, Swarup
and Ray (2006) discuss transfer in the context of neu-
ral networks, and Thrun (1996) considers the case in
which an agent experiences many variations of a gen-
eral task. However, these systems showed much slower
learning than observed in humans, and made little con-
tact with the psychological literature.

The approach we have described in this paper aims
to model reuse of knowledge structure in the context
of a cognitive architecture that incorporates psycholog-
ically plausible representations and mechanisms. There
have been some previous results in the same spirit. For
example, Langley (1985) investigated methods for learn-
ing search-control heuristics through discrimination of
production rules, and Laird et al. (1986) demonstrated
learning and transfer of macro-operators through chunk-
ing in Soar. More recently, Hinrichs and Forbus (2007)
have discussed the transfer of planning and strategic
knowledge among subproblems in a turn-based strategy
game.

Directions for Future Work

Although our results to date have been encouraging,
there clearly remains room for improving Icarus’ ability
to transfer its learned knowledge. One avenue involves
supporting more flexible execution of skills. Currently,
the system executes skills in the environment as soon
as they are applicable, but since skills acquired in one



setting can propose undesirable actions in another, they
may lead to negative transfer. We are planning to add a
module for lookahead search, constrained by the skill hi-
erarchy, that would guard against this problem and thus
improve transfer.

We are also investigating a method for making both
inference and execution more flexible. This involves re-
placing Icarus’ current deductive inference module with
one that relies on Markov logic (Richardson & Domin-
gos, 2006), which combines first-order logical and prob-
abilistic reasoning. This approach uses weights to soften
the otherwise hard rules of a first-order knowledge base.
Possible worlds that violate rules become more or less
probable depending on evidence and the magnitude of
weights. The result is an inference mechanism that is
robust to error and uncertainty. This will let Icarus

transfer its skills more flexibly, in that it can select skills
even when start conditions are likely but not deductively
implied, as can happen in partially observable settings.

In this paper, we focused on forms of transfer that
Icarus can handle using its existing architectural mech-
anisms. But one implicit assumption of this approach is
that the agent can use the same relational predicates to
describe the source and target problems. This approach
will not succeed in situations where the source and target
problems have similar structure but have been encoded
with different symbols. We aim to address this challenge
by developing analytic methods that infer mappings be-
tween the representations used in the source and the
target problem.

Concluding Remarks

Although structural transfer is an important phe-
nomenon in human learning, there are few computa-
tional models that combine learning with transfer. In
this paper, we described an agent architecture that can
transfer skills learned in one setting to distinct but re-
lated tasks. We showed that the framework demon-
strates this capability for a number of different relations
between source and target problems, and we reported
experimental results on a challenging testbed.

One of our key claims was that Icarus can achieve
transfer without requiring any mechanisms beyond those
needed to represent, execute, and learn skills. Our ex-
periments with UCT supported this claim and suggested
that many types of transfer arise naturally from methods
that can acquire relational, hierarchical structures. We
analyzed Icarus’ ability to transfer and explained how
its architectural commitments support this process. In
the future, we hope to model additional forms of transfer
that involve more complex relations between source and
target problems.
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SHOP: Simple hierarchical ordered planner. Proceed-
ings of the Sixteenth International Joint Conference
on Artificial Intelligence (pp. 968–973). Stockholm:
Morgan Kaufmann.

Nejati, N., Langley, P., & Könik, T. (2006). Learning
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