
■ In this article, I claim that research on cognitive ar-
chitectures is an important path to the develop-
ment of general intelligent systems. I contrast this
paradigm with other approaches to constructing
such systems, and I review the theoretical commit-
ments associated with a cognitive architecture. I il-
lustrate these ideas using a particular architec-
ture—ICARUS—by examining its claims about
memories, about the representation and organiza-
tion of knowledge, and about the performance and
learning mechanisms that affect memory struc-
tures. I also consider the high-level programming
language that embodies these commitments, draw-
ing examples from the domain of in-city driving.
In closing, I consider ICARUS’s relation to other cog-
nitive architectures and discuss some open issues
that deserve increased attention.

The Need for General 
Intelligent Systems

The original goal of artificial intelligence
was the design and construction of com-
putational artifacts that combined many

cognitive abilities in an integrated system.
These entities were intended to have the same
intellectual capacity as humans and they were
supposed to exhibit their intelligence in a gen-
eral way across many different domains. I will
refer to this research agenda as aimed at the cre-
ation of general intelligent systems.

Unfortunately, modern artificial intelligence
has largely abandoned this objective, having
instead divided into many distinct subfields
that care little about generality, intelligence, or
even systems. Subfields like computational lin-
guistics, planning, and computer vision focus
their attention on specific components that
underlie intelligent behavior, but seldom show
concern about how they might interact with
each other. Subfields like knowledge represen-
tation and machine learning focus on idealized
tasks like inheritance, classification, and reac-
tive control that ignore the richness and com-
plexity of human intelligence.

The fragmentation of artificial intelligence
has taken energy away from efforts on general
intelligent systems, but it has led to certain
types of progress within each of its subfields.
Despite this subdivision into distinct commu-
nities, the past decade has seen many applica-
tions of AI technology developed and fielded
successfully. Yet these systems have a “niche”
flavor that differs markedly from those origi-
nally envisioned by the field’s early researchers.
More broadly based applications, such as hu-
man-level tutoring systems, flexible and in-
structable household robots, and believable
characters for interactive entertainment, will
require that we develop truly integrated intelli-
gent systems rather than continuing to focus
on isolated components.

As Newell (1973) argued, “You can’t play
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However, Newell’s vision for research on in-
tegrated theories of intelligence included more
than either of these frameworks provides. He
believed that agent architectures should incor-
porate strong theoretical assumptions about
the nature of the mind. An architectural design
should change only gradually, as one deter-
mines that new structures and processes are re-
quired to support new functionality. Moreover,
early design choices should constrain heavily
those made later, producing far more interde-
pendence among modules than assumed by ei-
ther multiagent or blackboard systems. Newell
(1990) claimed that architectural research is all
about mutual constraints, and its aim should
be a unified theory of intelligent behavior, not
merely an integrated one.

The notion of a cognitive architecture revolves
around this interdependent approach to agent
design. Following Newell’s lead, research on
such architectures makes commitments about:
(1) the short-term and long-term memories
that store the agent’s beliefs, goals, and knowl-
edge; (2) the representation and organization
of structures that are embedded in these mem-
ories; (3) the functional processes that operate
on these structures, including both perfor-
mance and learning mechanisms; and (4) a
programming language that lets one construct
knowledge-based systems that embody the ar-
chitecture’s assumptions. These commitments
provide much stronger constraints on the con-
struction of intelligent agents than do alterna-
tive frameworks, and they constitute a compu-
tational theory of intelligence that goes beyond
providing a convenient programming para-
digm.

In the next section, I will use one such cog-
nitive architecture—ICARUS—to illustrate each
of these commitments in turn. ICARUS is neither
the oldest nor the most developed architecture;
some frameworks, like ACT (Anderson 1993)
and Soar (Laird, Newell, and Rosenbloom
1987), have undergone continual development
for more than two decades. However, it will
serve well enough to make the main points,
and its differences from more traditional cogni-
tive architectures will clarify the breadth and
diversity of this approach to understanding the
nature of intelligence.

In discussing ICARUS, I will draw examples
from the domain of in-city driving, for which
we have implemented a simulated environ-
ment that simplifies many aspects but remains
rich and challenging (Choi et al. 2004). Objects
in this environment include vehicles, for
which the positions, orientations, and veloci-
ties change over time, as well as static objects
like road segments, intersections, lane lines,

twenty questions with nature and win.” At the
time, he was critiquing the strategy of experi-
mental cognitive psychologists, who studied
isolated components of human cognition with-
out considering their interaction. However,
over the past decade, his statement has become
an equally valid criticism of the fragmented na-
ture of AI research. Newell proposed that we
move beyond separate phenomena and capa-
bilities to develop complete models of intelli-
gent behavior. Moreover, he believed that we
should demonstrate our systems’ intelligence
on the same range of domains and tasks as han-
dled by humans, and that we should evaluate
them in terms of generality and flexibility,
rather than success on a single domain. He also
viewed artificial intelligence and cognitive psy-
chology as close allies with distinct yet related
goals that could benefit greatly from working
together. This proposal was linked closely to his
notion of a cognitive architecture, an idea that I
can best explain by contrasting it with alterna-
tive frameworks.

Three Architectural Paradigms
Artificial intelligence has explored three main
avenues to the creation of general intelligent
systems. Perhaps the most widely known is the
multi-agent systems framework (Sycara 1998),
which has much in common with traditional
approaches to software engineering. In this
scheme, one develops distinct modules for dif-
ferent facets of an intelligent system, which
then communicate directly with each other.
The architecture specifies the inputs/outputs of
each module and the protocols for communi-
cating among them, but places no constraints
on how each component operates. Indeed, the
ability to replace one large-scale module with
another equivalent one is viewed as an advan-
tage of this approach, since it lets teams devel-
op them separately and eases their integration.

One disadvantage of the multi-agent systems
framework is the need for modules to commu-
nicate directly with one another. Another par-
adigm addresses this issue by having modules
read and alter a shared memory of beliefs,
goals, and other short-term structures. Such a
blackboard system (Engelmore and Morgan
1989) retains the modularity of the first frame-
work, but replaces direct communication
among modules with an indirect scheme that
relies on matching patterns against elements in
the short-term memory. Thus, a blackboard ar-
chitecture supports a different form of integra-
tion than the multiagent scheme, so that the
former comes somewhat closer to theories of
human cognition.
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sidewalks, and buildings. Each vehicle can alter
its velocity and change its steering wheel angle
by setting control variables, which interact
with realistic laws to determine each vehicle’s
state. We have implemented ICARUS agents in
other domains, but this is the most complex
and will serve best to communicate my main
points.

The ICARUS Architecture
As noted above, ICARUS is a cognitive architec-
ture in Newell’s sense of that phrase. Like its
predecessors, it makes strong commitments to
memories, representations, and cognitive
processes. Another common theme is that it in-
corporates key ideas from theories of human
problem solving, reasoning, and skill acquisi-
tion. However, ICARUS is distinctive in its con-
cern with physical agents that operate in an ex-
ternal environment, and the framework also
differs from many previous theories by focus-
ing on the organization, use, and acquisition of
hierarchical structures. These concerns have
led to different assumptions than those found
in early architectures such as ACT and Soar.

Our research on ICARUS has been guided by
five high-level principles about the nature of

general intelligent systems: (1) cognition is
grounded in perception and action; (2) con-
cepts and skills are distinct cognitive structures;
(3) long-term memory is organized in a hierar-
chical fashion; (4) skill and concept hierarchies
are acquired in a cumulative manner; and (5)
long-term and short-term structures have a
strong correspondence. These ideas further dis-
tinguish ICARUS from most other cognitive ar-
chitectures that have been developed within
the Newell tradition. Again, I will not claim
here that they make the framework superior to
earlier ones, but I believe they do clarify the di-
mensions that define the space of candidate ar-
chitectures.

Memories and Representations
To reiterate, a cognitive architecture makes a
commitment to the memories that store the
content and that control its behavior. These
must include one or more long-term memories
that contain knowledge and procedures, along
with one or more short-term memories that
store the agent’s beliefs and goals. The contents
of long-term memories1 change gradually or
not at all, whereas short-term elements change
rapidly in response to environmental condi-
tions and the agent’s agenda. Some architec-
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match, and a :tests field that specifies Boolean
tests it must satisfy.

Table 1 shows some concepts from the dri-
ving domain. For example, the nonprimitive
concept driving-well-in-segment takes three argu-
ments: ?self, ?seg, and ?lane. The :percepts field
indicates that the first refers to the agent itself,
the second denotes a road segment, and the
last refers to a lane line associated with the seg-
ment. Each structure must match against ele-
ments in the perceptual buffer, which I describe
below. The :relations field states that the agent
must hold five interconnected beliefs about
these entities before it can infer an instance of
the concept.

Another nonprimitive concept in the table,
in-rightmost-lane, shows that the :relations field
can also contain negated conditions. These
match only when the agent does not hold any
corresponding belief, with unbound variables
like ?anylane being treated as universally quan-
tified. The table also illustrates two primitive
concepts, in-lane and in-segment, that refer to
perceived entities and Boolean tests on their at-
tribute values, but that do not refer to any sim-
pler concepts. ICARUS concepts are very similar
to Horn clauses in the programming language
Prolog (Clocksin and Mellish 1981), although
the syntax differs somewhat.

In contrast, long-term skill memory encodes
knowledge about ways to act and achieve goals.
Each skill clause has a head, which specifies a
concept the clause should achieve upon suc-
cessful completion, and a body with a variety
of fields. For primitive skill clauses, the body in-
cludes a :start field that describes the situation
in which the agent can initiate the clause, a :re-
quires field that must hold throughout the
skill’s execution (for use in durative skills), and
an :actions field that indicates executable ac-
tions the clause should invoke. For example,
Table 2 shows a primitive skill clause for in-in-
tersection-for-right-turn, which is considered on-
ly when one start condition (in-rightmost-lane)
holds at the outset and when three require-
ments hold throughout execution.

Nonprimitive skill clauses differ from primi-
tive ones in that they have no :actions field,
since they instead have a :subgoals field that
specifies a set of subgoals the agent should
achieve and the order in which this should
happen. Such higher-level clauses also have a
:start field, but they lack a :requires field, which
is handled by their primitive subskills. Table 2
shows two nonprimitive skill clauses for
achieving driving-well-in-segment, which have
the same percepts but which have slightly dif-
ferent start conditions and subgoals. The table
also includes two skill clauses intended to

tures also incorporate sensorimotor memories
that hold information about perceptions and
actions; these are updated rapidly as the system
perceives new objects and executes its proce-
dures.

As figure 1 depicts, ICARUS includes six dis-
tinct memories, two of each variety. Unlike tra-
ditional production-system architectures,
which encode all long-term contents as condi-
tion-action rules, it has two separate memories,
one for conceptual knowledge and another for
skills or procedures. The framework has two
analogous short-term memories, one for the
agent’s beliefs about the environment and an-
other for its goals and associated intentions. Fi-
nally, ICARUS has a perceptual buffer that holds
immediate perceptions of the environment
and a motor buffer that contains skills and ac-
tions it intends for immediate execution.

ICARUS’s focus on physical settings distin-
guishes it from traditional cognitive architec-
tures, including early versions of Soar and ACT,
although both frameworks have since been ex-
tended to interface with external environ-
ments. For example, Laird and Rosenbloom
(1990) report a variant of Soar that controls a
physical robot, whereas Byrne (2001) describes
ACT-R/PM, which augments ACT-R with per-
ceptual and motor buffers. However, both the-
ories focused initially on central cognition and
added other modules at a later date, whereas
ICARUS began as an architecture for reactive ex-
ecution and places greater emphasis on interac-
tion with the physical world.

In addition to positing memories, a cogni-
tive architecture makes theoretical claims
about the representations used to store infor-
mation in those memories. Thus, it commits to
a particular syntax for encoding long-term and
short-term structures. Most frameworks rely on
formalisms similar to the predicate calculus
that support expression of relational content.
These build on AI’s central assumption that in-
telligent behavior involves the manipulation of
symbolic list structures (Newell and Simon
1976). An architecture also specifies the man-
ner in which it organizes these structures in
memory, along with the way those structures
are connected across different memories.

For instance, ICARUS represents the contents
of long-term conceptual memory as Boolean
concepts that encode knowledge about classes
of objects and relations among them. Each
concept definition includes a head, which spec-
ifies its name and arguments, and a body,
which includes a :percepts field that describes
the types and attribute values of observed per-
ceptual entities, a :relations field that states low-
er-level concepts it must match or must not
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achieve the concept in-segment, one a primitive
variant that invokes the action *steer and an-
other that includes a recursive call to itself. Skill
clauses for in-intersection-for-right-turn have a
similar structure, one of which refers to in-
rightmost-lane as a subgoal, which in turn at-
tempts to achieve driving-well-in-segment.

Clearly, both long-term memories are orga-
nized in hierarchical terms, with more complex
skills and concepts being defined in terms of
simpler components. Each hierarchy includes
primitive structures at the bottom and specifies
increasingly complex structures at higher lev-
els, although direct and indirect recursion can
also occur. Most cognitive architectures can
model such hierarchical relations, but few raise
this notion to a design principle. For example,
ACT-R lets production rules specify goals in
their left-hand sides and subgoals in their right-
hand sides, but the architecture does not re-

quire this relationship. Moreover, ICARUS skill
clauses refer to concepts in many of their fields,
thus providing additional organization on the
framework’s long-term memories.

ICARUS’s short-term belief memory contains
instances of defined concepts, which encode
specific beliefs about the environment that the
agent can infer from its perceptions. Each such
instance includes the concept name and ob-
jects in the environment that serve as its argu-
ments. For example, this memory might con-
tain the instance (in-lane self g601), which
could follow from the in-lane concept shown
in table 1. Instances of higher-level concepts,
such as (driving-well-in-segment me g550 g601),
also take the form of conceptual predicates
with objects as their arguments. Table 3 pre-
sents some example beliefs from the in-city dri-
ving domain; these clarify that ICARUS’s beliefs
about its current situation are inherently rela-
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((driving-well-in-segment ?self ?seg ?lane)
 :percepts  ((self ?self)
             (segment ?seg)
             (lane-line ?lane segment ?seg))
 :relations ((in-segment ?self ?seg)
             (in-lane ?self ?lane)
             (aligned-with-lane-in-segment ?self ?seg ?lane)
             (centered-in-lane ?self ?seg ?lane)
             (steering-wheel-straight ?self)))

((in-rightmost-lane ?self ?clane)
 :percepts  ((self ?self)
             (lane-line ?clane segment ?seg)
             (segment ?seg))
 :relations ((driving-well-in-segment ?self ?seg ?clane)
             (last-lane ?clane)
             (not (lane-to-right ?clane ?anylane))))

((in-lane ?self ?lane)
 :percepts  ((self ?self segment ?seg)
             (lane-line ?lane segment ?seg dist ?dist))
 :tests     ((> ?dist -10) (<= ?dist 0)))

((in-segment ?self ?seg)
 :percepts  ((self ?self segment ?seg)
             (segment ?seg)))

Table 1. Some ICARUS Concepts for In-City Driving, with Variables Indicated by Question Marks.
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((driving-well-in-segment ?self ?seg ?line)
 :percepts ((segment ?seg) (lane-line ?line) (self ?self))
 :start    ((steering-wheel-straight ?self))
 :subgoals ((in-segment ?self ?seg)
            (centered-in-lane ?self ?seg ?line)
            (aligned-with-lane-in-segment ?self ?seg ?line)
            (steering-wheel-straight ?self)))

((driving-well-in-segment ?self ?seg ?line)
 :percepts ((segment ?seg) (lane-line ?line) (self ?self))
 :start    ((in-segment ?self ?seg) (steering-wheel-straight ?self))
 :subgoals ((in-lane ?self ?line)
            (centered-in-lane ?self ?seg ?line)
            (aligned-with-lane-in-segment ?self ?seg ?line)
            (steering-wheel-straight ?self)))

((in-segment ?self ?seg)
 :percepts ((self ?self) (intersection ?int) (segment ?seg))
 :start    ((last-lane ?line))
 :subgoals ((in-intersection-for-right-turn ?self ?int)
            (in-segment ?self ?seg)))

((in-segment ?self ?endsg)
 :percepts ((self ?self speed ?speed) (intersection ?int cross ?cross)
            (segment ?endsg street ?cross angle ?angle))
 :start    ((in-intersection-for-right-turn ?self ?int))
 :actions  ((*steer 1)))

((in-intersection-for-right-turn ?self ?int)
 :percepts ((lane-line ?line) (self ?self) (intersection ?int))
 :start    ((last-lane ?line))
 :subgoals ((in-rightmost-lane ?self ?line)
            (in-intersection-for-right-turn ?self ?int)))

((in-intersection-for-right-turn ?self ?int)
 :percepts ((self ?self) (segment ?seg) (intersection ?int)
            (lane-line ?lane segment ?seg))
 :start    ((in-rightmost-lane ?self ?lane))
 :requires ((in-segment ?self ?seg) (intersection-ahead ?int) (last-lane ?lane))
 :actions  ((*cruise)))

((in-rightmost-lane ?self ?line)
 :percepts ((self ?self) (lane-line ?line))
 :start    ((last-lane ?line))
 :subgoals ((driving-well-in-segment ?self ?seg ?line)))

Table 2. Some ICARUS Skills for the In-City Driving Domain.



tional in structure, much as the contents of
short-term memories in other architectures like
Soar and ACT.

However, ICARUS’s perceptual buffer has a
somewhat different character. Elements in this
memory, which is refreshed on every cycle, de-
scribe individual objects that the agent per-
ceives in the environment. Each element has a
type (for example, building or segment), a
unique name (for example, g425), and a set of
attributes with their associated values. Table 4
gives the partial contents of the perceptual
buffer for one situation that arises in the in-city
driving domain. This includes six lane lines,
each of which has a length, width, distance,
angle, color, and associated segment. The table
also shows four perceived buildings, each with
an address, street, distance and angle to the
corner closest to the agent that faces the street,
and distance and angle to the other corner. Ad-
ditional percepts describe the agent, road seg-
ments, sidewalks, an intersection, and a stop-
light.2 Note that most attributes take on
numeric values but that some are symbolic.

ICARUS also incorporates a short-term memo-
ry for goals and intentions. This contains a pri-
oritized set of goal stacks, each of which con-
tains an ordered list of goals, with an entry
serving as the subgoal for the one below it on
the list. Each goal entry may have an associated
skill instance that specifies the agent’s inten-
tion to execute that skill, once it becomes ap-
plicable, in order to achieve the goal. Entries
may also contain other information about sub-
goals that have been achieved previously or
abandoned. Only the top entry on each goal
stack is accessible to the ICARUS interpreter, but
older information can become available when

the system pops the stack upon achieving or
abandoning the current goal.

Unlike other cognitive architectures, ICARUS

also imposes a strong correspondence between
the contents of its long-term and short-term
memories. In particular, it requires that every
short-term element be a specific instance of
some long-term structure. For example, belief
memory contains instances of defined con-
cepts that the agent can infer from its environ-
mental perceptions. Thus, this memory might
contain the instance (in-segment me g550),
which it can infer from the in-segment concept
shown in table 1. The same holds for instances
that appear in goal memory, in which an ele-
ment like (driving-well-in-segment me g550 g601)
indicates the agent’s desire to be aligned and
centered with respect to a given segment and
lane line. In fact, ICARUS cannot encode a goal
without a corresponding long-term concept,
and the intentions attached to goals must be
instances of clauses in long-term skill memory.
This suggests a natural approach to modeling
episodic traces that my colleagues and I plan to
explore in future work.

ICARUS’s theoretical position contrasts with
those of Soar and ACT-R, which enforce much
weaker connections. The latter states that ele-
ments in short-term memory are active ver-
sions of structures in long-term declarative
memory, but makes few claims about the rela-
tion between generalized structures and specif-
ic instances of them. In both frameworks, pro-
duction rules in long-term memory contain
generalized patterns that match or alter specific
elements in short-term memory, but ICARUS’s re-
lationship is more constrained. On this dimen-
sion, ICARUS comes closer to Schank’s (1982)
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(current-street me A)
(lane-to-right g599 g601)
(last-lane g599)
(at-speed-for-u-turn me) 
(steering-wheel-not-straight me) 
(in-lane me g599)  
(on-right-side-of-road-in-segment me)
(building-on-left g288)
(building-on-left g427)
(building-on-left g431)
(building-on-right g287) 
(increasing-direction me)

(current-segment me g550)
(first-lane g599)
(last-lane g601)
(slow-for-right-turn me)
(centered-in-lane me g550 g599)
(in-segment me g550)
(intersection-behind g550 g522)
(building-on-left g425)
(building-on-left g429)
(building-on-left g433)
(building-on-right g279)
(buildings-on-right g287 g279)

Table 3. Partial Contents of ICARUS’s Short-Term Conceptual Memory for the In-City Driving Domain.



trast, learning processes are responsible for al-
tering the contents of long-term memory, ei-
ther by generating new knowledge structures
or by refining and modulating existing struc-
tures. In most architectures, the mechanisms
for performance and learning are closely inter-
twined.

For example, figure 2 indicates that ICARUS

includes separate performance modules for
conceptual inference, skill execution, and
problem solving, but they operate on many of
the same structures and they build on each
others’ results in important ways. In particular,
the problem-solving process is interleaved with
skill retrieval and execution, and both rely
heavily on beliefs produced by the inference
module to determine their behavior. Further-
more, the hierarchical organization of long-
term memory plays a central role in each of
their mechanisms.

Conceptual inference is the architecture’s
most basic activity. On each cycle, the system
matches concept definitions in long-term
memory against perceptions and beliefs. When
a concept matches, the module adds an in-
stance of that concept to short-term belief
memory, making it available to support other
inferences. As the left side of figure 3 depicts,
the system operates in a bottom-up manner,
starting with primitive concepts, which match
against percepts, and working up to higher-lev-
el concepts, which match against lower-level

theory of dynamic memory, which does not
meet all of the criteria for a cognitive architec-
ture but which he proposed in much the same
spirit. In addition, both frameworks share a
commitment to the hierarchical organization
of memory and reserve a central role for con-
ceptual inference.

Performance and Learning Processes
Besides making theoretical claims about mem-
ories and their contents’ representations, a cog-
nitive architecture also commits to a set of
processes that alter these contents. These are
described at the level of functional mecha-
nisms, which is more concrete than Newell’s
(1982) “knowledge level” and more abstract
than the implementation level of hardware or
wetware. Thus, the architecture specifies each
process in terms of an algorithm or procedure
that is independent of its implementation de-
tails, yet still operates over particular mental
structures.

Research on cognitive architectures, like psy-
chology, generally distinguishes between per-
formance processes and learning processes. Per-
formance mechanisms utilize structures in
long-term memory to interpret and alter the
contents of short-term memory, making them
responsible for the generation of beliefs and
goals. These typically include methods for
memory retrieval, pattern matching, skill selec-
tion, inference, and problem solving. In con-
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(self me speed 5 angle-of-road -0.5 steering-wheel-angle -0.1)
(segment g562 street 1 dist -5.0 latdist 15.0)
(lane-line g564 length 100.0 width 0.5 dist 35.0 angle 1.1 color white segment g562)
(lane-line g565 length 100.0 width 0.5 dist 15.0 angle 1.1 color white segment g562)
(lane-line g563 length 100.0 width 0.5 dist 25.0 angle 1.1 color yellow segment g562)
(segment g550 street A dist oor latdist nil)
(lane-line g6OO length 100.0 width 0.5 dist -15.0 angle -0.5 color white segment g550)
(lane-line g6O1 length 100.0 width 0.5 dist 5.0 angle -0.5 color white segment g550)
(lane-line g599 length 100.0 width 0.5 dist -5.0 angle -0.5 color yellow segment g550)
(intersection g522 street A cross 1 dist -5.0 latdist nil)
(building g431 address 99 street A c1dist 38.2 c1angle -1.4 c2dist 57.4 c2angle -1.0)
(building g429 address 74 street A c1dist 29.0 c1angle -2.1 c2dist 38.2 c2angle -1.4)
(building g425 address 25 street A c1dist 37.8 c1angle -2.8 c2dist 56.9 c2angle -3.1)
(building g389 address 49 street 1 c1dist 49.2 c1angle 2.7 c2dist 53.0 c2angle 2.2)
(sidewalk g471 dist 15.0 angle -0.5)
(sidewalk g474 dist 5.0 angle 1.07)
(sidewalk g469 dist -25.0 angle -0.5)
(sidewalk g470 dist 45.0 angle 1.07)
(stoplight g538 vcolor green hcolor red))

Table 4. Partial Contents of ICARUS’s Perceptual Buffer for the In-City Driving Domain.



concepts. This cascade continues until ICARUS

has deduced all beliefs that are implied by its
conceptual knowledge base and by its immedi-
ate perceptions.

In contrast, the skill execution module pro-
ceeds in a top-down manner, as the right side of
figure 3 illustrates. The process starts from the
current goal, such as (on-street me A) or (driving-
well-in-segment me ?seg ?lane), and finds applic-
able paths through the hierarchy that terminate
in primitive skill clauses with executable ac-
tions, such as (*steer 1). A skill path is a chain of
skill instances that starts from the agent’s top-
level goal and descends the skill hierarchy, uni-
fying the arguments of each subskill clause con-
sistently with those of its parent. A path is
applicable if the concept instance that corre-
sponds to the intention is not satisfied, if the re-
quirements of the terminal (primitive) skill in-
stance are satisfied, and if, for each skill instance
in the path not executed on the previous cycle,
the start conditions are satisfied. This last con-
straint is necessary because skills may take
many cycles to achieve their desired effects,
making it important to distinguish between
their initiation and their continuation.

When ICARUS’s execution module can find a
path through the skill hierarchy relevant to its

current goal, it carries out actions in the envi-
ronment, but when it cannot find such a path,
it invokes a module for means-ends problem
solving (Newell and Simon 1961). This chains
backward from the goal off either a skill or con-
cept definition, pushing the result of each rea-
soning step onto a goal stack. The module con-
tinues pushing new goals onto the stack until it
finds one it can achieve with an applicable
skill, in which case it executes the skill and
pops the goal from the stack. If the parent goal
involved skill chaining, then this leads to exe-
cution of its associated skill and achievement
of the parent, which is in turn popped. If the
parent goal involved concept chaining, anoth-
er unsatisfied subconcept is pushed onto the
goal stack or, if none remain, then the parent is
popped. This process continues until the sys-
tem achieves the top-level goal.

ICARUS’s performance processes have clear
similarities to analogous mechanisms in other
architectures. Conceptual inference plays
much the same role as the elaboration stage in
Soar, which adds inferences to short-term
memory in a deductive, bottom-up manner for
use in decision making. Selection and execu-
tion of skill paths bears a strong resemblance to
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Figure 2. Functional Processes of the ICARUS Architecture and Their Connections to Memories.



I should reiterate that ICARUS’s various mod-
ules do not proceed in an independent fashion
but are constrained by each others’ operation.
Skill execution is influenced by the inference
process because the former tests against con-
cept instances produced by the latter. Problem
solving is constrained both by execution,
which it uses to achieve subgoals, and by infer-
ence, which lets it determine when they have
been achieved. Finally, skill learning draws di-
rectly on the results of problem solving, which
let it determine the structure of new skills, and
inferred beliefs, which determine the start con-
ditions it should place on these skills. Such
strong interaction is the essence of a cognitive
architecture that aspires to move beyond inte-
gration to a unified theory of intelligence.

Architectures as 
Programming Languages
Finally, I should note that a cognitive architec-
ture typically comes with an associated pro-
gramming language for use in building knowl-
edge-based systems. The syntax of this
formalism is linked closely to the framework’s
representational assumptions, with knowledge
in long-term memory corresponding to the
program and with initial short-term elements
playing the role of inputs. The language in-
cludes an interpreter that can run the program

the goal-driven, top-down control typically uti-
lized in ACT-R systems, although ICARUS uses
this idea for executing physical actions rather
than cognitive processing, and it traverses
many levels of the skill hierarchy on each deci-
sion cycle. The means-ends problem solver op-
erates much like the one central to Prodigy
(Minton et al. 1989), except that it interleaves
planning with execution, which reflects
ICARUS’s commitment to embedding cognition
in physical agents.

Finally, ICARUS incorporates a learning mod-
ule that creates a new skill whenever problem
solving and execution achieve a goal. The new
structure includes the achieved goal as its head,
the subgoals that led to the goal as its subskills,
and start conditions that differ depending on
whether the solution involved chaining off a
skill or concept definition. As discussed in
more detail elsewhere (Langley and Choi,
2006), learning is interleaved with problem
solving and execution, and it occurs in a fully
incremental manner. Skills acquired earlier are
available for inclusion in those formed later,
making the learning process cumulative. ICARUS

shares with Soar and Prodigy the notion of
learning from impasses that are overcome
through problem solving, but it differs in its
ability to acquire hierarchical skills in a cumu-
lative fashion that builds on earlier structures.
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Figure 3. ICARUS Conceptual Clauses (left) Are Matched Bottom Up, Starting from Percepts, 
Whereas Skill Clauses (right) Are Matched Top Down, Starting from the Agent’s Goals. 

On the left, darker nodes denote matched concept instances; on the right, 
lighter nodes indicate an applicable path through the skill hierarchy.



on these inputs, and usually comes
with tracing facilities that let users in-
spect the system’s behavior over time.

In general, the languages associated
with cognitive architectures are higher
level than traditional formalisms, let-
ting them produce equivalent behav-
ior with much more concise programs.
This power comes partly from the
architecture’s commitment to specific
representations, which incorporate
ideas from list processing and first-or-
der logic, but it also follows from the
inclusion of processes that interpret
these structures in a specific way.
Mechanisms like pattern matching,
inference, and problem solving pro-
vide many implicit capabilities that
must be provided explicitly in tradi-
tional languages. For these reasons,
cognitive architectures support far
more efficient development of soft-
ware for intelligent systems, making
them the practical choice for many ap-
plications.

The programming language associ-
ated with ICARUS comes with the syn-
tax for hierarchical concepts and
skills, the ability to load and parse
such programs, and commands for
specifying the initial contents of
short-term memories and interfaces
with the environment. The language
also includes an interpreter that han-
dles inference, execution, planning,
and learning over these structures,
along with a trace package that dis-
plays system behavior on each cycle. I
have presented examples of the syntax
and discussed the operation of the in-
terpreter in previous sections, and my
colleagues and I have used this lan-
guage to develop adaptive intelligent
agents in a variety of domains.

As noted earlier, the most challeng-
ing of these has involved in-city dri-
ving. For example, we have construct-
ed an ICARUS program for delivering
packages within the simulated driving
environment that includes 15 primi-
tive concepts and 55 higher-level con-
cepts, which range from one to six lev-
els deep. These are grounded in
perceptual descriptions for buildings,
road segments, intersections, lane
lines, packages, other vehicles, and the
agent’s vehicle. The system also incor-
porates eight primitive skills and 33
higher-level skills, organized in a hier-

archy that is five levels deep. These ter-
minate in executable actions for
changing speed, altering the wheel an-
gle, and depositing packages. We have
used this domain to demonstrate the
integration of conceptual inference,
skill execution, problem solving, and
acquisition of hierarchical skills.

There also exist other, more impres-
sive, examples of integrated intelligent
systems developed within more estab-
lished cognitive architectures. For in-
stance, Tambe et al. (1995) report a sim-
ulated fighter pilot, implemented
within the Soar framework, that incor-
porates substantial knowledge about
flying missions and that has been used
repeatedly in large-scale military train-
ing exercises. Similarly, Trafton et al.
(2005) describe an ACT-R system,
which controls a mobile robot that in-
teracts with humans in building envi-
ronments having obstacles and occlu-
sion. These developers have not
compared directly the lines of code re-
quired to program such systems within
a cognitive architecture and within tra-
ditional programming languages. How-
ever, I am confident that the higher-
level constructs available in ICARUS,
Soar, ACT-R, and similar frameworks al-
low much simpler programs and far
more rapid construction of intelligent
agents.

Concluding Remarks
In the preceding pages, I reviewed the
notion of a cognitive architecture and
argued for its role in developing gener-
al intelligent systems that have the
same range of abilities as humans. I al-
so examined one such architecture—
ICARUS—in some detail. My purpose
was to illustrate the theoretical com-
mitments made by cognitive architec-
tures, including their statements
about system memories, the represen-
tation of those memories’ contents,
and the functional processes that op-
erate on those contents. I also showed
how, taken together, these assump-
tions can support a programming lan-
guage that eases the construction of
intelligent agents.

I should reiterate that ICARUS is nei-
ther the most mature or most widely
used framework of this sort. Both ACT-
R (Anderson 1993) and Soar (Laird,
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Newell, and Rosenbloom 1987) are
many years older and have been used
by far more people. Other well-known
but more recent cognitive architec-
tures include EPIC (Kieras and Meyer
1997) and Clarion (Sun, Merrill, and
Peterson 2001). I will not attempt to
be exhaustive here, since research in
this area has been ongoing since the
1970s, and I can only hope to men-
tion a representative sample of this
important intellectual movement.

However, I should note that the
great majority of research efforts on
cognitive architectures, including
those just mentioned, have focused on
production systems, in which condi-
tion-action rules in long-term memo-
ry match against and modify elements
in short-term memory. This paradigm
has proven quite flexible and success-
ful in modeling intelligent behavior,
but this does not mean the space of
cognitive architectures lacks other vi-
able candidates. For reasons given ear-
lier, I view ICARUS as occupying a quite
different region of this space, but it
shares features with Minton et al.’s
Prodigy, which uses means-ends
analysis to direct learning, and Freed’s
(1998) APEX, which stores complex
skills in a hierarchical manner. Yet the
space is large, and we need more sys-
tematic exploration of alternative
frameworks that support general intel-
ligent systems.

The field would also benefit from in-
creased research on topics that have re-
ceived little attention within tradition-
al cognitive architectures. For instance,
there has been considerable effort on
procedural memory, but much less on
episodic memory, which supports
quite different abilities. Also, most ar-
chitectural research has focused on
generating the agent’s own behavior,
rather than on understanding the ac-
tions of others around it, which is
equally important. Nor do many cur-
rent cognitive architectures explain
the role that emotions might play in
intelligent systems, despite their clear
importance to human cognition.
These and many other issues deserve
fuller attention in future research.

Of course, there is no guarantee that
work on unified cognitive architec-
tures will lead to computational sys-
tems that exhibit human-level intelli-



gence. However, recall that, to date,
we have only one demonstration that
such systems are possible—humans
themselves—and most research on
cognitive architectures, even when it
does not attempt to model the details
of human behavior, is strongly influ-
enced by psychological findings. At
the very least, studies of human cogni-
tion are an excellent source of ideas for
how to build intelligent artifacts, and
most cognitive architectures already
incorporate mechanisms with such
origins. Combined with the aim of de-
veloping strong theories of the mind
and the desire to demonstrate broad
generality, this emphasis makes cogni-
tive architectures a viable approach to
achieving human-level intelligence.
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Notes
1. An important form of long-term stor-
age—episodic memory—has received re-
markably little attention within the cogni-
tive architecture community, although
Nuxoll and Laird (2004) report some recent
efforts in this area.

2. Of course, we might have modeled the
results of perception at a finer granularity,
say at the level of object surfaces or edges,
but the current architecture is agnostic
about such issues.
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